1
|
Allouh MZ, Rizvi SFA, Alamri A, Jimoh Y, Aouda S, Ouda ZH, Hamad MIK, Perez-Cruet M, Chaudhry GR. Mesenchymal stromal/stem cells from perinatal sources: biological facts, molecular biomarkers, and therapeutic promises. Stem Cell Res Ther 2025; 16:127. [PMID: 40055783 PMCID: PMC11889844 DOI: 10.1186/s13287-025-04254-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/25/2025] [Indexed: 05/13/2025] Open
Abstract
The use of mesenchymal stem cells (MSCs) from perinatal tissue sources has gained attention due to their availability and lack of significant ethical or moral concerns. These cells have a higher proliferative capability than adult MSCs and less immunogenic or tumorigenesis risk than fetal and embryonic stem cells. Additionally, they do not require invasive isolation methods like fetal and adult MSCs. We reviewed the main biological and therapeutic aspects of perinatal MSCs in a three-part article. In the first part, we revised the main biological features and characteristics of MSCs and the advantages of perinatal MSCs over other types of SCs. In the second part, we provided a detailed molecular background for the main biomarkers that can be used to identify MSCs. In the final part, we appraised the therapeutic application of perinatal MSCs in four major degenerative disorders: degenerative disc disease, retinal degenerative diseases, ischemic heart disease, and neurodegenerative diseases. In conclusion, there is no single specific molecular marker to identify MSCs. We recommend using at least two positive markers of stemness (CD29, CD73, CD90, or CD105) and two negative markers (CD34, CD45, or CD14) to exclude the hematopoietic origin. Moreover, utilizing perinatal MSCs for managing degenerative diseases presents a promising therapeutic approach. This review emphasizes the significance of employing more specialized progenitor cells that originated from the perinatal MSCs. The review provides scientific evidence from the literature that applying these progenitor cells in therapeutic procedures provides a greater regenerative capacity than the original primitive MSCs. Finally, this review provides a valuable reference for researchers exploring perinatal MSCs and their therapeutic applications.
Collapse
Affiliation(s)
- Mohammed Z Allouh
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P. O. Box: 15551, Al Ain, UAE.
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA.
| | - Syed Faizan Ali Rizvi
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA
| | - Ali Alamri
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA
| | - Yusuf Jimoh
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA
| | - Salma Aouda
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, UAE
| | - Zakaria H Ouda
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P. O. Box: 15551, Al Ain, UAE
| | - Mohammad I K Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P. O. Box: 15551, Al Ain, UAE
| | - Mick Perez-Cruet
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA
- Department of Neurosurgery, Corewell Health, Royal Oak, MI, USA
| | - G Rasul Chaudhry
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA.
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA.
| |
Collapse
|
2
|
Moghtaderi H, Mohahammadi S, Sadeghian G, Choudhury M, Al-Harrasi A, Rahman SM. Electrical impedance sensing in stem cell research: Insights, applications, and future directions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:1-14. [PMID: 39557164 DOI: 10.1016/j.pbiomolbio.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
The exceptional differentiation abilities of stem cells make them ideal candidates for cell replacement therapies. Considering their great potential, researchers should understand how stem cells interact with other cell types. The production of high-quality differentiated cells is crucial for favorable treatment and makes them an ideal choice for clinical applications. Label-free stem cell monitoring approaches are anticipated to be more effective in this context, as they ensure quality of differentiation while preserving the therapeutic potential. Electric cell-substrate impedance sensing (ECIS) is a nonintrusive technique that enables cell quantification through continuous monitoring of adherent cell behavior using electronic transcellular impedance measurements. This technique also facilitates the study of cell growth, motility, differentiation, drug effects, and cell barrier functions. Therefore, numerous studies have identified ECIS as an effective method for monitoring stem cell quality and differentiation. In this review, we discuss the current understanding of ECIS's achievements in examining cell behaviors and the potential applications of ECIS arrays in preclinical stem cell research. Moreover, we highlight our present knowledge concerning ECIS's contributions in examining cell behaviors and speculate about the future uses of ECIS arrays in preclinical stem cell research. This review also aims to stimulate research on electrochemical biosensors for future applications in regenerative medicine.
Collapse
Affiliation(s)
- Hassan Moghtaderi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Sultanate of Oman
| | - Saeed Mohahammadi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Sultanate of Oman
| | - Golfam Sadeghian
- Advanced Micro and Nano Device Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 1439957131, Iran
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas A & M University, College Station, TX, 77843, USA
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Sultanate of Oman
| | - Shaikh Mizanoor Rahman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Sultanate of Oman.
| |
Collapse
|
3
|
Augustine R, Gezek M, Nikolopoulos VK, Buck PL, Bostanci NS, Camci-Unal G. Stem Cells in Bone Tissue Engineering: Progress, Promises and Challenges. Stem Cell Rev Rep 2024; 20:1692-1731. [PMID: 39028416 DOI: 10.1007/s12015-024-10738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/20/2024]
Abstract
Bone defects from accidents, congenital conditions, and age-related diseases significantly impact quality of life. Recent advancements in bone tissue engineering (TE) involve biomaterial scaffolds, patient-derived cells, and bioactive agents, enabling functional bone regeneration. Stem cells, obtained from numerous sources including umbilical cord blood, adipose tissue, bone marrow, and dental pulp, hold immense potential in bone TE. Induced pluripotent stem cells and genetically modified stem cells can also be used. Proper manipulation of physical, chemical, and biological stimulation is crucial for their proliferation, maintenance, and differentiation. Stem cells contribute to osteogenesis, osteoinduction, angiogenesis, and mineralization, essential for bone regeneration. This review provides an overview of the latest developments in stem cell-based TE for repairing and regenerating defective bones.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Radiology, Stanford Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
| | - Mert Gezek
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | | | - Paige Lauren Buck
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Nazli Seray Bostanci
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA.
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
4
|
Lee MY, Yoon HW, Kim SI, Kwon JS, Shin SJ. Implementing microfluidic flow device model in utilizing dural substitutes as pulp capping materials for vital pulp therapy. Biofabrication 2024; 16:045027. [PMID: 39116895 DOI: 10.1088/1758-5090/ad6cf8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024]
Abstract
Vital pulp therapy (VPT) has gained prominence with the increasing trends towards conservative dental treatment with specific indications for preserving tooth vitality by selectively removing the inflamed tissue instead of the entire dental pulp. Although VPT has shown high success rates in long-term follow-up, adverse effects have been reported due to the calcification of tooth canals by mineral trioxide aggregates (MTAs), which are commonly used in VPT. Canal calcification poses challenges for accessing instruments during retreatment procedures. To address this issue, this study evaluated the mechanical properties of dural substitute intended to alleviate intra-pulp pressure caused by inflammation, along with assessing the biological responses of human dental pulp stem cells (hDPSCs) and human umbilical vein endothelial cells (HUVECs), both of which play crucial roles in dental pulp. The study examined the application of dural substitutes as pulp capping materials, replacing MTA. This assessment was conducted using a microfluidic flow device model that replicated the blood flow environment within the dental pulp. Computational fluid dynamics simulations were employed to ensure that the fluid flow velocity within the microfluidic flow device matched the actual blood flow velocity within the dental pulp. Furthermore, the dural substitutes (Biodesign; BD and Neuro-Patch; NP) exhibited resistance to penetration by 2-hydroxypropyl methacrylate (HEMA) released from the upper restorative materials and bonding agents. Finally, while MTA increased the expression of angiogenesis-related and hard tissue-related genes in HUVEC and hDPSCS, respectively, BD and NP did not alter gene expression and preserved the original characteristics of both cell types. Hence, dural substitutes have emerged as promising alternatives for VPT owing to their resistance to HEMA penetration and the maintenance of stemness. Moreover, the microfluidic flow device model closely replicated the cellular responses observed in live pulp chambers, thereby indicating its potential use as anin vivotesting platform.
Collapse
Affiliation(s)
- Min-Yong Lee
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Hi-Won Yoon
- Department of Conservative Dentistry and Oral Science Research Center, Gangnam Severance Hospital, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Sun-Il Kim
- Department of Conservative Dentistry and Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Su-Jung Shin
- Department of Conservative Dentistry and Oral Science Research Center, Gangnam Severance Hospital, Yonsei University College of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
5
|
Swain HN, Boyce PD, Bromet BA, Barozinksy K, Hance L, Shields D, Olbricht GR, Semon JA. Mesenchymal stem cells in autoimmune disease: A systematic review and meta-analysis of pre-clinical studies. Biochimie 2024; 223:54-73. [PMID: 38657832 DOI: 10.1016/j.biochi.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/08/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Mesenchymal Stem Cells (MSCs) are of interest in the clinic because of their immunomodulation capabilities, capacity to act upstream of inflammation, and ability to sense metabolic environments. In standard physiologic conditions, they play a role in maintaining the homeostasis of tissues and organs; however, there is evidence that they can contribute to some autoimmune diseases. Gaining a deeper understanding of the factors that transition MSCs from their physiological function to a pathological role in their native environment, and elucidating mechanisms that reduce their therapeutic relevance in regenerative medicine, is essential. We conducted a Systematic Review and Meta-Analysis of human MSCs in preclinical studies of autoimmune disease, evaluating 60 studies that included 845 patient samples and 571 control samples. MSCs from any tissue source were included, and the study was limited to four autoimmune diseases: multiple sclerosis, rheumatoid arthritis, systemic sclerosis, and lupus. We developed a novel Risk of Bias tool to determine study quality for in vitro studies. Using the International Society for Cell & Gene Therapy's criteria to define an MSC, most studies reported no difference in morphology, adhesion, cell surface markers, or differentiation into bone, fat, or cartilage when comparing control and autoimmune MSCs. However, there were reported differences in proliferation. Additionally, 308 biomolecules were differentially expressed, and the abilities to migrate, invade, and form capillaries were decreased. The findings from this study could help to explain the pathogenic mechanisms of autoimmune disease and potentially lead to improved MSC-based therapeutic applications.
Collapse
Affiliation(s)
- Hailey N Swain
- Department of Biological Sciences, Missouri University of Science and Technology, USA
| | - Parker D Boyce
- Department of Biological Sciences, Missouri University of Science and Technology, USA
| | - Bradley A Bromet
- Department of Biological Sciences, Missouri University of Science and Technology, USA
| | - Kaiden Barozinksy
- Department of Biological Sciences, Missouri University of Science and Technology, USA
| | - Lacy Hance
- Department of Biological Sciences, Missouri University of Science and Technology, USA
| | - Dakota Shields
- Department of Mathematics and Statistics, Missouri University of Science and Technology, USA
| | - Gayla R Olbricht
- Department of Mathematics and Statistics, Missouri University of Science and Technology, USA
| | - Julie A Semon
- Department of Biological Sciences, Missouri University of Science and Technology, USA.
| |
Collapse
|
6
|
Teshima T. Heterogeneity of mesenchymal stem cells as a limiting factor in their clinical application to inflammatory bowel disease in dogs and cats. Vet J 2024; 304:106090. [PMID: 38417670 DOI: 10.1016/j.tvjl.2024.106090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Inflammatory bowel disease (IBD) is a major subtype of chronic enteropathies in dogs and cats. Conventional drugs such as immunomodulatory medicines as glucocorticoids and/or other anti-inflammatory are mainly applied for treatment. However, these drugs are not always effective to maintain remission from IBD and are limited by unacceptable side effects. Hence, more effective and safe therapeutic options need to be developed. Mesenchymal stem cells (MSCs) are multipotent stem cells with a self-renewal capacity, and have immunomodulatory, anti-inflammatory, anti-fibrotic, and tissue repair properties. Therefore, the application of MSCs as an alternative therapy for IBD has great potential in veterinary medicine. The efficacy of adipose tissue-derived MSC (ADSC) therapy for IBD in dogs and cats has been reported, including numerous studies in animal models. However, treatment outcomes in clinical trials of human IBD patients have not been consistent with preclinical studies. MSC-based therapy for various diseases has received widespread attention, but various problems in such therapy remain, among which no consensus has been reached on the preparation and treatment procedures for MSCs, and cellular heterogeneity of MSCs may be an issue. This review describes the current status of ADSC therapy for canine and feline IBD and summarizes the cellular heterogeneity of canine ADSCs, to highlight the necessity for further reduction or elimination of MSCs heterogeneity and standardization of MSC-based therapies.
Collapse
Affiliation(s)
- Takahiro Teshima
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Japan; Research Center for Animal Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan.
| |
Collapse
|
7
|
Liu Y, Xiong W, Li J, Feng H, Jing S, Liu Y, Zhou H, Li D, Fu D, Xu C, He Y, Ye Q. Application of dental pulp stem cells for bone regeneration. Front Med (Lausanne) 2024; 11:1339573. [PMID: 38487022 PMCID: PMC10938947 DOI: 10.3389/fmed.2024.1339573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/15/2024] [Indexed: 03/17/2024] Open
Abstract
Bone defects resulting from severe trauma, tumors, inflammation, and other factors are increasingly prevalent. Stem cell-based therapies have emerged as a promising alternative. Dental pulp stem cells (DPSCs), sourced from dental pulp, have garnered significant attention owing to their ready accessibility and minimal collection-associated risks. Ongoing investigations into DPSCs have revealed their potential to undergo osteogenic differentiation and their capacity to secrete a diverse array of ontogenetic components, such as extracellular vesicles and cell lysates. This comprehensive review article aims to provide an in-depth analysis of DPSCs and their secretory components, emphasizing extraction techniques and utilization while elucidating the intricate mechanisms governing bone regeneration. Furthermore, we explore the merits and demerits of cell and cell-free therapeutic modalities, as well as discuss the potential prospects, opportunities, and inherent challenges associated with DPSC therapy and cell-free therapies in the context of bone regeneration.
