1
|
Ye J, Bates N, Soteriou D, Grady L, Edmond C, Ross A, Kerby A, Lewis PA, Adeniyi T, Wright R, Poulton KV, Lowe M, Kimber SJ, Brison DR. High quality clinical grade human embryonic stem cell lines derived from fresh discarded embryos. Stem Cell Res Ther 2017; 8:128. [PMID: 28583200 PMCID: PMC5460457 DOI: 10.1186/s13287-017-0561-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Human embryonic stem cells (hESCs) hold tremendous promise for cell replacement therapies for a range of degenerative diseases. In order to provide cost-effective treatments affordable by public health systems, HLA-matched allogeneic tissue banks of the highest quality clinical-grade hESCs will be required. However only a small number of existing hESC lines are suitable for clinical use; they are limited by moral and ethical concerns and none of them apply Good Manufacturing Practice (GMP) standards to the earliest and critical stages of gamete and embryo procurement. We thus aimed to derive new clinical grade hESC lines of highest quality from fresh surplus GMP grade human embryos. METHODS A comprehensive screen was performed for suitable combinations of culture media with supporting feeder cells or feeder-free matrix, at different stages, to support expansion of the inner cell mass and to establish new hESC lines. RESULTS We developed a novel two-step and sequential media system of clinical-grade hESC derivation and successfully generated seven new hESC lines of widely varying HLA type, carefully screened for genetic health, from human embryos donated under the highest ethical and moral standards under an integrated GMP system which extends from hESC banking all the way back to gamete and embryo procurement. CONCLUSIONS The present study, for the first time, reports the successful derivation of highest-quality clinical-grade hESC lines from fresh poor-quality surplus human embryos generated in a GMP-grade IVF laboratory. The availability of hESC lines of this status represents an important step towards more widespread application of regenerative medicine therapies.
Collapse
Affiliation(s)
- Jinpei Ye
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
- North West Embryonic Stem Cell Centre, Central Manchester University Hospitals NHS Foundation Trust and University of Manchester, Oxford Road, Manchester, M13 9WL UK
- Present Address: Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Nicola Bates
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
- North West Embryonic Stem Cell Centre, Central Manchester University Hospitals NHS Foundation Trust and University of Manchester, Oxford Road, Manchester, M13 9WL UK
| | - Despina Soteriou
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
- North West Embryonic Stem Cell Centre, Central Manchester University Hospitals NHS Foundation Trust and University of Manchester, Oxford Road, Manchester, M13 9WL UK
| | - Lisa Grady
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
- North West Embryonic Stem Cell Centre, Central Manchester University Hospitals NHS Foundation Trust and University of Manchester, Oxford Road, Manchester, M13 9WL UK
| | - Clare Edmond
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
- North West Embryonic Stem Cell Centre, Central Manchester University Hospitals NHS Foundation Trust and University of Manchester, Oxford Road, Manchester, M13 9WL UK
| | - Alex Ross
- Department of Reproductive Medicine, Old St Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, M13 9PW UK
- North West Embryonic Stem Cell Centre, Central Manchester University Hospitals NHS Foundation Trust and University of Manchester, Oxford Road, Manchester, M13 9WL UK
| | - Alan Kerby
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
| | - Philip A. Lewis
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
| | - Tope Adeniyi
- Department of Reproductive Medicine, Old St Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, M13 9PW UK
| | - Ronnie Wright
- Genomic Diagnostics Laboratory, Manchester Centre for Genomic Medicine, Saint Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Oxford Rd, Manchester, M13 9WL UK
| | - Kay V. Poulton
- Transplantation Laboratory, Manchester Royal Infirmary, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
| | - Marcus Lowe
- Transplantation Laboratory, Manchester Royal Infirmary, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
| | - Susan J. Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
- North West Embryonic Stem Cell Centre, Central Manchester University Hospitals NHS Foundation Trust and University of Manchester, Oxford Road, Manchester, M13 9WL UK
