1
|
Johnson LM, Pulskamp TG, Berlau DJ. The latest developments in synthetic approaches to Duchenne muscular dystrophy. Expert Rev Neurother 2025:1-11. [PMID: 39899275 DOI: 10.1080/14737175.2025.2462281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a rare X-linked genetic disorder caused by mutations in the dystrophin gene, leading to an almost complete absence of dystrophin, which is essential for muscle cell structure and function. This resulting muscle deterioration and fibrosis, eventually causes respiratory failure and cardiomyopathy. While there is currently no cure, existing therapies aim to prolong survival and alleviate symptoms. AREAS COVERED This paper reviews current and emerging therapies for DMD, focusing on their safety and efficacy. Although corticosteroids remain the standard treatment, newly approved drugs such as exon-skipping therapies, vamorolone, delandistrogene moxeparvovec, and givinostat provide new treatment options. Additionally, future therapies, including gene therapy, stem cell treatments, and anti-fibrotic agents, show promise for clinical application. EXPERT OPINION Advancements in DMD treatments have expanded patient options. While gene therapy offers potential for correcting the genetic defect and alleviating symptoms, corticosteroids remain the most cost-effective and well-researched treatment. This is partly due to the lack of compelling long-term safety and efficacy data for gene therapies. The accelerated FDA review process has enabled faster approval of new medications; however many have provided minimal clinical benefit to patients. Despite these challenges, continued drug development and innovative research offer hope to patients.
Collapse
Affiliation(s)
- Lucy M Johnson
- Department of Pharmaceutical Sciences, Regis University School of Pharmacy, Denver, CO, USA
| | - Tariq G Pulskamp
- Department of Pharmaceutical Sciences, Regis University School of Pharmacy, Denver, CO, USA
| | - Daniel J Berlau
- Department of Pharmaceutical Sciences, Regis University School of Pharmacy, Denver, CO, USA
| |
Collapse
|
2
|
Siemionow M, Bocian K, Bozyk KT, Ziemiecka A, Siemionow K. Chimeric Cell Therapy Transfers Healthy Donor Mitochondria in Duchenne Muscular Dystrophy. Stem Cell Rev Rep 2024; 20:1819-1829. [PMID: 39017908 PMCID: PMC11445288 DOI: 10.1007/s12015-024-10756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2024] [Indexed: 07/18/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a severe X-linked disorder characterized by dystrophin gene mutations and mitochondrial dysfunction, leading to progressive muscle weakness and premature death of DMD patients. We developed human Dystrophin Expressing Chimeric (DEC) cells, created by the fusion of myoblasts from normal donors and DMD patients, as a foundation for DT-DEC01 therapy for DMD. Our preclinical studies on mdx mouse models of DMD revealed enhanced dystrophin expression and functional improvements in cardiac, respiratory, and skeletal muscles after systemic intraosseous DEC administration. The current study explored the feasibility of mitochondrial transfer and fusion within the created DEC cells, which is crucial for developing new therapeutic strategies for DMD. Following mitochondrial staining with MitoTracker Deep Red and MitoTracker Green dyes, mitochondrial fusion and transfer was assessed by Flow cytometry (FACS) and confocal microscopy. The PEG-mediated fusion of myoblasts from normal healthy donors (MBN/MBN) and normal and DMD-affected donors (MBN/MBDMD), confirmed the feasibility of myoblast and mitochondrial fusion and transfer. The colocalization of the mitochondrial dyes MitoTracker Deep Red and MitoTracker Green confirmed the mitochondrial chimeric state and the creation of chimeric mitochondria, as well as the transfer of healthy donor mitochondria within the created DEC cells. These findings are unique and significant, introducing the potential of DT-DEC01 therapy to restore mitochondrial function in DMD patients and in other diseases where mitochondrial dysfunction plays a critical role.
Collapse
Affiliation(s)
- Maria Siemionow
- Chair and Department of Traumatology, Orthopedics and Surgery of the Hand, Poznan University of Medical Sciences, Poznan, 61‑545, Poland.
- Dystrogen Therapeutics Technology Polska z o.o., Warsaw, 00-777, Poland.