Collapse
Affiliation(s)
- Ye Liu
- Center of Regenerative Medicine, Department of Stomatology Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Xiong
- Center of Regenerative Medicine, Department of Stomatology Renmin Hospital of Wuhan University, Wuhan, China
| | - Junyi Li
- Center of Regenerative Medicine, Department of Stomatology Renmin Hospital of Wuhan University, Wuhan, China
| | - Huixian Feng
- Center of Regenerative Medicine, Department of Stomatology Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuili Jing
- Center of Regenerative Medicine, Department of Stomatology Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonghao Liu
- Center of Regenerative Medicine, Department of Stomatology Renmin Hospital of Wuhan University, Wuhan, China
| | - Heng Zhou
- Center of Regenerative Medicine, Department of Stomatology Renmin Hospital of Wuhan University, Wuhan, China
| | - Duan Li
- Center of Regenerative Medicine, Department of Stomatology Renmin Hospital of Wuhan University, Wuhan, China
| | - Dehao Fu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun Xu
- Sydney Dental School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital of Wuhan University of Science and Technology, Wuhan, China
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Qingsong Ye
- Center of Regenerative Medicine, Department of Stomatology Renmin Hospital of Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Hopkinson A, Notara M, Cursiefen C, Sidney LE. Increased Anti-Inflammatory Therapeutic Potential and Progenitor Marker Expression of Corneal Mesenchymal Stem Cells Cultured in an Optimized Propagation Medium. Cell Transplant 2024; 33:9636897241241992. [PMID: 38602231 PMCID: PMC11010753 DOI: 10.1177/09636897241241992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024] Open
Abstract
There is a huge unmet need for new treatment modalities for ocular surface inflammatory disorders (OSIDs) such as dry eye disease and meibomian gland dysfunction. Mesenchymal stem cell therapies may hold the answer due to their potent immunomodulatory properties, low immunogenicity, and ability to modulate both the innate and adaptive immune response. MSC-like cells that can be isolated from the corneal stroma (C-MSCs) offer a potential new treatment strategy; however, an optimized culture medium needs to be developed to produce the ideal phenotype for use in a cell therapy to treat OSIDs. The effects of in vitro expansion of human C-MSC in a medium of M199 containing fetal bovine serum (FBS) was compared to a stem cell medium (SCM) containing knockout serum replacement (KSR) with basic fibroblast growth factor (bFGF) and human leukemia inhibitory factor (LIF), investigating viability, protein, and gene expression. Isolating populations expressing CD34 or using siRNA knockdown of CD34 were investigated. Finally, the potential of C-MSC as a cell therapy was assessed using co-culture with an in vitro corneal epithelial cell injury model and the angiogenic effects of C-MSC conditioned medium were evaluated with blood and lymph endothelial cells. Both media supported proliferation of C-MSC, with SCM increasing expression of CD34, ABCG2, PAX6, NANOG, REX1, SOX2, and THY1, supported by increased associated protein expression. Isolating cell populations expressing CD34 protein made little difference to gene expression, however, knockdown of the CD34 gene led to decreased expression of progenitor genes. C-MSC increased viability of injured corneal epithelial cells whilst decreasing levels of cytotoxicity and interleukins-6 and -8. No pro-angiogenic effect of C-MSC was seen. Culture medium can significantly influence C-MSC phenotype and culture in SCM produced a cell phenotype more suitable for further consideration as an anti-inflammatory cell therapy. C-MSC show considerable potential for development as therapies for OSIDs, acting through anti-inflammatory action.
Collapse
Affiliation(s)
- Andrew Hopkinson
- Academic Ophthalmology, Mental Health and Clinical Neurosciences, University of Nottingham, Nottingham, UK
| | - Maria Notara
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Koln, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Koln, Germany
| | - Laura E. Sidney
- Academic Ophthalmology, Mental Health and Clinical Neurosciences, University of Nottingham, Nottingham, UK
- Regenerating and Modelling Tissues, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
9
|
Baouche M, Ochota M, Locatelli Y, Mermillod P, Niżański W. Mesenchymal Stem Cells: Generalities and Clinical Significance in Feline and Canine Medicine. Animals (Basel) 2023; 13:1903. [PMID: 37370414 DOI: 10.3390/ani13121903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells: they can proliferate like undifferentiated cells and have the ability to differentiate into different types of cells. A considerable amount of research focuses on the potential therapeutic benefits of MSCs, such as cell therapy or tissue regeneration, and MSCs are considered powerful tools in veterinary regenerative medicine. They are the leading type of adult stem cells in clinical trials owing to their immunosuppressive, immunomodulatory, and anti-inflammatory properties, as well as their low teratogenic risk compared with pluripotent stem cells. The present review details the current understanding of the fundamental biology of MSCs. We focus on MSCs' properties and their characteristics with the goal of providing an overview of therapeutic innovations based on MSCs in canines and felines.
Collapse
Affiliation(s)
- Meriem Baouche
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, 50-366 Wrocław, Poland
| | - Małgorzata Ochota
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, 50-366 Wrocław, Poland
| | - Yann Locatelli
- Physiology of Reproduction and Behaviors (PRC), UMR085, INRAE, CNRS, University of Tours, 37380 Nouzilly, France
- Museum National d'Histoire Naturelle, Réserve Zoologique de la Haute Touche, 36290 Obterre, France
| | - Pascal Mermillod
- Physiology of Reproduction and Behaviors (PRC), UMR085, INRAE, CNRS, University of Tours, 37380 Nouzilly, France
| | - Wojciech Niżański
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, 50-366 Wrocław, Poland
| |
Collapse
|
10
|
Pfeifer R, Al Rawashdeh W, Brauner J, Martinez-Osuna M, Lock D, Herbel C, Eckardt D, Assenmacher M, Bosio A, Hardt OT, Johnston ICD. Targeting Stage-Specific Embryonic Antigen 4 (SSEA-4) in Triple Negative Breast Cancer by CAR T Cells Results in Unexpected on Target/off Tumor Toxicities in Mice. Int J Mol Sci 2023; 24:ijms24119184. [PMID: 37298141 DOI: 10.3390/ijms24119184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Due to the paucity of targetable antigens, triple-negative breast cancer (TNBC) remains a challenging subtype of breast cancer to treat. In this study, we developed and evaluated a chimeric antigen receptor (CAR) T cell-based treatment modality for TNBC by targeting stage-specific embryonic antigen 4 (SSEA-4), a glycolipid whose overexpression in TNBC has been correlated with metastasis and chemoresistance. To delineate the optimal CAR configuration, a panel of SSEA-4-specific CARs containing alternative extracellular spacer domains was constructed. The different CAR constructs mediated antigen-specific T cell activation characterized by degranulation of T cells, secretion of inflammatory cytokines, and killing of SSEA-4-expressing target cells, but the extent of this activation differed depending on the length of the spacer region. Adoptive transfer of the CAR-engineered T cells into mice with subcutaneous TNBC xenografts mediated a limited antitumor effect but induced severe toxicity symptoms in the cohort receiving the most bioactive CAR variant. We found that progenitor cells in the lung and bone marrow express SSEA-4 and are likely co-targeted by the CAR T cells. Thus, this study has revealed serious adverse effects that raise safety concerns for SSEA-4-directed CAR therapies because of the risk of eliminating vital cells with stem cell properties.
Collapse
Affiliation(s)
- Rita Pfeifer
- Miltenyi Biotec GmbH, 51429 Bergisch Gladbach, Germany
| | | | | | | | - Dominik Lock
- Miltenyi Biotec GmbH, 51429 Bergisch Gladbach, Germany
| | | | | | | | - Andreas Bosio
- Miltenyi Biotec GmbH, 51429 Bergisch Gladbach, Germany
| | - Olaf T Hardt
- Miltenyi Biotec GmbH, 51429 Bergisch Gladbach, Germany
| | | |
Collapse
|
11
|
Baouche M, Krawczenko A, Paprocka M, Klimczak A, Mermillod P, Locatelli Y, Ochota M, Niżański W. Feline umbilical cord mesenchymal stem cells: Isolation and in vitro characterization from distinct parts of the umbilical cord. Theriogenology 2023; 201:116-125. [PMID: 36889011 DOI: 10.1016/j.theriogenology.2022.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) are a particular population of cells that play an essential role in the regeneration potential of the body. As a source of MSCs, the umbilical cord (UC) has significant advantages, such as a no-risk procedure of tissue retrieval after birth and the easiness of MSCs isolation. In the presented study, the cells derived from the feline whole umbilical cord (WUC) and two separate parts of the UC tissue, including Wharton's jelly (WJ) and umbilical cord vessels (UCV), were investigated to check whether they exhibit MSCs characteristics. The cells were isolated and characterized based on their morphology, pluripotency, differentiation potential, and phenotype. In our study MSCs were successfully isolated and cultured from all UC parts; after one week of culture, the cells had a typical spindle shape consistent with MSCs morphology. Cells showed the ability to differentiate into chondrocytes, osteoblasts and adipocytes cells. Two markers typical of MSCs (CD44, CD90) and three pluripotency markers (Oct4, SOX2 and Nanog) were expressed in all cells cultures; but no expression of (CD34, MCH II) was evidenced by flow cytometry and RT-PCR. In addition, WJ-MSCs showed the highest ability of proliferation, more significant pluripotency gene expressions, and greater differentiation potential than the cells isolated from WUC and UCV. Finally, we conclude in this study that cat MSCs derived from all the parts are valuable cells that can be efficiently used in various fields of feline regenerative medicine, but cells from WJ can offer the best clinical utility.
Collapse
Affiliation(s)
- Meriem Baouche
- Wrocław University of Environmental and Life Sciences, Department of Reproduction and Clinic of Farm Animals, 50-366, Wrocław, Poland
| | - Agnieszka Krawczenko
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wroclaw, Poland
| | - Maria Paprocka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wroclaw, Poland
| | - Aleksandra Klimczak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wroclaw, Poland
| | - Pascal Mermillod
- Physiology of Reproduction and Behaviors (PR China), UMR085, INRAE, CNRS, University of Tours, 37380, Nouzilly, France
| | - Yann Locatelli
- Physiology of Reproduction and Behaviors (PR China), UMR085, INRAE, CNRS, University of Tours, 37380, Nouzilly, France; Museum National d'Histoire Naturelle, Réserve Zoologique de la Haute Touche, 36290, Obterre, France
| | - Małgorzata Ochota
- Wrocław University of Environmental and Life Sciences, Department of Reproduction and Clinic of Farm Animals, 50-366, Wrocław, Poland.
| | - Wojciech Niżański
- Wrocław University of Environmental and Life Sciences, Department of Reproduction and Clinic of Farm Animals, 50-366, Wrocław, Poland.
| |
Collapse
|
12
|
Leal Reis I, Lopes B, Sousa P, Sousa AC, Branquinho M, Caseiro AR, Pedrosa SS, Rêma A, Oliveira C, Porto B, Atayde L, Amorim I, Alvites R, Santos JM, Maurício AC. Allogenic Synovia-Derived Mesenchymal Stem Cells for Treatment of Equine Tendinopathies and Desmopathies-Proof of Concept. Animals (Basel) 2023; 13:ani13081312. [PMID: 37106875 PMCID: PMC10135243 DOI: 10.3390/ani13081312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Tendon and ligament injuries are frequent in sport horses and humans, and such injuries represent a significant therapeutic challenge. Tissue regeneration and function recovery are the paramount goals of tendon and ligament lesion management. Nowadays, several regenerative treatments are being developed, based on the use of stem cell and stem cell-based therapies. In the present study, the preparation of equine synovial membrane mesenchymal stem cells (eSM-MSCs) is described for clinical use, collection, transport, isolation, differentiation, characterization, and application. These cells are fibroblast-like and grow in clusters. They retain osteogenic, chondrogenic, and adipogenic differentiation potential. We present 16 clinical cases of tendonitis and desmitis, treated with allogenic eSM-MSCs and autologous serum, and we also include their evaluation, treatment, and follow-up. The concerns associated with the use of autologous serum as a vehicle are related to a reduced immunogenic response after the administration of this therapeutic combination, as well as the pro-regenerative effects from the growth factors and immunoglobulins that are part of its constitution. Most of the cases (14/16) healed in 30 days and presented good outcomes. Treatment of tendon and ligament lesions with a mixture of eSM-MSCs and autologous serum appears to be a promising clinical option for this category of lesions in equine patients.
Collapse
Affiliation(s)
- Inês Leal Reis
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Mariana Branquinho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Rita Caseiro
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- University School Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, 3020-210 Coimbra, Portugal
- Vasco da Gama Research Center (CIVG), University School Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, 3020-210 Coimbra, Portugal
| | - Sílvia Santos Pedrosa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Centro de Biotecnologia e Química Fina (CBQF), Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Alexandra Rêma
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Cláudia Oliveira
- Laboratório de Citogenética, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
| | - Beatriz Porto
- Laboratório de Citogenética, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
| | - Luís Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Irina Amorim
- Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto (UP), Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Jorge Miguel Santos
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
13
|
Comparison of SOX2 and POU5F1 Gene Expression in Leukapheresis-Derived CD34+ Cells before and during Cell Culture. Int J Mol Sci 2023; 24:ijms24044186. [PMID: 36835597 PMCID: PMC9962001 DOI: 10.3390/ijms24044186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/18/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Bone marrow is an abundant source of both hematopoietic as well as non-hematopoietic stem cells. Embryonic, fetal and stem cells located in tissues (adipose tissue, skin, myocardium and dental pulp) express core transcription factors, including the SOX2, POU5F1 and NANOG gene responsible for regeneration, proliferation and differentiation into daughter cells. The aim of the study was to examine the expression of SOX2 and POU5F1 genes in CD34-positive peripheral blood stem cells (CD34+ PBSCs) and to analyze the influence of cell culture on the expression of SOX2 and POU5F1 genes. The study material consisted of bone marrow-derived stem cells isolated by using leukapheresis from 40 hematooncology patients. Cells obtained in this process were subject to cytometric analysis to determine the content of CD34+ cells. CD34-positive cell separation was conducted using MACS separation. Cell cultures were set, and RNA was isolated. Real-time PCR was conducted in order to evaluate the expression of SOX2 and POU5F1 genes and the obtained data were subject to statistical analysis. We identified the expression of SOX2 and POU5F1 genes in the examined cells and demonstrated a statistically significant (p < 0.05) change in their expression in cell cultures. Short-term cell cultures (<6 days) were associated with an increase in the expression of SOX2 and POU5F1 genes. Thus, short-term cultivation of transplanted stem cells could be used to induce pluripotency, leading to better therapeutic effects.