| | - Daniel R. Brison
- Department of Reproductive Medicine, Old St Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, M13 9PW UK
- Maternal and Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
- North West Embryonic Stem Cell Centre, Central Manchester University Hospitals NHS Foundation Trust and University of Manchester, Oxford Road, Manchester, M13 9WL UK
| |
Collapse
|
2
|
Garreta E, Marco A, Izpisua Belmonte JC, Montserrat N. Genome editing in human pluripotent stem cells: a systematic approach unrevealing pancreas development and disease. Stem Cell Investig 2017; 3:76. [PMID: 28066778 DOI: 10.21037/sci.2016.10.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 10/21/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Elena Garreta
- Pluripotent Stem Cells and Activation of Endogenous Tissue Programs for Organ Regeneration (PR Lab), Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - Andres Marco
- Pluripotent Stem Cells and Activation of Endogenous Tissue Programs for Organ Regeneration (PR Lab), Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | | | - Nuria Montserrat
- Pluripotent Stem Cells and Activation of Endogenous Tissue Programs for Organ Regeneration (PR Lab), Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain;; Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
3
|
Stukenborg JB, Kjartansdóttir KR, Reda A, Colon E, Albersmeier JP, Söder O. Male germ cell development in humans. Horm Res Paediatr 2015; 81:2-12. [PMID: 24356336 DOI: 10.1159/000355599] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/12/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Germ cells are unique cells that possess the ability to transmit genetic information between generations. Detailed knowledge about the molecular and cellular mechanisms determining the fate of human male germ cells still remains sparse. This is partially due to ethical issues limiting the access to research material. Therefore, the mechanisms of proliferation, differentiation and apoptosis of human male germ cells still remain challenging study objectives. METHODS This review focuses on using English articles accessible in PubMed as well as personal files on the current knowledge of the molecular and cellular mechanisms connected with human testicular germ cell development, maturation failure and the possibility of fertility preservation in patients in whom there is a risk of gonadal failure. However, since rodents, particularly mice, offer the possibility of studying germ cell development by use of genetic modification techniques, some studies using animal models are also discussed. CONCLUSION This mini review focuses on the current knowledge about male germ cells. However, the reader is referred to two previous mini reviews focusing on testicular somatic cells, i.e. on Sertoli cells and Leydig cells.
Collapse
Affiliation(s)
- Jan-Bernd Stukenborg
- Pediatric Endocrinology Unit, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
4
|
Cachat E, Liu W, Hohenstein P, Davies JA. A library of mammalian effector modules for synthetic morphology. J Biol Eng 2014; 8:26. [PMID: 25478005 PMCID: PMC4255936 DOI: 10.1186/1754-1611-8-26] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/02/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In mammalian development, the formation of most tissues is achieved by a relatively small repertoire of basic morphogenetic events (e.g. cell adhesion, locomotion, apoptosis, etc.), permutated in various sequences to form different tissues. Together with cell differentiation, these mechanisms allow populations of cells to organize themselves into defined geometries and structures, as simple embryos develop into complex organisms. The control of tissue morphogenesis by populations of engineered cells is a potentially very powerful but neglected aspect of synthetic biology. RESULTS We have assembled a modular library of synthetic morphogenetic driver genes to control (separately) mammalian cell adhesion, locomotion, fusion, proliferation and elective cell death. Here we describe this library and demonstrate its use in the T-REx-293 human cell line to induce each of these desired morphological behaviours on command. CONCLUSIONS Building on from the simple test systems described here, we want to extend engineered control of morphogenetic cell behaviour to more complex 3D structures that can inform embryologists and may, in the future, be used in surgery and regenerative medicine, making synthetic morphology a powerful tool for developmental biology and tissue engineering.