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Katarzyna Bocian
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, 02-096, Poland
- Polish Stem Cell Bank, FamiCord Group, Warsaw, 00-867, Poland
| | - Katarzyna T Bozyk
- Dystrogen Therapeutics Technology Polska z o.o., Warsaw, 00-777, Poland
| | - Anna Ziemiecka
- Dystrogen Therapeutics Technology Polska z o.o., Warsaw, 00-777, Poland
| | - Krzysztof Siemionow
- Dystrogen Therapeutics Technology Polska z o.o., Warsaw, 00-777, Poland
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
3
|
Budzynska K, Siemionow M, Stawarz K, Chambily L, Siemionow K. Chimeric Cell Therapies as a Novel Approach for Duchenne Muscular Dystrophy (DMD) and Muscle Regeneration. Biomolecules 2024; 14:575. [PMID: 38785982 PMCID: PMC11117592 DOI: 10.3390/biom14050575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Chimerism-based strategies represent a pioneering concept which has led to groundbreaking advancements in regenerative medicine and transplantation. This new approach offers therapeutic potential for the treatment of various diseases, including inherited disorders. The ongoing studies on chimeric cells prompted the development of Dystrophin-Expressing Chimeric (DEC) cells which were introduced as a potential therapy for Duchenne Muscular Dystrophy (DMD). DMD is a genetic condition that leads to premature death in adolescent boys and remains incurable with current methods. DEC therapy, created via the fusion of human myoblasts derived from normal and DMD-affected donors, has proven to be safe and efficacious when tested in experimental models of DMD after systemic-intraosseous administration. These studies confirmed increased dystrophin expression, which correlated with functional and morphological improvements in DMD-affected muscles, including cardiac, respiratory, and skeletal muscles. Furthermore, the application of DEC therapy in a clinical study confirmed its long-term safety and efficacy in DMD patients. This review summarizes the development of chimeric cell technology tested in preclinical models and clinical studies, highlighting the potential of DEC therapy in muscle regeneration and repair, and introduces chimeric cell-based therapies as a promising, novel approach for muscle regeneration and the treatment of DMD and other neuromuscular disorders.
Collapse
Affiliation(s)
- Katarzyna Budzynska
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| | - Maria Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
- Chair and Department of Traumatology, Orthopaedics, and Surgery of the Hand, Poznan University of Medical Sciences, 61-545 Poznan, Poland
| | - Katarzyna Stawarz
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| | - Lucile Chambily
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| | - Krzysztof Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| |
Collapse
|
4
|
Niezgoda A, Biegański G, Wachowiak J, Czarnota J, Siemionow K, Heydemann A, Ziemiecka A, Sikorska MH, Bożyk K, Siemionow M. Assessment of Motor Unit Potentials Duration as the Biomarker of DT-DEC01 Cell Therapy Efficacy in Duchenne Muscular Dystrophy Patients up to 12 Months After Systemic-Intraosseous Administration. Arch Immunol Ther Exp (Warsz) 2023; 71:24. [PMID: 37999748 PMCID: PMC10673998 DOI: 10.1007/s00005-023-00691-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked disease caused by mutations in the dystrophin gene, leading to muscle degeneration and wasting. Electromyography (EMG) is an objective electrophysiological biomarker of muscle fiber function in muscular dystrophies. A novel, DT-DEC01 therapy, consisting of Dystrophin Expressing Chimeric (DEC) cells created by fusing allogeneic myoblasts from normal donors with autologous myoblasts from DMD-affected patients, was assessed for safety and preliminary efficacy in boys of age 6-15 years old (n = 3). Assessments included EMG testing of selected muscles of upper (deltoideus, biceps brachii) and lower (rectus femoris and gastrocnemius) extremities at the screening visit and at 3, 6, and 12 months following systemic-intraosseous administration of a single low dose of DT-DEC01 therapy (Bioethics Committee approval no. 46/2019). No immunosuppression was administered. Safety of DT-DEC01 was confirmed by the lack of therapy-related Adverse Events or Serious Adverse Events up to 22 months following DT-DEC01 administration. EMG of selected muscles of both, ambulatory and non-ambulatory patients confirmed preliminary efficacy of DT-DEC01 therapy by an increase in motor unit potentials (MUP) duration, amplitudes, and polyphasic MUPs at 12 months. This study confirmed EMG as a reliable and objective biomarker of functional assessment in DMD patients after intraosseous administration of the novel DT-DEC01 therapy.