Collapse
|
14
|
Rivera-Cruz CM, Figueiredo ML. Evaluation of human adipose-derived mesenchymal stromal cell Toll-like receptor priming and effects on interaction with prostate cancer cells. Cytotherapy 2023; 25:33-45. [PMID: 36257875 DOI: 10.1016/j.jcyt.2022.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 07/20/2022] [Accepted: 09/26/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are a multipotent cell population of clinical interest because of their ability to migrate to injury and tumor sites, where they may participate in tissue repair and modulation of immune response. Although the processes regulating MSC function are incompletely understood, it has been shown that stimulation of Toll-like receptors (TLRs) can alter MSC activity. More specifically, it has been reported that human bone marrow-derived MSCs can be "polarized" by TLR priming into contrasting immunomodulatory functions, with opposite (supportive or suppressive) roles in tumor progression and inflammation. Adipose-derived MSCs (ASCs) represent a promising alternative MSC subpopulation for therapeutic development because of their relative ease of isolation and higher abundance compared with their bone marrow-derived counterparts; however, the polarization of ASCs remains unreported. METHODS In this study, we evaluated the phenotypic and functional consequences of short-term, low-level stimulation of ASCs with TLR3 and TLR4 agonists. RESULTS In these assays, we identified transient gene expression changes resembling the reported pro-inflammatory and anti-inflammatory MSC phenotypes. Furthermore, these priming strategies led to changes in the functional properties of ASCs, affecting their ability to migrate and modulate immune-mediated responses to prostate cancer cells in vitro. CONCLUSIONS TLR3 stimulation significantly decreased ASC migration, and TLR4 stimulation increased ASC immune-mediated killing potential against prostate cancer cells.
Collapse
Affiliation(s)
- Cosette M Rivera-Cruz
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Marxa L Figueiredo
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
15
|
Li Q, Qi G, Lutter D, Beard W, Souza CRS, Highland MA, Wu W, Li P, Zhang Y, Atala A, Sun X. Injectable Peptide Hydrogel Encapsulation of Mesenchymal Stem Cells Improved Viability, Stemness, Anti-Inflammatory Effects, and Early Stage Wound Healing. Biomolecules 2022; 12:1317. [PMID: 36139156 PMCID: PMC9496061 DOI: 10.3390/biom12091317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
Human-adipose-derived mesenchymal stem cells (hADMSCs) are adult stem cells and are relatively easy to access compared to other sources of mesenchymal stem cells (MSCs). They have shown immunomodulation properties as well as effects in improving tissue regeneration. To better stimulate and preserve the therapeutic properties of hADMSCs, biomaterials for cell delivery have been studied extensively. To date, hyaluronic acid (HA)-based materials have been most widely adopted by researchers around the world. PGmatrix is a new peptide-based hydrogel that has shown superior functional properties in 3D cell cultures. Here, we reported the in vitro and in vivo functional effects of PGmatrix on hADMSCs in comparison with HA and HA-based Hystem hydrogels. Our results showed that PGmatrix was far superior in maintaining hADMSC viability during prolonged incubation and stimulated expression of SSEA4 (stage-specific embryonic antigen-4) in hADMSCs. hADMSCs encapsulated in PGmatrix secreted more immune-responsive proteins than those in HA or Hystem, though similar VEGF-A and TGFβ1 release levels were observed in all three hydrogels. In vivo studies revealed that hADMSCs encapsulated with PGmatrix showed improved skin wound healing in diabetic-induced mice at an early stage, suggesting possible anti-inflammatory effects, though similar re-epithelialization and collagen density were observed among PGmatrix and HA or Hystem hydrogels by day 21.
Collapse
Affiliation(s)
- Quan Li
- Carl and Melinda Helwig Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Guangyan Qi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Dylan Lutter
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Warren Beard
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | - Margaret A. Highland
- Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wei Wu
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| | - Ping Li
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| | - Yuanyuan Zhang
- Wake Forest Institute Regenerative Medicine, Wake Forest University, Winston-Salem, NC 27151, USA
| | - Anthony Atala
- Wake Forest Institute Regenerative Medicine, Wake Forest University, Winston-Salem, NC 27151, USA
| | - Xiuzhi Sun
- Carl and Melinda Helwig Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, USA
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
16
|
Evaluation of the Impact of Pregnancy-Associated Factors on the Quality of Wharton's Jelly-Derived Stem Cells Using SOX2 Gene Expression as a Marker. Int J Mol Sci 2022; 23:ijms23147630. [PMID: 35886978 PMCID: PMC9317592 DOI: 10.3390/ijms23147630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 12/04/2022] Open
Abstract
SOX2 is a recognized pluripotent transcription factor involved in stem cell homeostasis, self-renewal and reprogramming. It belongs to, one of the SRY-related HMG-box (SOX) family of transcription factors, taking part in the regulation of embryonic development and determination of cell fate. Among other functions, SOX2 promotes proliferation, survival, invasion, metastasis, cancer stemness, and drug resistance. SOX2 interacts with other transcription factors in multiple signaling pathways to control growth and survival. The aim of the study was to determine the effect of a parturient’s age, umbilical cord blood pH and length of pregnancy on the quality of stem cells derived from Wharton’s jelly (WJSC) by looking at birth weight and using SOX2 gene expression as a marker. Using qPCR the authors, evaluated the expression of SOX2 in WJSC acquired from the umbilical cords of 30 women right after the delivery. The results showed a significant correlation between the birth weight and the expression of SOX2 in WJSC in relation to maternal age, umbilical cord blood pH, and the length of pregnancy. The authors observed that the younger the woman and the lower the umbilical cord blood pH, the earlier the delivery occurs, the lower the birth weight and the higher SOX2 gene expression in WJSC. In research studies and clinical applications of regenerative medicine utilizing mesenchymal stem cells derived from Wharton’s Jelly of the umbilical cord, assessment of maternal and embryonic factors influencing the quality of cells is critical.
Collapse
|
17
|
Different Sources of Mesenchymal Stem Cells for Tissue Regeneration: A Guide to Identifying the Most Favorable One in Orthopedics and Dentistry Applications. Int J Mol Sci 2022; 23:ijms23116356. [PMID: 35683035 PMCID: PMC9181542 DOI: 10.3390/ijms23116356] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/04/2022] Open
Abstract
The success of regenerative medicine in various clinical applications depends on the appropriate selection of the source of mesenchymal stem cells (MSCs). Indeed, the source conditions, the quality and quantity of MSCs, have an influence on the growth factors, cytokines, extracellular vesicles, and secrete bioactive factors of the regenerative milieu, thus influencing the clinical result. Thus, optimal source selection should harmonize this complex setting and ensure a well-personalized and effective treatment. Mesenchymal stem cells (MSCs) can be obtained from several sources, including bone marrow and adipose tissue, already used in orthopedic regenerative applications. In this sense, for bone, dental, and oral injuries, MSCs could provide an innovative and effective therapy. The present review aims to compare the properties (proliferation, migration, clonogenicity, angiogenic capacity, differentiation potential, and secretome) of MSCs derived from bone marrow, adipose tissue, and dental tissue to enable clinicians to select the best source of MSCs for their clinical application in bone and oral tissue regeneration to delineate new translational perspectives. A review of the literature was conducted using the search engines Web of Science, Pubmed, Scopus, and Google Scholar. An analysis of different publications showed that all sources compared (bone marrow mesenchymal stem cells (BM-MSCs), adipose tissue mesenchymal stem cells (AT-MSCs), and dental tissue mesenchymal stem cells (DT-MSCs)) are good options to promote proper migration and angiogenesis, and they turn out to be useful for gingival, dental pulp, bone, and periodontal regeneration. In particular, DT-MSCs have better proliferation rates and AT and G-MSC sources showed higher clonogenicity. MSCs from bone marrow, widely used in orthopedic regenerative medicine, are preferable for their differentiation ability. Considering all the properties among sources, BM-MSCs, AT-MSCs, and DT-MSCs present as potential candidates for oral and dental regeneration.
Collapse
|
18
|
Gultian KA, Gandhi R, Sarin K, Sladkova-Faure M, Zimmer M, de Peppo GM, Vega SL. Human induced mesenchymal stem cells display increased sensitivity to matrix stiffness. Sci Rep 2022; 12:8483. [PMID: 35589731 PMCID: PMC9119934 DOI: 10.1038/s41598-022-12143-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical translation of mesenchymal stem cells (MSCs) is limited by population heterogeneity and inconsistent responses to engineered signals. Specifically, the extent in which MSCs respond to mechanical cues varies significantly across MSC lines. Although induced pluripotent stem cells (iPSCs) have recently emerged as a novel cell source for creating highly homogeneous MSC (iMSC) lines, cellular mechanosensing of iMSCs on engineered materials with defined mechanics is not well understood. Here, we tested the mechanosensing properties of three human iMSC lines derived from iPSCs generated using a fully automated platform. Stiffness-driven changes in morphology were comparable between MSCs and iMSCs cultured atop hydrogels of different stiffness. However, contrary to tissue derived MSCs, no significant changes in iMSC morphology were observed between iMSC lines atop different stiffness hydrogels, demonstrating a consistent response to mechanical signals. Further, stiffness-driven changes in mechanosensitive biomarkers were more pronounced in iMSCs than MSCs, which shows that iMSCs are more adaptive and responsive to mechanical cues than MSCs. This study reports that iMSCs are a promising stem cell source for basic and applied research due to their homogeneity and high sensitivity to engineered mechanical signals.
Collapse
Affiliation(s)
- Kirstene A Gultian
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, 08028, USA
| | - Roshni Gandhi
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, 08028, USA
| | - Khushi Sarin
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, 08028, USA
| | | | - Matthew Zimmer
- The New York Stem Cell Foundation Research Institute, New York, NY, 10019, USA
| | | | - Sebastián L Vega
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, 08028, USA.
| |
Collapse
|
19
|
Kukolj T, Lazarević J, Borojević A, Ralević U, Vujić D, Jauković A, Lazarević N, Bugarski D. A Single-Cell Raman Spectroscopy Analysis of Bone Marrow Mesenchymal Stem/Stromal Cells to Identify Inter-Individual Diversity. Int J Mol Sci 2022; 23:4915. [PMID: 35563306 PMCID: PMC9103070 DOI: 10.3390/ijms23094915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022] Open
Abstract
The heterogeneity of stem cells represents the main challenge in regenerative medicine development. This issue is particularly pronounced when it comes to the use of primary mesenchymal stem/stromal cells (MSCs) due to a lack of identification markers. Considering the need for additional approaches in MSCs characterization, we applied Raman spectroscopy to investigate inter-individual differences between bone marrow MSCs (BM-MSCs). Based on standard biological tests, BM-MSCs of analyzed donors fulfill all conditions for their characterization, while no donor-related specifics were observed in terms of BM-MSCs morphology, phenotype, multilineage differentiation potential, colony-forming capacity, expression of pluripotency-associated markers or proliferative capacity. However, examination of BM-MSCs at a single-cell level by Raman spectroscopy revealed that despite similar biochemical background, fine differences in the Raman spectra of BM-MSCs of each donor can be detected. After extensive principal component analysis (PCA) of Raman spectra, our study revealed the possibility of this method to diversify BM-MSCs populations, whereby the grouping of cell populations was most prominent when cell populations were analyzed in pairs. These results indicate that Raman spectroscopy, as a label-free assay, could have a huge potential in understanding stem cell heterogeneity and sorting cell populations with a similar biochemical background that can be significant for the development of personalized therapy approaches.
Collapse
Affiliation(s)
- Tamara Kukolj
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (D.B.)
| | - Jasmina Lazarević
- Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia; (J.L.); (U.R.); (N.L.)
| | - Ana Borojević
- Mother and Child Health Care Institute of Serbia ‘’Dr Vukan Čupić’’, 11000 Belgrade, Serbia; (A.B.); (D.V.)
| | - Uroš Ralević
- Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia; (J.L.); (U.R.); (N.L.)
| | - Dragana Vujić
- Mother and Child Health Care Institute of Serbia ‘’Dr Vukan Čupić’’, 11000 Belgrade, Serbia; (A.B.); (D.V.)
