1
|
Southwell DG. Interneuron Transplantation for Drug-Resistant Epilepsy. Neurosurg Clin N Am 2024; 35:151-160. [PMID: 38000838 DOI: 10.1016/j.nec.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Current epilepsy surgical techniques, such as brain resection, laser ablation, and neurostimulation, target seizure networks macroscopically, and they may yield an unfavorable balance between seizure reduction, procedural invasiveness, and neurologic morbidity. The transplantation of GABAergic interneurons is a regenerative technique for altering neural inhibition in cortical circuits, with potential as an alternative and minimally invasive approach to epilepsy treatment. This article (1) reviews some of the preclinical evidence supporting interneuron transplantation as an epilepsy therapy, (2) describes a first-in-human study of interneuron transplantation for epilepsy, and (3) considers knowledge gaps that stand before the effective clinical application of this novel treatment.
Collapse
Affiliation(s)
- Derek G Southwell
- Department of Neurosurgery, Graduate Program in Neurobiology, Duke University, DUMC 3807, 200 Trent Drive, Durham, NC 27710, USA.
| |
Collapse
|
2
|
Ren J, Li C, Zhang M, Wang H, Xie Y, Tang Y. A Step-by-Step Refined Strategy for Highly Efficient Generation of Neural Progenitors and Motor Neurons from Human Pluripotent Stem Cells. Cells 2021; 10:3087. [PMID: 34831309 PMCID: PMC8625124 DOI: 10.3390/cells10113087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 11/05/2021] [Indexed: 01/02/2023] Open
Abstract
Limited access to human neurons, especially motor neurons (MNs), was a major challenge for studying neurobiology and neurological diseases. Human pluripotent stem cells (hPSCs) could be induced as neural progenitor cells (NPCs) and further multiple neural subtypes, which provide excellent cellular sources for studying neural development, cell therapy, disease modeling and drug screening. It is thus important to establish robust and highly efficient methods of neural differentiation. Enormous efforts have been dedicated to dissecting key signalings during neural commitment and accordingly establishing reliable differentiation protocols. In this study, we refined a step-by-step strategy for rapid differentiation of hPSCs towards NPCs within merely 18 days, combining the adherent and neurosphere-floating methods, as well as highly efficient generation (~90%) of MNs from NPCs by introducing refined sets of transcription factors for around 21 days. This strategy made use of, and compared, retinoic acid (RA) induction and dual-SMAD pathway inhibition, respectively, for neural induction. Both methods could give rise to highly efficient and complete generation of preservable NPCs, but with different regional identities. Given that the generated NPCs can be differentiated into the majority of excitatory and inhibitory neurons, but hardly MNs, we thus further differentiate NPCs towards MNs by overexpressing refined sets of transcription factors, especially by adding human SOX11, whilst improving a series of differentiation conditions to yield mature MNs for good modeling of motor neuron diseases. We thus refined a detailed step-by-step strategy for inducing hPSCs towards long-term preservable NPCs, and further specified MNs based on the NPC platform.
Collapse
Affiliation(s)
- Jie Ren
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (J.R.); (C.L.); (M.Z.); (H.W.)
- Aging Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Chaoyi Li
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (J.R.); (C.L.); (M.Z.); (H.W.)
- Aging Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Mengfei Zhang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (J.R.); (C.L.); (M.Z.); (H.W.)
- Aging Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Huakun Wang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (J.R.); (C.L.); (M.Z.); (H.W.)
- Aging Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Yali Xie
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China;
- The Biobank of Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yu Tang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (J.R.); (C.L.); (M.Z.); (H.W.)
- Aging Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China;
- The Biobank of Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
3
|
Shrestha S, Anderson NC, Grabel LB, Naegele JR, Aaron GB. Development of electrophysiological and morphological properties of human embryonic stem cell-derived GABAergic interneurons at different times after transplantation into the mouse hippocampus. PLoS One 2020; 15:e0237426. [PMID: 32813731 PMCID: PMC7444508 DOI: 10.1371/journal.pone.0237426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 07/27/2020] [Indexed: 12/16/2022] Open
Abstract
Transplantation of human embryonic stem cell (hESC)-derived neural progenitors is a potential treatment for neurological disorders, but relatively little is known about the time course for human neuron maturation after transplantation and the emergence of morphological and electrophysiological properties. To address this gap, we transplanted hESC-derived human GABAergic interneuron progenitors into the mouse hippocampus, and then characterized their electrophysiological properties and dendritic arborizations after transplantation by means of ex vivo whole-cell patch clamp recording, followed by biocytin staining, confocal imaging and neuron reconstruction software. We asked whether particular electrophysiological and morphological properties showed maturation-dependent changes after transplantation. We also investigated whether the emergence of particular electrophysiological properties were linked to increased complexity of the dendritic arbors. Human neurons were classified into five distinct neuronal types (Type I-V), ranging from immature to mature fast-spiking interneurons. Hierarchical clustering of the dendritic morphology and Sholl analyses suggested four morphologically distinct classes (Class A-D), ranging from simple/immature to highly complex. Incorporating all of our data regardless of neuronal classification, we investigated whether any electrophysiological and morphological features correlated with time post-transplantation. This analysis demonstrated that both dendritic arbors and electrophysiological properties matured after transplantation.