Collapse
Affiliation(s)
- Adam Niezgoda
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Grzegorz Biegański
- Department of Infectious Diseases and Child Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jacek Wachowiak
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Krzysztof Siemionow
- Dystrogen Therapeutics Corp., Chicago, IL, USA
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA
| | - Ahlke Heydemann
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | | - Maria Siemionow
- Dystrogen Therapeutics Corp., Chicago, IL, USA.
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA.
- Chair and Department of Traumatology, Orthopedics and Surgery of the Hand, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
5
|
Siemionow M, Biegański G, Niezgoda A, Wachowiak J, Czarnota J, Siemionow K, Ziemiecka A, Sikorska MH, Bożyk K, Heydemann A. Safety and Efficacy of DT-DEC01 Therapy in Duchenne Muscular Dystrophy Patients: A 12 - Month Follow-Up Study After Systemic Intraosseous Administration. Stem Cell Rev Rep 2023; 19:2724-2740. [PMID: 37707670 PMCID: PMC10661797 DOI: 10.1007/s12015-023-10620-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/15/2023]
Abstract
Duchenne Muscular Dystrophy (DMD) is a progressive and fatal muscle-wasting disease with no known cure. We previously reported the preliminary safety and efficacy up to six months after the administration of DT-DEC01, a novel Dystrophin Expressing Chimeric (DEC) cell therapy created by fusion of myoblasts of DMD patient and the normal donor. In this 12-month follow-up study, we report on the safety and functional outcomes of three DMD patients after the systemic intraosseous administration of DT-DEC01. The safety of DT-DEC01 was confirmed by the absence of Adverse Events (AE) and Severe Adverse Events (SAE) up to 21 months after intraosseous DT-DEC01 administration. The lack of presence of anti-HLA antibodies and Donors Specific Antibodies (DSA) further confirmed DT-DEC01 therapy safety. Functional assessments in ambulatory patients revealed improvements in 6-Minute Walk Test (6MWT) and timed functions of North Star Ambulatory Assessment (NSAA). Additionally, improvements in PUL2.0 test and grip strength correlated with increased Motor Unit Potentials (MUP) duration recorded by Electromyography (EMG) in both ambulatory and non-ambulatory patients. DT-DEC01 systemic effect was confirmed by improved cardiac and pulmonary parameters and daily activity recordings. This follow-up study confirmed the safety and preliminary efficacy of DT-DEC01 therapy in DMD-affected patients up to 12 months after intraosseous administration. DT-DEC01 introduces a novel concept of personalized myoblast-based cellular therapy that is irrespective of the mutation type, does not require immunosuppression or the use of viral vectors, and carries no risk of off target mutations. This establishes DT-DEC01 as a promising and universally effective treatment option for all DMD patients.
Collapse
Affiliation(s)
- Maria Siemionow
- Chair and Department of Traumatology, Orthopedics and Surgery of the Hand, Poznan University of Medical Sciences, 61‑545, Poznan, Poland.
- Dystrogen Therapeutics Corp., Chicago, IL, 60609, USA.