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra Jauković
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (D.B.)
| | - Nenad Lazarević
- Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia; (J.L.); (U.R.); (N.L.)
| | - Diana Bugarski
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (D.B.)
| |
Collapse
|
20
|
Figiel-Dabrowska A, Krześniak NE, Noszczyk BH, Domańska-Janik K, Sarnowska A. Efficiency assessment of irrigation as an alternative method for improving the regenerative potential of nonhealing wounds. Wound Repair Regen 2022; 30:303-316. [PMID: 35384136 PMCID: PMC9321893 DOI: 10.1111/wrr.13013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022]
Abstract
The application of mesenchymal stem/stromal cells (MSC) in regenerative medicine offers hope for the effective treatment of incurable or difficult‐to‐heal diseases. However, it requires the development of unified protocols for both safe and efficient cell acquisition and clinical usage. The therapeutic effect of fat grafts (containing stem cells) in non‐healing wounds has been discussed in previous studies, although the application requires local or general anaesthesia. The treatment of MSC derived from adipose tissue (ASC) could be a less invasive method, and efficient delivery could lead to more favourable outcomes, which should encourage clinicians to use such therapeutic approaches more frequently. Therefore, the aim of this study was to optimise the methods of ASC isolation, culture and administration while maintaining their high survival, proliferation and colonisation potential. The ASC were isolated by an enzymatic method and were characterised according to International Society for Cellular Therapy and International Federation for Adipose Therapeutics and Science guidelines. To assess the opportunity to obtain a sufficient number of cells for transplantation, long‐term cell cultures in two oxygen concentrations (5% vs. 21%) were conducted. For these cultures, the population doubling time, the cumulative time for cell population doublings and the rate of cell senescence were estimated. In a developed and pre‐defined protocol, ASC can be efficiently cultured at physiological oxygen concentrations (5%), which leads to faster proliferation and slower cell senescence. Subsequently, to select the optimal and minimally invasive methods of ASC transplantation, direct cell application with an irrigator or with skin dressings was analysed. Our results confirmed that both the presented methods of cell application allow for the safe delivery of isolated ASC into wounds without losing their vitality. Cells propagated in the described conditions and applied in non‐invasive cell application (with an irrigation system and dressings) to treat chronic wounds can be a potential alternative or supplement to more invasive clinical approaches.
Collapse
Affiliation(s)
| | - Natalia E Krześniak
- Department of Plastic and Reconstructive Surgery, Centre of Postgraduate Medical Education, Prof. W. Orlowski Memorial Hospital, Warsaw, Poland
| | - Bartłomiej H Noszczyk
- Department of Plastic and Reconstructive Surgery, Centre of Postgraduate Medical Education, Prof. W. Orlowski Memorial Hospital, Warsaw, Poland
| | | | - Anna Sarnowska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
21
|
Aygun H, Akin AT, Kızılaslan N, Sumbul O, Karabulut D. Probiotic supplementation alleviates absence seizures and anxiety- and depression-like behavior in WAG/Rij rat by increasing neurotrophic factors and decreasing proinflammatory cytokines. Epilepsy Behav 2022; 128:108588. [PMID: 35152169 DOI: 10.1016/j.yebeh.2022.108588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 01/15/2023]
Abstract
AIM Epilepsy is one of the most common chronic brain disorders that affect millions of people worldwide. In the present study, we investigated the effects of probiotic supplementation on absence epilepsy and anxiety-and depression-like behavior in WAG/Rij rats. MATERIAL AND METHOD Fourteen male WAG/Rij rats (absence-epileptic) and seven male Wistar rats (nonepileptic) were used. The effects of probiotic VSL#3 (12.86 bn living bacteria/kg/day for 30 day/gavage) on absence seizures, and related psychiatric comorbidities were evaluated in WAG/Rij rats. Anxiety-like behavior was evaluated by the open-field test and depression-like behavior by the forced swimming test. In addition, the brain tissues of rats were evaluated histopathologically for nerve growth factor [NGF], brain-derived neurotrophic factor [BDNF], SRY sex-determining region Y-box 2 [SOX2] and biochemically for nitric oxide [NO], tumor necrosis factor-alpha [TNF-α] ,and Interleukin-6 [IL-6]. RESULTS Compared to Wistar rats, WAG/Rij rats exhibited anxiety- and depression-like behavior, and had lower BDNF, NGF and SOX2 immunoreactivity, and higher TNF-α, IL-6 levels in brain tissue. VSL#3 supplementation reduced the duration and number of spike-wave discharges (SWDs) and exhibited anxiolytic or anti-depressive effect. VSL#3 supplement also increased the NGF immunoreactivity while decreasing IL-6, TNF-α and NO levels in WAG/Rij rat brain. CONCLUSION The findings of the present study showed that neurotrophins, SOX2 deficiency, and pro-inflammatory cytokines may play a role in the pathogenesis of absence epilepsy. Our data support the hypothesis that the probiotics have anti-inflammatory effect. The present study is the first to show the positive effects of probiotic bacteria on absence seizures and anxiety- and depression-like behavior.
Collapse
Affiliation(s)
- Hatice Aygun
- Department of Physiology, Faculty of Medicine, University of Tokat Gaziosmanpasa, Tokat, Turkey.
| | - Ali Tugrul Akin
- Department of Biology, Faculty of Science and Literature, University of Erciyes, Kayseri, Turkey
| | - Nildem Kızılaslan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, University of Tokat Gaziosmanpasa Tokat, Turkey
| | - Orhan Sumbul
- Department of Neurology Faculty of Medicine University of Tokat Gaziosmanpasa, Tokat, Turkey
| | - Derya Karabulut
- Department of Histology-Embryology, Faculty of Medicine, University of Erciyes, Kayseri, Turkey
| |
Collapse
|
22
|
Krawczenko A, Klimczak A. Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells and Their Contribution to Angiogenic Processes in Tissue Regeneration. Int J Mol Sci 2022; 23:ijms23052425. [PMID: 35269568 PMCID: PMC8910401 DOI: 10.3390/ijms23052425] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are widely described in the context of their regenerative and immunomodulatory activity. MSCs are isolated from various tissues and organs. The most frequently described sources are bone marrow and adipose tissue. As stem cells, MSCs are able to differentiate into other cell lineages, but they are usually reported with respect to their paracrine potential. In this review, we focus on MSCs derived from adipose tissue (AT-MSCs) and their secretome in regeneration processes. Special attention is given to the contribution of AT-MSCs and their derivatives to angiogenic processes described mainly in the context of angiogenic dysfunction. Finally, we present clinical trials registered to date that concern the application of AT-MSCs and their secretome in various medical conditions.
Collapse
|
23
|
Borojević A, Jauković A, Kukolj T, Mojsilović S, Obradović H, Trivanović D, Živanović M, Zečević Ž, Simić M, Gobeljić B, Vujić D, Bugarski D. Vitamin D3 Stimulates Proliferation Capacity, Expression of Pluripotency Markers, and Osteogenesis of Human Bone Marrow Mesenchymal Stromal/Stem Cells, Partly through SIRT1 Signaling. Biomolecules 2022; 12:biom12020323. [PMID: 35204824 PMCID: PMC8868595 DOI: 10.3390/biom12020323] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/02/2022] Open
Abstract
The biology of vitamin D3 is well defined, as are the effects of its active metabolites on various cells, including mesenchymal stromal/stem cells (MSCs). However, the biological potential of its precursor, cholecalciferol (VD3), has not been sufficiently investigated, although its significance in regenerative medicine—mainly in combination with various biomaterial matrices—has been recognized. Given that VD3 preconditioning might also contribute to the improvement of cellular regenerative potential, the aim of this study was to investigate its effects on bone marrow (BM) MSC functions and the signaling pathways involved. For that purpose, the influence of VD3 on BM-MSCs obtained from young human donors was determined via MTT test, flow cytometric analysis, immunocytochemistry, and qRT-PCR. Our results revealed that VD3, following a 5-day treatment, stimulated proliferation, expression of pluripotency markers (NANOG, SOX2, and Oct4), and osteogenic differentiation potential in BM-MSCs, while it reduced their senescence. Moreover, increased sirtuin 1 (SIRT1) expression was detected upon treatment with VD3, which mediated VD3-promoted osteogenesis and, partially, the stemness features through NANOG and SOX2 upregulation. In contrast, the effects of VD3 on proliferation, Oct4 expression, and senescence were SIRT1-independent. Altogether, these data indicate that VD3 has strong potential to modulate BM-MSCs’ features, partially through SIRT1 signaling, although the precise mechanisms merit further investigation.
Collapse
Affiliation(s)
- Ana Borojević
- Mother and Child Health Care Institute of Serbia ‘’Dr Vukan Čupić’’, 11000 Belgrade, Serbia; (Ž.Z.); (M.S.); (B.G.); (D.V.)
- Correspondence: ; Tel.: +381-11-3108-175
| | - Aleksandra Jauković
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (T.K.); (S.M.); (H.O.); (D.T.); (M.Ž.); (D.B.)
| | - Tamara Kukolj
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (T.K.); (S.M.); (H.O.); (D.T.); (M.Ž.); (D.B.)
| | - Slavko Mojsilović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (T.K.); (S.M.); (H.O.); (D.T.); (M.Ž.); (D.B.)
| | - Hristina Obradović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (T.K.); (S.M.); (H.O.); (D.T.); (M.Ž.); (D.B.)
| | - Drenka Trivanović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (T.K.); (S.M.); (H.O.); (D.T.); (M.Ž.); (D.B.)
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Clinics, Röntgenring 11, 97070 Würzburg, Germany
- Bernhard-Heine-Center for Locomotion Research, University Würzburg, Sanderring 2, 97070 Würzburg, Germany
| | - Milena Živanović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (T.K.); (S.M.); (H.O.); (D.T.); (M.Ž.); (D.B.)
| | - Željko Zečević
- Mother and Child Health Care Institute of Serbia ‘’Dr Vukan Čupić’’, 11000 Belgrade, Serbia; (Ž.Z.); (M.S.); (B.G.); (D.V.)
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Marija Simić
- Mother and Child Health Care Institute of Serbia ‘’Dr Vukan Čupić’’, 11000 Belgrade, Serbia; (Ž.Z.); (M.S.); (B.G.); (D.V.)
| | - Borko Gobeljić
- Mother and Child Health Care Institute of Serbia ‘’Dr Vukan Čupić’’, 11000 Belgrade, Serbia; (Ž.Z.); (M.S.); (B.G.); (D.V.)
| | - Dragana Vujić
- Mother and Child Health Care Institute of Serbia ‘’Dr Vukan Čupić’’, 11000 Belgrade, Serbia; (Ž.Z.); (M.S.); (B.G.); (D.V.)
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Diana Bugarski
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (T.K.); (S.M.); (H.O.); (D.T.); (M.Ž.); (D.B.)
| |
Collapse
|
24
|
Chen J, Zhou D, Nie Z, Lu L, Lin Z, Zhou D, Zhang Y, Long X, Fan S, Xu T. A scalable coaxial bioprinting technology for mesenchymal stem cell microfiber fabrication and high extracellular vesicle yield. Biofabrication 2021; 14:015012. [PMID: 34798619 DOI: 10.1088/1758-5090/ac3b90] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/19/2021] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) are promising candidates for regenerative medicine; however, the lack of scalable methods for high quantity EV production limits their application. In addition, signature EV-derived proteins shared in 3D environments and 2D surfaces, remain mostly unknown. Herein, we present a platform combining MSC microfiber culture with ultracentrifugation purification for high EV yield. Within this platform, a high quantity MSC solution (∼3 × 108total cells) is encapsulated in a meter-long hollow hydrogel-microfiber via coaxial bioprinting technology. In this 3D core-shell microfiber environment, MSCs express higher levels of stemness markers (Oct4, Nanog, Sox2) than in 2D culture, and maintain their differentiation capacity. Moreover, this platform enriches particles by ∼1009-fold compared to conventional 2D culture, while preserving their pro-angiogenic properties. Liquid chromatography-mass spectrometry characterization results demonstrate that EVs derived from our platform and conventional 2D culturing have unique protein profiles with 3D-EVs having a greater variety of proteins (1023 vs 605), however, they also share certain proteins (536) and signature MSC-EV proteins (10). This platform, therefore, provides a new tool for EV production using microfibers in one culture dish, thereby reducing space, labor, time, and cost.
Collapse
Affiliation(s)
- Jianwei Chen
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Duchao Zhou
- East China Institute of Digital Medical Engineering, Shangrao 334000, People's Republic of China
| | - Zhenguo Nie
- Department of Orthopedics, Fourth Medical Center of PLA general hospital, 100048 Beijing, People's Republic of China
| | - Liang Lu
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, 515041 Shantou, Guangdong, People's Republic of China
| | - Zhidong Lin
- The Second Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People's Republic of China
| | - Dezhi Zhou
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yi Zhang
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Xiaoyan Long
- East China Institute of Digital Medical Engineering, Shangrao 334000, People's Republic of China
| | - Siyang Fan
- Heart Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Tao Xu
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
25
|
Gousopoulou E, Bakopoulou A, Apatzidou DA, Leyhausen G, Volk J, Staufenbiel I, Geurtsen W, Adam K. Evaluation of stemness properties of cells derived from granulation tissue of peri-implantitis lesions. Clin Exp Dent Res 2021; 7:739-753. [PMID: 33605088 PMCID: PMC8543464 DOI: 10.1002/cre2.406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/31/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Peri-implantitis (PI) is an inflammatory disease associated with peri-implant bone loss and impaired healing potential. There is limited evidence about the presence of mesenchymal stromal cells (MSCs) and their regenerative properties within the granulation tissue (GT) of infrabony peri-implantitis defects. The aim of the present study was to characterize the cells derived from the GT of infrabony PI lesions (peri-implantitis derived mesenchymal stromal cells-PIMSCs). MATERIAL AND METHODS PIMSC cultures were established from GT harvested from PI lesions with a pocket probing depth ≥6 mm, bleeding on probing/suppuration, and radiographic evidence of an infrabony component from four systemically healthy individuals. Cultures were analyzed for embryonic (SSEA4, NANOG, SOX2, OCT4A), mesenchymal (CD90, CD73, CD105, CD146, STRO1) and hematopoietic (CD34, CD45) stem cell markers using flow cytometry. PIMSC cultures were induced for neurogenic, angiogenic and osteogenic differentiation by respective media. Cultures were analyzed for morphological changes and mineralization potential (Alizarin Red S method). Gene expression of neurogenic (NEFL, NCAM1, TUBB3, ENO2), angiogenic (VEGFR1, VEGFR2, PECAM1) and osteogenic (ALPL, BGLAP, BMP2, RUNX2) markers was determined by quantitative RT-PCR. RESULTS PIMSC cultures demonstrated high expression of embryonic and mesenchymal stem cell markers with inter-individual variability. After exposure to neurogenic, angiogenic and osteogenic conditions, PIMSCs showed pronounced tri-lineage differentiation potential, as evidenced by their morphology and expression of respective markers. High mineralization potential was observed. CONCLUSIONS This study provides evidence that MSC-like populations reside within the GT of PI lesions and exhibit a multilineage differentiation potential. Further studies are needed to specify the biological role of these cells in the healing processes of inflamed PI tissues and to provide indications for their potential use in regenerative therapies.