Collapse
Affiliation(s)
- Elise Cachat
- University of Edinburgh, Centre for Integrative Physiology, Hugh Robson Building, George Square, Edinburgh, EH8 9XD UK
| | - Weijia Liu
- University of Edinburgh, Centre for Integrative Physiology, Hugh Robson Building, George Square, Edinburgh, EH8 9XD UK
| | - Peter Hohenstein
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG UK
| | - Jamie A Davies
- University of Edinburgh, Centre for Integrative Physiology, Hugh Robson Building, George Square, Edinburgh, EH8 9XD UK
| |
Collapse
|
5
|
Lorenzo IM, Fleischer A, Bachiller D. Generation of mouse and human induced pluripotent stem cells (iPSC) from primary somatic cells. Stem Cell Rev Rep 2014; 9:435-50. [PMID: 23104133 DOI: 10.1007/s12015-012-9412-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cellular reprogramming consists of the conversion of differentiated cells into pluripotent cells; the so-called induced Pluripotent Stem Cells. iPSC are amenable to in vitro manipulation and, in theory, direct production of any differentiated cell type. Furthermore, iPSC can be obtained from sick individuals and subsequently used for disease modeling, drug discovery and regenerative treatments. iPSC production was first achieved by transducing, with the use of retroviral vectors, four specific transcription factors: Oct4, Klf4, Sox2 and c-Myc (OKSM), into primary cells in culture Takahashi and Yamanaka, (Cell 126(4):663-676, 2006). Many alternative protocols have since been proposed: repeated transfections of expression plasmids containing the four pluripotency-associated genes Okita et al. (Science 322(5903):949-953, 2008), lentiviral delivery of the four factors Sommer et al. (Stem Cells 27(3):543-549, 2009), Sendai virus delivery Fusaki et al. (Proceedings of the Japan Academy. Series B, Physical and Biological Sciences 85(8):348-362, 2009), removal of the reprogramming vectors by 'piggyBac' transposition Woltjen et al. (Nature 458(7239):766-770, 2009); Kaji et al. (Nature 458(7239):771-775, 2009), Cre-recombinase excisable viruses Soldner et al. (Cell 136(5):964-977, 2009), episomal vectors Yu et al. (Science 324(5928):797-801, 2009), cell-penetrating reprogramming proteins Zhou et al. (Stem Cells 4(5):381-384, 2009), mammalian artificial chromosomes Hiratsuka et al. (PLoS One 6(10):e25961, 2011) synthetically modified mRNAs Warren et al. (Scientific Reports 2:657, 2012), miRNA Anokye-Danso et al. (Cell Stem Cell 8(4):376-388, 2009); however, although some of these methods are commercially available, in general they still need to attain the reproducibility and reprogramming efficiency required for routine applications Mochiduki and Okita (Biotechnol Journal 7(6):789-797, 2012). Herein we explain, in four detailed protocols, the isolation of mouse and human somatic cells and their reprogramming into iPSC. All-encompassing instructions, not previously published in a single document, are provided for mouse and human iPSC colony isolation and derivation. Although mouse and human iPSC share similarities in the cellular reprogramming process and culture, both cell types need to be handled differently.
Collapse
Affiliation(s)
- I M Lorenzo
- Caubet-Cimera Foundation, Centre for Advanced Respiratory Medicine, Crta. Sóller Km12, 07110 Bunyola, Illes Balears, Mallorca, Spain
| | | | | |
Collapse
|
6
|
Duggal G, Heindryckx B, Warrier S, O'Leary T, Van der Jeught M, Lierman S, Vossaert L, Deroo T, Deforce D, Chuva de Sousa Lopes SM, De Sutter P. Influence of activin A supplementation during human embryonic stem cell derivation on germ cell differentiation potential. Stem Cells Dev 2013; 22:3141-55. [PMID: 23829223 DOI: 10.1089/scd.2013.0024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human embryonic stem cells (hESCs) are more similar to "primed" mouse epiblast stem cells (mEpiSCs). mEpiSCs, which are derived in Activin A, show an increased propensity to form primordial germ cell (PGC)-like cells in response to bone morphogenic protein 4 (BMP4). Hence, we hypothesized that hESCs derived in the presence of Activin A may be more competent in differentiating towards PGC-like cells after supplementation with BMP4 compared to standard hESC lines. We were able to successfully derive two hESC lines in the presence of Activin A, which were pluripotent and showed higher base levels of STELLA and cKIT compared to standard hESC lines derived without Activin A addition. Furthermore, upon differentiation as embryoid bodies in the presence of BMP4, we observed upregulation of VASA at day 7, both at the transcript and protein level compared to standard hESC lines, which appeared to take longer time for PGC specification. Unlike other hESC lines, nuclear pSMAD2/3 presence confirmed that Activin signalling was switched on in Activin A-derived hESC lines. They were also responsive to BMP4 based on nuclear detection of pSMAD1/5/8 and showed endodermal differentiation as a result of GATA-6 expression. Hence, our results provide novel insights into the impact of hESC derivation in the presence of Activin A and its subsequent influence on germ cell differentiation potential in vitro.
Collapse
Affiliation(s)
- Galbha Duggal
- 1 Department for Reproductive Medicine, Ghent University Hospital , Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|