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Grzegorz Biegański
- Department of Infectious Diseases and Child Neurology, Poznan University of Medical Sciences, 60‑572, Poznan, Poland
| | - Adam Niezgoda
- Department of Neurology, Poznan University of Medical Sciences, 60-355, Poznan, Poland
| | - Jacek Wachowiak
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, 60-572, Poznan, Poland
| | | | - Krzysztof Siemionow
- Dystrogen Therapeutics Corp., Chicago, IL, 60609, USA
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | | | | | | | - Ahlke Heydemann
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
6
|
Heydemann A, Bieganski G, Wachowiak J, Czarnota J, Niezgoda A, Siemionow K, Ziemiecka A, Sikorska MH, Bozyk K, Tullius SG, Siemionow M. Dystrophin Expressing Chimeric (DEC) Cell Therapy for Duchenne Muscular Dystrophy: A First-in-Human Study with Minimum 6 Months Follow-up. Stem Cell Rev Rep 2023:10.1007/s12015-023-10530-4. [PMID: 37000376 PMCID: PMC10366026 DOI: 10.1007/s12015-023-10530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 04/01/2023]
Abstract
Duchenne Muscular Dystrophy (DMD) is a X-linked progressive lethal muscle wasting disease for which there is no cure. We present first-in-human study assessing safety and efficacy of novel Dystrophin Expressing Chimeric (DEC) cell therapy created by fusion of patient myoblasts with myoblasts of normal donor origin. We report here on safety and functional outcomes of the first 3 DMD patients. No study related adverse events (AE) and no serious adverse events (SAE) were observed up to 14 months after systemic-intraosseous administration of DEC01. Ambulatory patients showed improvements in functional tests (6-Minute Walk Test (6MWT), North Star Ambulatory Assessment (NSAA)) and both, ambulatory and non-ambulatory in PUL, strength and fatigue resistance which correlated with improvement of Electromyography (EMG) parameters. DEC01 therapy does not require immunosuppression, involves no risks of off target mutations, is not dependent upon the causative mutation and is therefore a universal therapy that does not use viral vectors and therefore can be readministered, if needed. This study was approved by the Bioethics Committee (approval No. 46/2019). Mechanism of action of the Dystrophin Expressing Chimeric Cell (DEC) cells created via ex vivo fusion of human myoblast from normal and DMD-affected donors. Following systemic-intraosseous administration, DEC engraft and fuse with the myoblasts of DMD patients, deliver dystrophin and improve muscle strength and function. (Created with BioRender.com).
Collapse
Affiliation(s)
- Ahlke Heydemann
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Grzegorz Bieganski
- Department of Infectious Diseases and Child Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jacek Wachowiak
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Adam Niezgoda
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Krzysztof Siemionow
- Dystrogen Therapeutics Corp., Chicago, IL, USA
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | | - Stefan G Tullius
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Siemionow
- Dystrogen Therapeutics Corp., Chicago, IL, USA.
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Traumatology Orthopedics and Hand Surgery, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
7
|
Heydemann A, Siemionow M. A Brief Review of Duchenne Muscular Dystrophy Treatment Options, with an Emphasis on Two Novel Strategies. Biomedicines 2023; 11:biomedicines11030830. [PMID: 36979809 PMCID: PMC10044847 DOI: 10.3390/biomedicines11030830] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Despite the full cloning of the Dystrophin cDNA 35 years ago, no effective treatment exists for the Duchenne Muscular Dystrophy (DMD) patients who have a mutation in this gene. Many treatment options have been considered, investigated preclinically and some clinically, but none have circumvented all barriers and effectively treated the disease without burdening the patients with severe side-effects. However, currently, many novel therapies are in the pipelines of research labs and pharmaceutical companies and many of these have progressed to clinical trials. A brief review of these promising therapies is presented, followed by a description of two novel technologies that when utilized together effectively treat the disease in the mdx mouse model. One novel technology is to generate chimeric cells from the patient’s own cells and a normal donor. The other technology is to systemically transplant these cells into the femur via the intraosseous route.
Collapse
Affiliation(s)
- Ahlke Heydemann
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60607, USA
- Correspondence:
| | - Maria Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
8
|
Kihara Y, Tanaka Y, Ikeda M, Homma J, Takagi R, Ishigaki K, Yamanouchi K, Honda H, Nagata S, Yamato M. In utero transplantation of myoblasts and adipose-derived mesenchymal stem cells to murine models of Duchenne muscular dystrophy does not lead to engraftment and frequently results in fetal death. Regen Ther 2022; 21:486-493. [PMID: 36313392 PMCID: PMC9596598 DOI: 10.1016/j.reth.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022] Open
Abstract
Introduction Duchenne muscular dystrophy (DMD) is a progressive disease that leads to damage of muscle and myocardium due to genetic abnormalities in the dystrophin gene. In utero cell transplantation that might facilitate allogenic transplantation is worth considering to treat this disease. Methods We performed allogeneic in utero transplantation of GFP-positive myoblasts and adipose-derived mesenchymal stem cells into murine DMD model animals. The transplantation route in this study was fetal intraperitoneal transplantation and transplacental transplantation. Transplanted animals were examined at 4-weeks old by immunofluorescence staining and RT-qPCR. Results No GFP-positive cells were found by immunofluorescence staining of skeletal muscle and no GFP mRNA was detected by RT-qPCR in any animal, transplantation method and cell type. Compared with previous reports, myoblast transplantation exhibited an equivalent mortality rate, but adipose-derived stem cell (ASC) transplantation produced a higher mortality rate. Conclusions In utero transplantation of myoblasts or ASCs to murine models of DMD does not lead to engraftment and, in ASC transplantation primarily, frequently results in fetal death.