Collapse
Affiliation(s)
- Evangelia Gousopoulou
- Department of Preventive Dentistry, Periodontology & Implant Biology, School of Dentistry, Faculty of Health SciencesAristotle University of Thessaloniki (AUTh)ThessalonikiGreece
- Department of Conservative Dentistry, Periodontology & Preventive Dentistry, School of DentistryHannover Medical School (MHH)HannoverGermany
| | - Athina Bakopoulou
- Department of Conservative Dentistry, Periodontology & Preventive Dentistry, School of DentistryHannover Medical School (MHH)HannoverGermany
- Department of Prosthodontics, School of Dentistry, Faculty of Health SciencesAristotle University of Thessaloniki (AUTh)ThessalonikiGreece
| | - Danae Anastasia Apatzidou
- Department of Preventive Dentistry, Periodontology & Implant Biology, School of Dentistry, Faculty of Health SciencesAristotle University of Thessaloniki (AUTh)ThessalonikiGreece
| | - Gabriele Leyhausen
- Department of Conservative Dentistry, Periodontology & Preventive Dentistry, School of DentistryHannover Medical School (MHH)HannoverGermany
| | - Joachim Volk
- Department of Conservative Dentistry, Periodontology & Preventive Dentistry, School of DentistryHannover Medical School (MHH)HannoverGermany
| | - Ingmar Staufenbiel
- Department of Conservative Dentistry, Periodontology & Preventive Dentistry, School of DentistryHannover Medical School (MHH)HannoverGermany
| | - Werner Geurtsen
- Department of Conservative Dentistry, Periodontology & Preventive Dentistry, School of DentistryHannover Medical School (MHH)HannoverGermany
| | - Knut Adam
- Department of Conservative Dentistry, Periodontology & Preventive Dentistry, School of DentistryHannover Medical School (MHH)HannoverGermany
| |
Collapse
|
26
|
Shareghi-Oskoue O, Aghebati-Maleki L, Yousefi M. Transplantation of human umbilical cord mesenchymal stem cells to treat premature ovarian failure. Stem Cell Res Ther 2021; 12:454. [PMID: 34380572 PMCID: PMC8359553 DOI: 10.1186/s13287-021-02529-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
As one of the problems and diseases for women before 40 years, premature ovarian failure (POF) could be characterized by amenorrhea, low estrogen levels, infertility, high gonadotropin levels, and lack of mature follicles. Causes of the disease involve some genetic disorders, autoimmunity diseases, and environmental factors. Various approaches have been employed to treat POF, however with limited success. Today, stem cells are used to treat POF, since they have the potential to self-repair and regenerate, and are effective in treating ovarian failure and infertility. As mesenchymal stem cell (MSC) could simultaneously activate several mechanisms, many researchers consider MSC transplantation to be the best and most effective approach in cell therapy. A good source for mesenchymal stem cells is human umbilical cord (HUCMSC). Animal models with cyclophosphamide are required for stem cell treatment and performance of HUCMSC transplantation. Stem cell therapy could indicate the levels of ovarian markers and follicle-stimulating hormone receptor. It also increases ovarian weight, plasma E2 levels, and the amount of standard follicles. Herein, the causes of POF, effective treatment strategies, and the effect of HUCMSC transplantation for the treatment of premature ovarian failure are reviewed. Many studies have been conducted in this field, and the results have shown that stem cell treatment is an effective approach to treat infertility.
Collapse
Affiliation(s)
- Oldouz Shareghi-Oskoue
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran.
- Department of Immunology, School of Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Khalaf K, Hana D, Chou JTT, Singh C, Mackiewicz A, Kaczmarek M. Aspects of the Tumor Microenvironment Involved in Immune Resistance and Drug Resistance. Front Immunol 2021; 12:656364. [PMID: 34122412 PMCID: PMC8190405 DOI: 10.3389/fimmu.2021.656364] [Citation(s) in RCA: 266] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment (TME) is a complex and ever-changing "rogue organ" composed of its own blood supply, lymphatic and nervous systems, stroma, immune cells and extracellular matrix (ECM). These complex components, utilizing both benign and malignant cells, nurture the harsh, immunosuppressive and nutrient-deficient environment necessary for tumor cell growth, proliferation and phenotypic flexibility and variation. An important aspect of the TME is cellular crosstalk and cell-to-ECM communication. This interaction induces the release of soluble factors responsible for immune evasion and ECM remodeling, which further contribute to therapy resistance. Other aspects are the presence of exosomes contributed by both malignant and benign cells, circulating deregulated microRNAs and TME-specific metabolic patterns which further potentiate the progression and/or resistance to therapy. In addition to biochemical signaling, specific TME characteristics such as the hypoxic environment, metabolic derangements, and abnormal mechanical forces have been implicated in the development of treatment resistance. In this review, we will provide an overview of tumor microenvironmental composition, structure, and features that influence immune suppression and contribute to treatment resistance.
Collapse
Affiliation(s)
- Khalil Khalaf
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Doris Hana
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Jadzia Tin-Tsen Chou
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Chandpreet Singh
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Andrzej Mackiewicz
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
28
|
Sandonà M, Di Pietro L, Esposito F, Ventura A, Silini AR, Parolini O, Saccone V. Mesenchymal Stromal Cells and Their Secretome: New Therapeutic Perspectives for Skeletal Muscle Regeneration. Front Bioeng Biotechnol 2021; 9:652970. [PMID: 34095095 PMCID: PMC8172230 DOI: 10.3389/fbioe.2021.652970] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent cells found in different tissues: bone marrow, peripheral blood, adipose tissues, skeletal muscle, perinatal tissues, and dental pulp. MSCs are able to self-renew and to differentiate into multiple lineages, and they have been extensively used for cell therapy mostly owing to their anti-fibrotic and immunoregulatory properties that have been suggested to be at the basis for their regenerative capability. MSCs exert their effects by releasing a variety of biologically active molecules such as growth factors, chemokines, and cytokines, either as soluble proteins or enclosed in extracellular vesicles (EVs). Analyses of MSC-derived secretome and in particular studies on EVs are attracting great attention from a medical point of view due to their ability to mimic all the therapeutic effects produced by the MSCs (i.e., endogenous tissue repair and regulation of the immune system). MSC-EVs could be advantageous compared with the parental cells because of their specific cargo containing mRNAs, miRNAs, and proteins that can be biologically transferred to recipient cells. MSC-EV storage, transfer, and production are easier; and their administration is also safer than MSC therapy. The skeletal muscle is a very adaptive tissue, but its regenerative potential is altered during acute and chronic conditions. Recent works demonstrate that both MSCs and their secretome are able to help myofiber regeneration enhancing myogenesis and, interestingly, can be manipulated as a novel strategy for therapeutic interventions in muscular diseases like muscular dystrophies or atrophy. In particular, MSC-EVs represent promising candidates for cell free-based muscle regeneration. In this review, we aim to give a complete picture of the therapeutic properties and advantages of MSCs and their products (MSC-derived EVs and secreted factors) relevant for skeletal muscle regeneration in main muscular diseases.
Collapse
Affiliation(s)
- Martina Sandonà
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Lorena Di Pietro
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federica Esposito
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Alessia Ventura
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerca "E. Menni", Fondazione Poliambulanza - Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Valentina Saccone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy.,Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
29
|
Ivolgin DA, Kudlay DA. Mesenchymal multipotent stromal cells and cancer safety: two sides of the same coin or a double-edged sword (review of foreign literature). RUSSIAN JOURNAL OF PEDIATRIC HEMATOLOGY AND ONCOLOGY 2021; 8:64-84. [DOI: 10.21682/2311-1267-2021-8-1-64-84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Knowledge about the mechanisms of action of mesenchymal multipotent stromal cells (MSC) has undergone a significant evolution since their discovery. From the first attempts to use the remarkable properties of MSC in restoring the functions of organs and tissues, the most important question arose – how safe their use would be? One of the aspects of safety of the use of such biomaterial is tumorogenicity and oncogenicity. Numerous studies have shown that the mechanisms by which MSC realize their regenerative potential can, in principle, have a stimulating effect on tumor cells. This review presents specific mechanisms that have a potentially pro-tumor effect, which include the homing of MSC to the tumor site, support for replicative and proliferative signaling of both cancer cells and cancer stem cells, angiogenesis, and effects on the epithelial-mesenchymal transition. Along with pro-tumor mechanisms, the mechanisms of possible antitumor action are also described – direct suppression of tumor growth, loading and transportation of chemotherapeutic agents, oncolytic viruses, genetic modifications for targeting cancer, delivery of “suicide genes” to the tumor. Also, in conclusion, a small review of the current clinical trials of MSC as antitumor agents for malignant neoplasms of various localization (gastrointestinal tract, lungs, ovaries) is given.
Collapse
Affiliation(s)
- D. A. Ivolgin
- I.I. Mechnikov North-Western State Medical University, Ministry of Health of Russia
| | - D. A. Kudlay
- JSC “GENERIUM”;
I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University);
National Research Center – Institute of Immunology Federal Medical-Biological Agency of Russia
| |
Collapse
|
30
|
Zhu Y, Ge J, Huang C, Liu H, Jiang H. Application of mesenchymal stem cell therapy for aging frailty: from mechanisms to therapeutics. Theranostics 2021; 11:5675-5685. [PMID: 33897874 PMCID: PMC8058725 DOI: 10.7150/thno.46436] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
Aging frailty is a complex geriatric syndrome that becomes more prevalent with advancing age. It constitutes a major health problem due to frequent adverse outcomes. Frailty is characterized by disruption of physiological homeostasis and progressive decline of health status. Multiple factors contribute to development of frailty with advancing age, including genome instability, DNA damage, epigenetic alternations, stem cell exhaustion, among others. These interrelated factors comprehensively result in loss of tissue homeostasis and diminished reserve capacity in frailty. Therefore, the aged organism gradually represents symptoms of frailty with decline in physiological functions of organs. Notably, the brain, cardiovascular system, skeletal muscle, and endocrine system are intrinsically interrelated to frailty. The patients with frailty may display the diminished reserves capacity of organ systems. Due to the complex pathophysiology, no specific treatments have been approved for prevention of this syndrome. At such, effective strategies for intervening in pathogenic process to improve health status of frail patients are highly needed. Recent progress in cell-based therapy has greatly contributed to the amelioration of degenerative diseases related to age. Mesenchymal stem cells (MSCs) can exert regenerative effects and possess anti-inflammatory properties. Transplantation of MSCs represents as a promising therapeutic strategy to address the pathophysiologic problems of frail syndrome. Currently, MSC therapy have undergone the phase I and II trials in human subjects that have endorsed the safety and efficacy of MSCs for aging frailty. However, despite these positive results, caution is still needed with regard to potential to form tumors, and further large-scale studies are warranted to confirm the therapeutic efficacy of MSC therapy.
Collapse
|
31
|
Zha K, Li X, Yang Z, Tian G, Sun Z, Sui X, Dai Y, Liu S, Guo Q. Heterogeneity of mesenchymal stem cells in cartilage regeneration: from characterization to application. NPJ Regen Med 2021; 6:14. [PMID: 33741999 PMCID: PMC7979687 DOI: 10.1038/s41536-021-00122-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Articular cartilage is susceptible to damage but hard to self-repair due to its avascular nature. Traditional treatment methods are not able to produce satisfactory effects. Mesenchymal stem cells (MSCs) have shown great promise in cartilage repair. However, the therapeutic effect of MSCs is often unstable partly due to their heterogeneity. Understanding the heterogeneity of MSCs and the potential of different types of MSCs for cartilage regeneration will facilitate the selection of superior MSCs for treating cartilage damage. This review provides an overview of the heterogeneity of MSCs at the donor, tissue source and cell immunophenotype levels, including their cytological properties, such as their ability for proliferation, chondrogenic differentiation and immunoregulation, as well as their current applications in cartilage regeneration. This information will improve the precision of MSC-based therapeutic strategies, thus maximizing the efficiency of articular cartilage repair.