Collapse
Affiliation(s)
- Swechhya Shrestha
- Department of Biology, Wesleyan University, Middletown, Connecticut, United States of America
- * E-mail:
| | - Nickesha C. Anderson
- Department of Biology, Wesleyan University, Middletown, Connecticut, United States of America
| | - Laura B. Grabel
- Department of Biology, Wesleyan University, Middletown, Connecticut, United States of America
| | - Janice R. Naegele
- Department of Biology, Wesleyan University, Middletown, Connecticut, United States of America
- Program in Neuroscience and Behavior, Wesleyan University, Middletown, Connecticut, United States of America
| | - Gloster B. Aaron
- Department of Biology, Wesleyan University, Middletown, Connecticut, United States of America
- Program in Neuroscience and Behavior, Wesleyan University, Middletown, Connecticut, United States of America
| |
Collapse
|
5
|
Chen CY, Anderson NC, Becker S, Schicht M, Stoddard C, Bräuer L, Paulsen F, Grabel L. Examining the role of the surfactant family member SFTA3 in interneuron specification. PLoS One 2018; 13:e0198703. [PMID: 30408033 PMCID: PMC6224035 DOI: 10.1371/journal.pone.0198703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/23/2018] [Indexed: 01/31/2023] Open
Abstract
The transcription factor NKX2.1, expressed at high levels in the medial ganglionic eminence (MGE), is a master regulator of cortical interneuron progenitor development. To identify gene candidates with expression profiles similar to NKX2.1, previous transcriptome analysis of human embryonic stem cell (hESC)-derived MGE-like progenitors revealed SFTA3 as the strongest candidate. Quantitative real-time PCR analysis of hESC-derived NKX2.1-positive progenitors and transcriptome data available from the Allen Institute for Brain Science revealed comparable expression patterns for NKX2.1 and SFTA3 during interneuron differentiation in vitro and demonstrated high SFTA3 expression in the human MGE. Although SFTA3 has been well studied in the lung, the possible role of this surfactant protein in the MGE during embryonic development remains unexamined. To determine if SFTA3 plays a role in MGE specification, SFTA3-/- and NKX2.1 -/- hESC lines were generated using custom designed CRISPRs. We show that NKX2.1 KOs have a significantly diminished capacity to differentiate into MGE interneuron subtypes. SFTA3 KOs also demonstrated a somewhat reduced ability to differentiate down the MGE-like lineage, although not as severe relative to NKX2.1 deficiency. These results suggest NKX2.1 and SFTA3 are co-regulated genes, and that deletion of SFTA3 does not lead to a major change in the specification of MGE derivatives.
Collapse
Affiliation(s)
- Christopher Y. Chen
- Department of Biology, Wesleyan University, Middletown, Connecticut, United States of America
| | - Nickesha C. Anderson
- Department of Biology, Wesleyan University, Middletown, Connecticut, United States of America
| | - Sandy Becker
- Department of Biology, Wesleyan University, Middletown, Connecticut, United States of America
| | - Martin Schicht
- Institute of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christopher Stoddard
- Genome Sciences, University of Connecticut Health, Farmington, Connecticut, United States of America
| | - Lars Bräuer
- Institute of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Laura Grabel
- Department of Biology, Wesleyan University, Middletown, Connecticut, United States of America
| |
Collapse
|
6
|
CTCF Governs the Identity and Migration of MGE-Derived Cortical Interneurons. J Neurosci 2018; 39:177-192. [PMID: 30377227 DOI: 10.1523/jneurosci.3496-17.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 12/13/2022] Open
Abstract
The CCCTC-binding factor (CTCF) is a central regulator of chromatin topology recently linked to neurodevelopmental disorders such as intellectual disability, autism, and schizophrenia. The aim of this study was to identify novel roles of CTCF in the developing mouse brain. We provide evidence that CTCF is required for the expression of the LIM homeodomain factor LHX6 involved in fate determination of cortical interneurons (CINs) that originate in the medial ganglionic eminence (MGE). Conditional Ctcf ablation in the MGE of mice of either sex leads to delayed tangential migration, abnormal distribution of CIN in the neocortex, a marked reduction of CINs expressing parvalbumin and somatostatin (Sst), and an increased number of MGE-derived cells expressing Lhx8 and other markers of basal forebrain projection neurons. Likewise, Ctcf-null MGE cells transplanted into the cortex of wild-type hosts generate fewer Sst-expressing CINs and exhibit lamination defects that are efficiently rescued upon reexpression of LHX6. Collectively, these data indicate that CTCF regulates the dichotomy between Lhx6 and Lhx8 to achieve correct specification and migration of MGE-derived CINs.SIGNIFICANCE STATEMENT This work provides evidence that CCCTC-binding factor (CTCF) controls an early fate decision point in the generation of cortical interneurons mediated at least in part by Lhx6. Importantly, the abnormalities described could reflect early molecular and cellular events that contribute to human neurological disorders previously linked to CTCF, including schizophrenia, autism, and intellectual disability.
Collapse
|