Collapse
Affiliation(s)
- Yuki Kihara
- Department of Pediatrics, Tokyo Women’s Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan,Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Yukie Tanaka
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Masanari Ikeda
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Jun Homma
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Ryo Takagi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Keiko Ishigaki
- Department of Pediatrics, Tokyo Women’s Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Hiroaki Honda
- Human Disease Models, Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Satoru Nagata
- Department of Pediatrics, Tokyo Women’s Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan,Corresponding author. Fax: +81 3-3359-6046.
| |
Collapse
|
9
|
Long-Term Biodistribution and Safety of Human Dystrophin Expressing Chimeric Cell Therapy After Systemic-Intraosseous Administration to Duchenne Muscular Dystrophy Model. Arch Immunol Ther Exp (Warsz) 2022; 70:20. [PMID: 35978142 PMCID: PMC9385806 DOI: 10.1007/s00005-022-00656-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/04/2022] [Indexed: 11/02/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal disease caused by X-linked mutations in the dystrophin gene. Dystrophin deficiency results in progressive degeneration of cardiac, respiratory and skeletal muscles leading to premature death due to cardiopulmonary complications. Currently, no cure exists for DMD. Based on our previous reports confirming a protective effect of human dystrophin expressing chimeric (DEC) cell therapy on cardiac, respiratory, and skeletal muscle function after intraosseous administration, now we assessed long-term safety and biodistribution of human DEC therapy for potential clinical applications in DMD patients. Safety of different DEC doses (1 × 106 and 5 × 106) was assessed at 180 days after systemic-intraosseous administration to mdx/scid mice, a model of DMD. Assessments included: single cell gel electrophoresis assay (COMET assay) to confirm lack of genetic toxicology, magnetic resonance imaging (MRI) for tumorigenicity, and body, muscle and organ weights. Human DEC biodistribution to the target (heart, diaphragm, gastrocnemius muscle) and non-target (blood, bone marrow, lung, liver, spleen) organs was detected by flow cytometry assessment of HLA-ABC markers. Human origin of dystrophin was verified by co-localization of dystrophin and human spectrin by immunofluorescence. No complications were observed after intraosseous transplant of human DEC. COMET assay of donors and fused DEC cells confirmed lack of DNA damage. Biodistribution analysis of HLA-ABC expression revealed dose-dependent presence of human DEC cells in target organs, whereas negligible presence was detected in non-target organs. Human origin of dystrophin in the heart, diaphragm and gastrocnemius muscle was confirmed by co-localization of dystrophin expression with human spectrin. MRI revealed no evidence of tumor formation. Body mass and muscle and organ weights were stable and comparable to vehicle controls, further confirming DEC safety at 180 days post- transplant. This preclinical study confirmed long-term local and systemic safety of human DEC therapy at 180 days after intraosseous administration. Thus, DEC can be considered as a novel myoblast based advanced therapy medicinal product for DMD patients.