Collapse
Affiliation(s)
- Kangkang Zha
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhen Yang
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Guangzhao Tian
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Zhiqiang Sun
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xiang Sui
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
| | - Yongjing Dai
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
| | - Shuyun Liu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.
| | - Quanyi Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.
| |
Collapse
|
32
|
Sriram S, Kang NY, Subramanian S, Nandi T, Sudhagar S, Xing Q, Tong GJL, Chen AKL, Srijaya TC, Tan P, Loh YH, Chang YT, Sugii S. Novel live cell fluorescent probe for human-induced pluripotent stem cells highlights early reprogramming population. Stem Cell Res Ther 2021; 12:113. [PMID: 33546754 PMCID: PMC7866770 DOI: 10.1186/s13287-021-02171-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/15/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Despite recent rapid progress in method development and biological understanding of induced pluripotent stem (iPS) cells, there has been a relative shortage of tools that monitor the early reprogramming process into human iPS cells. METHODS We screened the in-house built fluorescent library compounds that specifically bind human iPS cells. After tertiary screening, the selected probe was analyzed for its ability to detect reprogramming cells in the time-dependent manner using high-content imaging analysis. The probe was compared with conventional dyes in different reprogramming methods, cell types, and cell culture conditions. Cell sorting was performed with the fluorescent probe to analyze the early reprogramming cells for their pluripotent characteristics and genome-wide gene expression signatures by RNA-seq. Finally, the candidate reprogramming factor identified was investigated for its ability to modulate reprogramming efficiency. RESULTS We identified a novel BODIPY-derived fluorescent probe, BDL-E5, which detects live human iPS cells at the early reprogramming stage. BDL-E5 can recognize authentic reprogramming cells around 7 days before iPS colonies are formed and stained positive with conventional pluripotent markers. Cell sorting of reprogrammed cells with BDL-E5 allowed generation of an increased number and higher quality of iPS cells. RNA sequencing analysis of BDL-E5-positive versus negative cells revealed early reprogramming patterns of gene expression, which notably included CREB1. Reprogramming efficiency was significantly increased by overexpression of CREB1 and decreased by knockdown of CREB1. CONCLUSION Collectively, BDL-E5 offers a valuable tool for delineating the early reprogramming pathway and clinically applicable commercial production of human iPS cells.
Collapse
Affiliation(s)
- Sandhya Sriram
- Fat Metabolism and Stem Cell Group, Singapore Bioimaging Consortium, A*STAR, 11 Biopolis Way, Singapore, 138667, Singapore
| | - Nam-Young Kang
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, A*STAR, 11 Biopolis Way, Singapore, 138667, Singapore.,Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Subha Subramanian
- Fat Metabolism and Stem Cell Group, Singapore Bioimaging Consortium, A*STAR, 11 Biopolis Way, Singapore, 138667, Singapore
| | - Tannistha Nandi
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, 60 Biopolis Street, Genome #02-01, Singapore, 138672, Singapore
| | - Samydurai Sudhagar
- Genome Institute of Singapore, 60 Biopolis Street, Genome, #02-01, Singapore, 138672, Singapore
| | - Qiaorui Xing
- Epigenetics and Cell Fates Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Gerine Jin-Ling Tong
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Allen Kuan-Liang Chen
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | | | - Patrick Tan
- Genome Institute of Singapore, 60 Biopolis Street, Genome, #02-01, Singapore, 138672, Singapore.,Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, Singapore, 168752, Singapore
| | - Yuin-Han Loh
- Epigenetics and Cell Fates Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Young-Tae Chang
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, A*STAR, 11 Biopolis Way, Singapore, 138667, Singapore.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.,Department of Chemistry, POSTECH, Pohang, Gyeongbuk, 37673, Republic of Korea.,Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Shigeki Sugii
- Fat Metabolism and Stem Cell Group, Singapore Bioimaging Consortium, A*STAR, 11 Biopolis Way, Singapore, 138667, Singapore. .,Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore. .,Institute of Bioengineering and Nanotechnology, A*STAR, 31 Biopolis Way, Singapore, 138669, Singapore.
| |
Collapse
|
33
|
Hatzmann FM, Ejaz A, Wiegers GJ, Mandl M, Brucker C, Lechner S, Rauchenwald T, Zwierzina M, Baumgarten S, Wagner S, Mattesich M, Waldegger P, Pierer G, Zwerschke W. Quiescence, Stemness and Adipogenic Differentiation Capacity in Human DLK1 -/CD34 +/CD24 + Adipose Stem/Progenitor Cells. Cells 2021; 10:cells10020214. [PMID: 33498986 PMCID: PMC7912596 DOI: 10.3390/cells10020214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 12/26/2022] Open
Abstract
We explore the status of quiescence, stemness and adipogenic differentiation capacity in adipose stem/progenitor cells (ASCs) ex vivo, immediately after isolation from human subcutaneous white adipose tissue, by sorting the stromal vascular fraction into cell-surface DLK1+/CD34−, DLK1+/CD34dim and DLK1−/CD34+ cells. We demonstrate that DLK1−/CD34+ cells, the only population exhibiting proliferative and adipogenic capacity, express ex vivo the bonafide quiescence markers p21Cip1, p27Kip1 and p57Kip2 but neither proliferation markers nor the senescence marker p16Ink4a. The pluripotency markers NANOG, SOX2 and OCT4 are barely detectable in ex vivo ASCs while the somatic stemness factors, c-MYC and KLF4 and the early adipogenic factor C/EBPβ are highly expressed. Further sorting of ASCs into DLK1−/CD34+/CD24− and DLK1−/CD34+/CD24+ fractions shows that KLF4 and c-MYC are higher expressed in DLK1−/CD34+/CD24+ cells correlating with higher colony formation capacity and considerably lower adipogenic activity. Proliferation capacity is similar in both populations. Next, we show that ASCs routinely isolated by plastic-adherence are DLK1−/CD34+/CD24+. Intriguingly, CD24 knock-down in these cells reduces proliferation and adipogenesis. In conclusion, DLK1−/CD34+ ASCs in human sWAT exist in a quiescent state, express high levels of somatic stemness factors and the early adipogenic transcription factor C/EBPβ but senescence and pluripotency markers are barely detectable. Moreover, our data indicate that CD24 is necessary for adequate ASC proliferation and adipogenesis and that stemness is higher and adipogenic capacity lower in DLK1−/CD34+/CD24+ relative to DLK1−/CD34+/CD24− subpopulations.
Collapse
Affiliation(s)
- Florian M. Hatzmann
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria; (F.M.H.); (A.E.); (M.M.); (C.B.); (S.L.); (S.B.); (S.W.); (P.W.)
- Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Asim Ejaz
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria; (F.M.H.); (A.E.); (M.M.); (C.B.); (S.L.); (S.B.); (S.W.); (P.W.)
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA 15261, USA
| | - G. Jan Wiegers
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria;
| | - Markus Mandl
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria; (F.M.H.); (A.E.); (M.M.); (C.B.); (S.L.); (S.B.); (S.W.); (P.W.)
- Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Camille Brucker
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria; (F.M.H.); (A.E.); (M.M.); (C.B.); (S.L.); (S.B.); (S.W.); (P.W.)
- Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Stefan Lechner
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria; (F.M.H.); (A.E.); (M.M.); (C.B.); (S.L.); (S.B.); (S.W.); (P.W.)
| | - Tina Rauchenwald
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria; (T.R.); (M.Z.); (M.M.); (G.P.)
| | - Marit Zwierzina
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria; (T.R.); (M.Z.); (M.M.); (G.P.)
| | - Saphira Baumgarten
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria; (F.M.H.); (A.E.); (M.M.); (C.B.); (S.L.); (S.B.); (S.W.); (P.W.)
| | - Sonja Wagner
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria; (F.M.H.); (A.E.); (M.M.); (C.B.); (S.L.); (S.B.); (S.W.); (P.W.)
| | - Monika Mattesich
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria; (T.R.); (M.Z.); (M.M.); (G.P.)
| | - Petra Waldegger
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria; (F.M.H.); (A.E.); (M.M.); (C.B.); (S.L.); (S.B.); (S.W.); (P.W.)
- Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Gerhard Pierer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria; (T.R.); (M.Z.); (M.M.); (G.P.)
| | - Werner Zwerschke
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria; (F.M.H.); (A.E.); (M.M.); (C.B.); (S.L.); (S.B.); (S.W.); (P.W.)
- Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
- Correspondence: ; Tel.: +43-512-507508-32; Fax: +43-512-507508-99
| |
Collapse
|
34
|
Li X, Chen M, Lu W, Tang J, Deng L, Wen Q, Huang M, Deng R, Ye G, Ye W, Zhang D. Targeting FAPα-expressing tumor-associated mesenchymal stromal cells inhibits triple-negative breast cancer pulmonary metastasis. Cancer Lett 2021; 503:32-42. [PMID: 33482262 DOI: 10.1016/j.canlet.2021.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/08/2020] [Accepted: 01/13/2021] [Indexed: 02/08/2023]
Abstract
Tumor metastasis is the main cause of death in patients with triple-negative breast cancer (TNBC). Bone marrow-derived mesenchymal stem cells (BM-MSCs) have tropism towards tumor tissues, and can be converted into tumor-associated mesenchymal stromal cells (TA-MSCs) to facilitate TNBC metastasis through interactions with tumor-associated macrophages (TAMs). However, the underlying molecular mechanisms are complex and unclear, and effective strategies to suppress tumor metastasis via eliminating TA-MSCs are still lacking. Here, we demonstrate that fibroblast activation protein alpha (FAPα) was overexpressed in TA-MSCs, which prompts TA-MSCs to secrete multiple C-C motif chemokine ligands, promoting C-C motif chemokine receptor 2 (CCR2)+ TAM recruitment and facilitating TAM polarization into the M2 phenotype, thereby promoting TNBC pulmonary metastasis. Z-GP-DAVLBH, an FAPα-activated vinblastine prodrug, induces FAPα+ TA-MSC apoptosis, which significantly suppresses CCR2+ TAM recruitment and polarization, thus inhibiting pulmonary metastasis of orthotopic TNBC cell-derived xenografts and patient-derived xenografts. This study provides insight into an important role of FAPα in mediating TA-MSC-induced TNBC metastasis and provides compelling evidence that targeting TA-MSCs with an FAPα-activated prodrug is a promising strategy for suppressing TNBC metastasis.
Collapse
Affiliation(s)
- Xiaobo Li
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Minfeng Chen
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Weijin Lu
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Jun Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China; Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Lijuan Deng
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Qing Wen
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Maohua Huang
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Rong Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Geni Ye
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Wencai Ye
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
35
|
Abreu de Melo MI, da Silva Cunha P, Coutinho de Miranda M, Faraco CCF, Barbosa JL, da Fonseca Ferreira A, Kunrath Lima M, Faria JAQA, Rodrigues MÂ, de Goes AM, Gomes DA. Human adipose-derived stromal/stem cells are distinct from dermal fibroblasts as evaluated by biological characterization and RNA sequencing. Cell Biochem Funct 2021; 39:442-454. [PMID: 33389760 DOI: 10.1002/cbf.3610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/27/2020] [Accepted: 12/13/2020] [Indexed: 01/08/2023]
Abstract
Human adipose-derived stromal/stem cells (ASC) have immunomodulatory properties and the potential to differentiate into several cell lines, important for application in regenerative medicine. However, the contamination with dermal fibroblasts (FIB) can impair the beneficial effects of ASC in cell therapy. It is then essential to develop new strategies that contribute to the distinction between these two cell types. In this study, we performed functional assays, high-throughput RNA sequencing (RNA-Seq) and quantitative PCR (qPCR) to find new markers that can distinguish ASC and FIB. We showed that ASC have adipogenic and osteogenic differentiation capacity and alkaline phosphatase activity, not observed in FIB. Gene expression variation analysis identified more than 2000 differentially expressed genes (DEG) between these two cell types. We validated 16 genes present in the list of DEG, including the alkaline phosphatase gene (ALPL). In conclusion, we showed that ASC and FIB have distinct biological properties as demonstrated by alkaline phosphatase activity and differentiation capacity, besides having different gene expression profiles. SIGNIFICANCE OF THE STUDY: Although many differences between stromal stem cells derived from human adipose tissue (ASC) and human dermal fibroblasts (FIB) are described, it is still difficult to find specific markers to differentiate them. This problem can interfere with the therapeutic use of ASC. This work aimed to find new markers to differentiate these two cell populations. Our findings suggest that these cells can be distinguished by biological and molecular characteristics, such as adipogenic and osteogenic differentiation, alkaline phosphatase activity and differential gene expression profiles. The DEG were related to the regulation of the cell cycle, development process, structural organization of the cell and synthesis of the extracellular matrix. This study helps to find new cellular markers to distinguish the two populations and to better understand the properties of these cells, which can improve cell therapy.
Collapse
Affiliation(s)
- Mariane Izabella Abreu de Melo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pricila da Silva Cunha
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo Coutinho de Miranda
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila Cristina Fraga Faraco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Joana Lobato Barbosa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Andrea da Fonseca Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marianna Kunrath Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jerusa Araújo Quintão Arantes Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil
| | - Michele Ângela Rodrigues
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alfredo Miranda de Goes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Dawidson Assis Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
36
|
Gogusev J, Lepelletier Y, El Khattabi L, Grigoroiu M, Validire P. Establishment and Characterization of a Stromal Cell Line Derived From a Patient With Thoracic Endometriosis. Reprod Sci 2020; 27:1627-1636. [PMID: 32430714 DOI: 10.1007/s43032-020-00193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Thoracic endometriosis (TE) syndrome is a clinical condition known as an extrapelvic form of endometriosis with the presence of functioning endometrial tissue involving lung parenchyma, pleura, chest wall, or diaphragm. In an effort to obtain an endometriosis ex vivo model, we established the spontaneously growing TH-EM1 cell line from endometriotic implants in lung parenchyma from a woman with TE. Maintained in long-term culture, the cells grew as large mesenchymal-like cells with a doubling time between 5 and 6 days. Treatment with medroxyprogesterone acetate (10-7 mol/L) inhibited the TH-EM1 cells growth and induced morphological changes to an epithelial-like cells. Strong expression of the nuclear estrogen receptors, progesterone receptors, and erytropoietin receptors were found in both the pulmonary implant and the TH-EM1 cells by immunohistochemical analysis. Consistent immunoreactivity of TH-EM1 cells for CD9, CD13, CD73, CD90, CD105, and CD157 was revealed by flow cytometry. Likewise, the embryonic markers, SRY-box 2 (SOX-2) and the Nanog molecules, were detected in 76% and 52% of the cells, while fetal hemoglobin and a-globin were detected in 76% and 65% of TH-EM1 cells, respectively. By RHG banding, normal metaphases were observed, while the microarray chromosomal analysis showed gains of DNA sequences located on the segments 8p23.1, 11p15.5, and 12p11.23. The described in vitro cellular model can serve as a useful tool to study the pathogenesis of endometriosis and to improve the knowledge of molecular mechanisms controlling the endometriotic cell dissemination potential.
Collapse
Affiliation(s)
- J Gogusev
- Cochin Institute, Inserm UMR 1016, CNRS 8104, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014, Paris, France.
| | - Y Lepelletier
- Imagine Institute, Inserm UMR 1163, CNRS ERL 8254, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - L El Khattabi
- Service de Cytogénétique, AP-HP, Hôpital Cochin, Inserm U1016, CNRS 8104, Université Paris Descartes, Paris, France
| | - M Grigoroiu
- Service de Chirurgie Thoracique, Institut Mutualiste Montsouris, Paris, France
| | - P Validire
- Service d'Anatomie Pathologique, Institut Mutualiste Montsouris, Paris, France
| |
Collapse
|
37
|
Höving AL, Sielemann K, Greiner JFW, Kaltschmidt B, Knabbe C, Kaltschmidt C. Transcriptome Analysis Reveals High Similarities between Adult Human Cardiac Stem Cells and Neural Crest-Derived Stem Cells. BIOLOGY 2020; 9:biology9120435. [PMID: 33271866 PMCID: PMC7761507 DOI: 10.3390/biology9120435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
For the identification of a stem cell population, the comparison of transcriptome data enables the simultaneous analysis of tens of thousands of molecular markers and thus enables the precise distinction of even closely related populations. Here, we utilized global gene expression profiling to compare two adult human stem cell populations, namely neural crest-derived inferior turbinate stem cells (ITSCs) of the nasal cavity and human cardiac stem cells (hCSCs) from the heart auricle. We detected high similarities between the transcriptomes of both stem cell populations, particularly including a range of neural crest-associated genes. However, global gene expression likewise reflected differences between the stem cell populations with regard to their niches of origin. In a broader analysis, we further identified clear similarities between ITSCs, hCSCs and other adherent stem cell populations compared to non-adherent hematopoietic progenitor cells. In summary, our observations reveal high similarities between adult human cardiac stem cells and neural crest-derived stem cells from the nasal cavity, which include a shared relation to the neural crest. The analyses provided here may help to understand underlying molecular regulators determining differences between adult human stem cell populations.
Collapse
Affiliation(s)
- Anna L. Höving
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.F.W.G.); (B.K.)
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Correspondence: (A.L.H.); (C.K.)
| | - Katharina Sielemann
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany;
- Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld University, 33615 Bielefeld, Germany
| | - Johannes F. W. Greiner
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.F.W.G.); (B.K.)
| | - Barbara Kaltschmidt
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.F.W.G.); (B.K.)
- AG Molecular Neurobiology, Bielefeld University, 33615 Bielefeld, Germany
| | - Cornelius Knabbe
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
| | - Christian Kaltschmidt
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.F.W.G.); (B.K.)
- Correspondence: (A.L.H.); (C.K.)
| |
Collapse
|
38
|
Park J, Lee NG, Oh M, Song J, Kim W, Kwon MG, Kim SG, Han BS, Bae KH, Lee DG, Lee SH, Park JG, Kim JH, Lee J, Min JK. Selective elimination of human pluripotent stem cells by Anti-Dsg2 antibody-doxorubicin conjugates. Biomaterials 2020; 259:120265. [PMID: 32827795 DOI: 10.1016/j.biomaterials.2020.120265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/26/2020] [Indexed: 01/19/2023]
Abstract
The self-renewal properties of human pluripotent stem cells (hPSCs) contribute to their efficacy in tissue regeneration applications yet increase the likelihood of teratoma formation, thereby limiting their clinical utility. To address this issue, we developed a tool to specifically target and neutralize undifferentiated hPSCs, thereby minimizing tumorigenicity risk without negatively affecting regenerated and somatic tissues. Specifically, we conjugated a monoclonal antibody (K6-1) previously generated in our laboratory against desmoglein 2 (Dsg2), which is highly differentially expressed in undifferentiated hPSCs versus somatic tissues, to the chemotherapeutic agent doxorubicin (DOX). The K6-1-DOX conjugates were selectively targeted and incorporated into Dsg2-positive hPSCs, leading to pH-dependent endosomal release and nuclear localization of DOX with subsequent cytotoxicity via an apoptotic caspase cascade. Conversely, Dsg2-negative fibroblasts showed minimal conjugate uptake or cytotoxicity, suggesting that K6-1-DOX treatment would yield few side effects owing to off-target effects. Selective removal of undifferentiated stem cells was also supported by in vivo studies using a mouse xenograft model, wherein hIgG-DOX- but not K6-1-DOX-pretreated-hPSC injection led to teratoma development. Together, these results validated the ability of the Dsg2-targeted antibody-anticancer drug conjugate to facilitate the safety of stem cell therapies.
Collapse
Affiliation(s)
- Jongjin Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Na Geum Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Mihee Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jinhoi Song
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Wooil Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Min-Gi Kwon
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Seul Gi Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Baek Soo Han
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Dong Gwang Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sang-Hyun Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jae Ho Kim
- Department of Physiology, Pusan National University Yangsan Hospital, Yangsan, 50612, Republic of Korea
| | - Jangwook Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
39
|
Rosa G, Krieck AMT, Padula E, Pfeifer JPH, de Souza JB, Rossi M, Stievani F, Deffune E, Takahira R, Alves ALG. Allogeneic synovial membrane-derived mesenchymal stem cells do not significantly affect initial inflammatory parameters in a LPS-induced acute synovitis model. Res Vet Sci 2020; 132:485-491. [PMID: 32799173 DOI: 10.1016/j.rvsc.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/14/2020] [Accepted: 08/03/2020] [Indexed: 01/15/2023]
Affiliation(s)
- Gustavo Rosa
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab - School of Veterinary Medicine and Animal Science, São Paulo State University UNESP -, Botucatu, Brazil
| | - André Massahiro Teramoto Krieck
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab - School of Veterinary Medicine and Animal Science, São Paulo State University UNESP -, Botucatu, Brazil
| | - Enrico Padula
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab - School of Veterinary Medicine and Animal Science, São Paulo State University UNESP -, Botucatu, Brazil
| | - João Pedro Hübbe Pfeifer
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab - School of Veterinary Medicine and Animal Science, São Paulo State University UNESP -, Botucatu, Brazil
| | - Jaqueline Brandão de Souza
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab - School of Veterinary Medicine and Animal Science, São Paulo State University UNESP -, Botucatu, Brazil
| | - Mariana Rossi
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab - School of Veterinary Medicine and Animal Science, São Paulo State University UNESP -, Botucatu, Brazil
| | - Fernanda Stievani
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab - School of Veterinary Medicine and Animal Science, São Paulo State University UNESP -, Botucatu, Brazil
| | - Elenice Deffune
- Blood Transfusion Center, Cell Engineering Lab - Botucatu Medical School - São Paulo State University UNESP - Brazil, Brazil
| | - Regina Takahira
- Department of Veterinary Clinics - School of Veterinary Medicine and Animal Science, São Paulo State University UNESP - Botucatu, Brazil
| | - Ana Liz Garcia Alves
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Lab - School of Veterinary Medicine and Animal Science, São Paulo State University UNESP -, Botucatu, Brazil.
| |
Collapse
|
40
|
Investigating the expression of pluripotency-related genes in human amniotic fluid cells: A semi-quantitative comparison between different subpopulations, from primary to cultured amniocytes. Reprod Biol 2020; 20:338-347. [PMID: 32518050 DOI: 10.1016/j.repbio.2020.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/10/2020] [Accepted: 05/18/2020] [Indexed: 01/05/2023]
Abstract
Various classifications have been proposed for human amniotic subpopulations, including classification of spindle-shaped (SS) and round-shaped (RS) cells, as well as the more referred triple-category of epithelioid (E-type) cells, amniotic fluid-specific (AF-type) cells and fibroblastoid (F-type) cells. The present study aims to investigate these amniotic subpopulations regarding the expression of some stem cell markers, including OCT4, NANOG, SOX2, C-KIT (CD117), C-MYC, KLF4, and THY1 (CD90). Flow cytometry was performed to characterize the isolated clonal subpopulations for a hematopoietic and a mesenchymal marker using PE-CD31 and FITC-CD90, respectively. A semi-quantitative RT-PCR analysis was carried out on the isolates in the second half of their lifespan when the cells were at the stationary phase of the growth curve. Characterization of isolated cells demonstrated that all clones including both epithelioid and fibroblastoid cells, had mesenchymal, not hematopoietic, lineage. RT-PCR analysis also revealed a higher expression of the target genes in epithelioid cells. Furthermore, the expression pattern of the genes and their correlations were remarkably different between primary- and long term-cultured amniocytes. Taken together, our results showed that the primary-cultured cells express the stemness genes equally, whereas the long term-cultured amniocytes exhibited a highly variable manner in the expression pattern of the genes. Diverse derivation site of amniocytes and individual genetic background can potentially explain the observed variation in the expression level of the target genes. These can also explain why amniocytes differ in many respects observed in our study, including survival rate, plastic adhesion, and growth characteristics.
Collapse
|
41
|
Sangeetha KN, Vennila R, Secunda R, Sakthivel S, Pathak S, Jeswanth S, Surendran R. Functional variations between Mesenchymal Stem Cells of different tissue origins: A comparative gene expression profiling. Biotechnol Lett 2020; 42:1287-1304. [PMID: 32372268 DOI: 10.1007/s10529-020-02898-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 04/24/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Mesenchymal Stem Cells (MSCs), regardless of the tissue sources, are considered as excellent candidates for cellular therapy as they are immune-privileged cells containing a multitude of therapeutic functions that aid in tissue regeneration and repair. For the effective application of these cells in cell therapy, it is important to understand and characterize their biological functions. OBJECTIVES The present study attempts to characterize the variations in multipotent function such as cell surface antigen levels, proliferation, differentiation and stemness (pluripotency) potential of MSCs isolated from foetal [wharton's jelly (WJ), foetal and maternal side of placenta (PF and PM)] and adult tissue sources [bone marrow (BM) and adipose tissue (AT)] using gene expression by real time PCR (qRT-PCR). RESULTS Amongst the different tissue sources, PM, PF and AT-MSCs exhibited significant increase (p < 0.001, p < 0.001 and p < 0.01 respectively) in CD 73 expression and therefore could have a role in immunomodulation. WJ-MSCs exhibited superior proliferation potential based on growth curve, PCNA and Wnt gene expression. BM-MSCs were superior in exhibiting trilineage differentiation. Enhanced stemness potential (Oct 4 and Nanog) was observed for both BM and WJ-MSCs. In addition, BM and WJ-MSCs expressed high levels of CD 90 making them suitable in bone repair and regeneration. CONCLUSION Thus to conclude, out of the five different sources tested, BM an adult source and WJ-MSCs a foetal source were superior in exhibiting most of the biological functions indicating that these sources may be suitable candidates for cell repair and regeneration studies.
Collapse
Affiliation(s)
- K N Sangeetha
- Stem Cell Research Centre, Government Stanley Hospital, Chennai, Tamilnadu, 600001, India
| | | | - R Secunda
- Stem Cell Research Centre, Government Stanley Hospital, Chennai, Tamilnadu, 600001, India.
| | - S Sakthivel
- Stem Cell Research Centre, Government Stanley Hospital, Chennai, Tamilnadu, 600001, India
| | - Surajit Pathak
- Chettinad Academy of Research and Education, Chettinad Hospital & Research Institute, Chennai, Tamilnadu, India
| | - S Jeswanth
- Stem Cell Research Centre, Government Stanley Hospital, Chennai, Tamilnadu, 600001, India
| | - R Surendran
- Hepato-Pancreato-Biliary Centre for Surgery & Transplantation, MIOT International, Chennai, Tamilnadu, India
| |
Collapse
|
42
|
A Small-Sized Population of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Shows High Stemness Properties and Therapeutic Benefit. Stem Cells Int 2020; 2020:5924983. [PMID: 32399043 PMCID: PMC7204153 DOI: 10.1155/2020/5924983] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells (MSCs) represent a promising means to promote tissue regeneration. However, the heterogeneity of MSCs impedes their use for regenerative medicine. Further investigation of this phenotype is required to develop cell therapies with improved clinical efficacy. Here, a small-sized population of human umbilical cord blood-derived MSCs (UCB-MSCs) was isolated using a filter and centrifuge system to analyze its stem cell characteristics. Consequently, this population showed higher cell growth and lower senescence. Additionally, it exhibited diverse stem cell properties including differentiation, stemness, and adhesion, as compared to those of the population before isolation. Using cell surface protein array or sorting analysis, both EGFR and CD49f were identified as markers associated with the small-sized population. Accordingly, suppression of these surface proteins abolished the superior characteristics of this population. Moreover, compared to that with large or nonisolated populations, the small-sized population showed greater therapeutic efficacy by promoting the engraftment potential of infused cells and reducing lung damage in an emphysema mouse model. Therefore, the isolation of this small-sized population of UCB-MSCs could be a simple and effective way to enhance the efficacy of cell therapy.
Collapse
|
43
|
Koltsova AM, Zenin VV, Turilova VI, Yakovleva TK, Poljanskaya GG. Isolation and Characterization of Mesenchymal Stem Cells from Human Gingiva. ACTA ACUST UNITED AC 2020. [DOI: 10.1134/s1990519x2001006x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
44
|
Yu SJ, Choi G, Cho Y, Lee M, Cho Y, Shin JH, Lee E, Im SG. Three-Dimensional Spheroid Culture on Polymer-Coated Surface Potentiate Stem Cell Functions via Enhanced Cell–Extracellular Matrix Interactions. ACS Biomater Sci Eng 2020; 6:2240-2250. [DOI: 10.1021/acsbiomaterials.9b01738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Seung Jung Yu
- Department of Chemical and Biomolecular Engineering and KI for Nano Century, Korea Advanced of Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Goro Choi
- Department of Chemical and Biomolecular Engineering and KI for Nano Century, Korea Advanced of Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Youngbin Cho
- Department of Mechanical Engineering, Korea Advanced of Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Minseok Lee
- Department of Chemical and Biomolecular Engineering and KI for Nano Century, Korea Advanced of Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Younghak Cho
- Department of Chemical and Biomolecular Engineering and KI for Nano Century, Korea Advanced of Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jennifer H. Shin
- Department of Mechanical Engineering, Korea Advanced of Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Eunjung Lee
- Department of Chemical and Biomolecular Engineering and KI for Nano Century, Korea Advanced of Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering and KI for Nano Century, Korea Advanced of Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
45
|
Sepúlveda RV, Eleotério In Memorian RB, Valente FL, Araújo FR, Sabino ADP, Evangelista FCG, Reis ECC, Borges APB. Canine umbilical cord perivascular tissue: A source of stem cells for therapy and research. Res Vet Sci 2020; 129:193-202. [PMID: 32087438 DOI: 10.1016/j.rvsc.2020.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/17/2019] [Accepted: 02/12/2020] [Indexed: 12/17/2022]
Abstract
There are numerous sources of multipotent mesenchymal stromal cells (MSC) with therapeutic potential, and bone marrow is the main one. However, pain, lack of donors and comorbidities associated with harvesting stimulate the search for new sources of MSCs. The aim of this work is to obtain cells from umbilical cord (UC) perivascular tissue of dogs and characterize them as MSCs. For this, the UC was obtained from therapeutic cesarean sections and submitted to enzymatic digestion. The obtained cells were subjected to growth and proliferation tests, as well as the analysis of surface markers, differentiation test in three mesenchymal lineages and analysis of differentiation markers expression. From all the UC used in this study an adherent with fibroblastoid shape cell was obtained, with an initial number of 4.8 × 105 of cells. The growth curves showed a lag phase from 0 to 24 h, followed by a phase of growth of 24 to 168 h, and then phase of cell decay. The doubling time was kept around 15 h until the sixth passage, from which there were signs of cellular senescence. The differentiation assays demonstrated the ability of cells to differentiate into osteoblasts, adipocytes and chondrocytes when subjected to the induction mediums. The study of surface markers was positive for adhesion markers and negative for hematopoietic markers. Thus, cells obtained from canine UC perivascular tissue by enzymatic digestion are multipotent MSC and the protocol developed ensures the perivascular origin of these cells.
Collapse
Affiliation(s)
| | | | | | - Fabiana Rocha Araújo
- Veterinary Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Adriano de Paula Sabino
- Department of Clinical and Toxicological Analysis, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | | | | | | |
Collapse
|
46
|
Vodyanoy V, Pustovyy O, Globa L, Kulesza RJ, Sorokulova I. Hemmule: A Novel Structure with the Properties of the Stem Cell Niche. Int J Mol Sci 2020; 21:ijms21020539. [PMID: 31947705 PMCID: PMC7013657 DOI: 10.3390/ijms21020539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/16/2022] Open
Abstract
Stem cells are nurtured and regulated by a specialized microenvironment known as stem cell niche. While the functions of the niches are well defined, their structure and location remain unclear. We have identified, in rat bone marrow, the seat of hematopoietic stem cells—extensively vascularized node-like compartments that fit the requirements for stem cell niche and that we called hemmules. Hemmules are round or oval structures of about one millimeter in diameter that are surrounded by a fine capsule, have afferent and efferent vessels, are filled with the extracellular matrix and mesenchymal, hematopoietic, endothelial stem cells, and contain cells of the megakaryocyte family, which are known for homeostatic quiescence and contribution to the bone marrow environment. We propose that hemmules are the long sought hematopoietic stem cell niches and that they are prototypical of stem cell niches in other organs.
Collapse
Affiliation(s)
- Vitaly Vodyanoy
- Department Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn, AL 36849, USA; (O.P.); (L.G.); (I.S.)
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
- Correspondence: ; Tel.: +1-334-826-9894
| | - Oleg Pustovyy
- Department Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn, AL 36849, USA; (O.P.); (L.G.); (I.S.)
| | - Ludmila Globa
- Department Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn, AL 36849, USA; (O.P.); (L.G.); (I.S.)
| | - Randy J. Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA;
| | - Iryna Sorokulova
- Department Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn, AL 36849, USA; (O.P.); (L.G.); (I.S.)
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
47
|
The fate of mesenchymal stem cells is greatly influenced by the surface chemistry of silica nanoparticles in 3D hydrogel-based culture systems. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110259. [DOI: 10.1016/j.msec.2019.110259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 12/17/2022]
|
48
|
Pacheco CMR, Ferreira PE, Saçaki CS, Tannous LA, Zotarelli-Filho IJ, Guarita-Souza LC, de Carvalho KAT. In vitro differentiation capacity of human breastmilk stem cells: A systematic review. World J Stem Cells 2019; 11:1005-1019. [PMID: 31768226 PMCID: PMC6851011 DOI: 10.4252/wjsc.v11.i11.1005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/17/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells are pluripotent cells that have the ability to generate cells from a cell line or in other cell types from different tissues but from the same origin. Although those cells have more limited differentiation capacity than embryonic stem cells, they are easily obtained from somatic tissue and can be grown in large quantities. This characteristic of undifferentiated stem cells differentiating into different cell lines arouses strategies in regenerative medicine for the treatment of different diseases such as neurodegenerative diseases.
AIM To evaluate the cell differentiation capacity of human breastmilk stem cells for the three germ layers by a systematic review.
METHODS The searched databases were PubMed, EMBASE, OVID, and COCHRANE LIBRARY, published between 2007 and 2018 in the English language. All were in vitro studies for analysis of the "cell differentiation potential" in the literature using the keywords “human breastmilk,” “stem cells,” and keywords combined with the Boolean operator “NOT” were used to exclude those articles that had the word “CANCER” and their respective synonyms, which were previously consulted according to medical subject heading terms. PRISMA 2009 guidelines were followed in this study.
RESULTS A total of 315 titles and abstracts of articles were examined. From these, 21 were in common with more than one database, leaving 294 articles for analysis. Of that total, five publications met the inclusion criteria. When analyzing the publications, it was demonstrated that human breastmilk stem cells have a high cellular plasticity, exhibiting the ability to generate cells of all three germ layers, endoderm, mesoderm, and ectoderm, demonstrating their stemness. Those cells expressed the genes, TRA-1-60/81, octamer-binding transcription factor 4, and NANOG, of which NANOG, a critical regulator for self-renewal and maintenance, was the most highly expressed. Those cells have the ability to differentiate in vitro into adipocytes, chondrocytes, osteocytes, oligodendrocytes, astrocytes, and neurons as well hepatocytes, β-pancreatic cells, and cardiomyocytes.
CONCLUSION Although the literature has been scarce, the pluripotentiality of these cells represents great potential for tissue engineering and cellular therapy. Further studies for safe clinical translation are needed.
Collapse
Affiliation(s)
- Camila Maria Ribeiro Pacheco
- Cell Therapy and Biotechnology in Regenerative Medicine Department, Pelé Pequeno Príncipe Institute, Child and Adolescent Health Research and Pequeno Príncipe Faculty, Curitiba 80.240-020, Paraná, Brazil
| | - Priscila Elias Ferreira
- Cell Therapy and Biotechnology in Regenerative Medicine Department, Pelé Pequeno Príncipe Institute, Child and Adolescent Health Research and Pequeno Príncipe Faculty, Curitiba 80.240-020, Paraná, Brazil
| | - Claudia Sayuri Saçaki
- Cell Therapy and Biotechnology in Regenerative Medicine Department, Pelé Pequeno Príncipe Institute, Child and Adolescent Health Research and Pequeno Príncipe Faculty, Curitiba 80.240-020, Paraná, Brazil
| | - Luana Alves Tannous
- PUCPR-Institute of Biological and Health Sciences, CCBS, Curitiba 80.215-901, Paraná, Brazil
| | - Idiberto José Zotarelli-Filho
- Post Graduate and Continuing Education (Unipos), Department of Scientific Production, São José do Rio Preto 15.020-040, São Paulo, Brazil
| | | | - Katherine Athayde Teixeira de Carvalho
- Cell Therapy and Biotechnology in Regenerative Medicine Department, Pelé Pequeno Príncipe Institute, Child and Adolescent Health Research and Pequeno Príncipe Faculty, Curitiba 80.240-020, Paraná, Brazil
| |
Collapse
|
49
|
Tsang M, Quesnel K, Vincent K, Hutchenreuther J, Postovit LM, Leask A. Insights into Fibroblast Plasticity: Cellular Communication Network 2 Is Required for Activation of Cancer-Associated Fibroblasts in a Murine Model of Melanoma. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:206-221. [PMID: 31610176 DOI: 10.1016/j.ajpath.2019.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023]
Abstract
Tumor stroma resembles a fibrotic microenvironment, being characterized by the presence of myofibroblast-like cancer-associated fibroblasts (CAFs). In wild-type mice injected with melanoma cells, we show that the stem cell transcription factor Sox2 is expressed by tumor cells and induced in CAFs derived from synthetic fibroblasts. These fibroblasts were labeled postnatally with green fluorescent protein using mice expressing a tamoxifen-dependent Cre recombinase under the control of a fibroblast-specific promoter/enhancer. Conversely, fibroblast activation was impaired in mice with a fibroblast-specific deletion of cellular communication network 2 (Ccn2), associated with reduced expression of α-smooth muscle actin and Sox2. Multipotent Sox2-expressing skin-derived precursor (SKP) spheroids were cultured from murine back skin. Using lineage tracing and flow cytometry, approximately 40% of SKPs were found to be derived from type I collagen-lineage cells and acquired multipotency in culture. Inhibition of mechanotransduction pathways prevented myofibroblast differentiation of SKPs and expression of Ccn2. In SKPs deleted for Ccn2, differentiation into a myofibroblast, but not an adipocyte or neuronal phenotype, was also impaired. In human melanoma, CCN2 expression was associated with a profibrotic integrin alpha (ITGA) 11-expressing subset of CAFs that negatively associated with survival. These results suggest that synthetic dermal fibroblasts are plastic, and that CCN2 is required for the differentiation of dermal progenitor cells into a myofibroblast/CAF phenotype and is, therefore, a therapeutic target in melanoma.
Collapse
Affiliation(s)
- Matthew Tsang
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Katherine Quesnel
- Department of Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Krista Vincent
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada; Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - James Hutchenreuther
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | | | - Andrew Leask
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada; Department of Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
50
|
Srivastava AC, Thompson YG, Singhal J, Stellern J, Srivastava A, Du J, O'Connor TR, Riggs AD. Elimination of human folypolyglutamate synthetase alters programming and plasticity of somatic cells. FASEB J 2019; 33:13747-13761. [PMID: 31585510 DOI: 10.1096/fj.201901721r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Folates are vital cofactors for the regeneration of S-adenosyl methionine, which is the methyl source for DNA methylation, protein methylation, and other aspects of one-carbon (C1) metabolism. Thus, folates are critical for establishing and preserving epigenetic programming. Folypolyglutamate synthetase (FPGS) is known to play a crucial role in the maintenance of intracellular folate levels. Therefore, any modulation in FPGS is expected to alter DNA methylation and numerous other metabolic pathways. To explore the role of polyglutamylation of folate, we eliminated both isoforms of FPGS in human cells (293T), producing FPGS knockout (FPGSko) cells. The elimination of FPGS significantly decreased cell proliferation, with a major effect on oxidative phosphorylation and a lesser effect on glycolysis. We found a substantial reduction in global DNA methylation and noteworthy changes in gene expression related to C1 metabolism, cell division, DNA methylation, pluripotency, Glu metabolism, neurogenesis, and cardiogenesis. The expression levels of NANOG, octamer-binding transcription factor 4, and sex-determining region Y-box 2 levels were increased in the mutant, consistent with the transition to a stem cell-like state. Gene expression and metabolite data also indicate a major change in Glu and GABA metabolism. In the appropriate medium, FPGSko cells can differentiate to produce mainly cells with characteristics of either neural stem cells or cardiomyocytes.-Srivastava, A. C., Thompson, Y. G., Singhal, J., Stellern, J., Srivastava, A., Du, J., O'Connor, T. R., Riggs, A. D. Elimination of human folypolyglutamate synthetase alters programming and plasticity of somatic cells.
Collapse
Affiliation(s)
- Avinash C Srivastava
- Department of Diabetes Complications and Metabolism, City of Hope National Medical Center, Duarte, California, USA
| | | | - Jyotsana Singhal
- Department of Diabetes Complications and Metabolism, City of Hope National Medical Center, Duarte, California, USA
| | - Jordan Stellern
- Department of Cancer Biology, City of Hope National Medical Center, Duarte, California, USA
| | - Anviksha Srivastava
- Department of Cancer Biology, City of Hope National Medical Center, Duarte, California, USA
| | - Juan Du
- Integrative Genomics Core Facility, City of Hope National Medical Center, Duarte, California, USA
| | - Timothy R O'Connor
- Department of Cancer Biology, City of Hope National Medical Center, Duarte, California, USA
| | - Arthur D Riggs
- Department of Diabetes Complications and Metabolism, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|