Collapse
|
10
|
Long-Term Protective Effect of Human Dystrophin Expressing Chimeric (DEC) Cell Therapy on Amelioration of Function of Cardiac, Respiratory and Skeletal Muscles in Duchenne Muscular Dystrophy. Stem Cell Rev Rep 2022; 18:2872-2892. [PMID: 35590083 PMCID: PMC9622520 DOI: 10.1007/s12015-022-10384-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is a lethal disease caused by mutations in dystrophin encoding gene, causing progressive degeneration of cardiac, respiratory, and skeletal muscles leading to premature death due to cardiac and respiratory failure. Currently, there is no cure for DMD. Therefore, novel therapeutic approaches are needed for DMD patients. We have previously reported functional improvements which correlated with increased dystrophin expression following administration of dystrophin expressing chimeric (DEC) cells of myoblast origin to the mdx mouse models of DMD. In the current study, we confirmed dose-dependent protective effect of human DEC therapy created from myoblasts of normal and DMD-affected donors, on restoration of dystrophin expression and amelioration of cardiac, respiratory, and skeletal muscle function at 180 days after systemic-intraosseous DEC administration to mdx/scid mouse model of DMD. Functional improvements included maintenance of ejection fraction and fractional shortening levels on echocardiography, reduced enhanced pause and expiration time on plethysmography and improved grip strength and maximum stretch induced contraction of skeletal muscles. Improved function was associated with amelioration of mdx muscle pathology revealed by reduced muscle fibrosis, reduced inflammation and improved muscle morphology confirmed by reduced number of centrally nucleated fibers and normalization of muscle fiber diameters. Our findings confirm the long-term systemic effect of DEC therapy in the most severely affected by DMD organs including heart, diaphragm, and long skeletal muscles. These encouraging preclinical data introduces human DEC as a novel therapeutic modality of Advanced Therapy Medicinal Product (ATMP) with the potential to improve or halt the progression of DMD and enhance quality of life of DMD patients.
Collapse
|
11
|
Anderson JE. Key concepts in muscle regeneration: muscle "cellular ecology" integrates a gestalt of cellular cross-talk, motility, and activity to remodel structure and restore function. Eur J Appl Physiol 2022; 122:273-300. [PMID: 34928395 PMCID: PMC8685813 DOI: 10.1007/s00421-021-04865-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022]
Abstract
This review identifies some key concepts of muscle regeneration, viewed from perspectives of classical and modern research. Early insights noted the pattern and sequence of regeneration across species was similar, regardless of the type of injury, and differed from epimorphic limb regeneration. While potential benefits of exercise for tissue repair was debated, regeneration was not presumed to deliver functional restoration, especially after ischemia-reperfusion injury; muscle could develop fibrosis and ectopic bone and fat. Standard protocols and tools were identified as necessary for tracking injury and outcomes. Current concepts vastly extend early insights. Myogenic regeneration occurs within the environment of muscle tissue. Intercellular cross-talk generates an interactive system of cellular networks that with the extracellular matrix and local, regional, and systemic influences, forms the larger gestalt of the satellite cell niche. Regenerative potential and adaptive plasticity are overlain by epigenetically regionalized responsiveness and contributions by myogenic, endothelial, and fibroadipogenic progenitors and inflammatory and metabolic processes. Muscle architecture is a living portrait of functional regulatory hierarchies, while cellular dynamics, physical activity, and muscle-tendon-bone biomechanics arbitrate regeneration. The scope of ongoing research-from molecules and exosomes to morphology and physiology-reveals compelling new concepts in muscle regeneration that will guide future discoveries for use in application to fitness, rehabilitation, and disease prevention and treatment.
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
12
|
Siemionow M, Strojny MM, Kozlowska K, Brodowska S, Grau-Kazmierczak W, Cwykiel J. Application of Human Epineural Conduit Supported with Human Mesenchymal Stem Cells as a Novel Therapy for Enhancement of Nerve Gap Regeneration. Stem Cell Rev Rep 2021; 18:642-659. [PMID: 34787795 PMCID: PMC8930890 DOI: 10.1007/s12015-021-10301-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 12/18/2022]
Abstract
Various therapeutic methods have been suggested to enhance nerve regeneration. In this study, we propose a novel approach for enhancement of nerve gap regeneration by applying human epineural conduit (hEC) supported with human mesenchymal stem cells (hMSC), as an alternative to autograft repair. Restoration of 20 mm sciatic nerve defect with hEC created from human sciatic nerve supported with hMSC was tested in 4 experimental groups (n = 6 each) in the athymic nude rat model (Crl:NIH-Foxn1rnu): 1 - No repair control, 2 - Autograft control, 3 - Matched diameter hEC filled with 1 mL saline, 4 - Matched diameter hEC supported with 3 × 106 hMSC. Assessments included: functional tests: toe-spread and pinprick, regeneration assessment by immunofluorescence staining: HLA-1, HLA-DR, NGF, GFAP, Laminin B, S-100, VEGF, vWF and PKH26 labeling; histomorphometric analysis of myelin thickness, axonal density, fiber diameter and myelinated nerve fibers percentage; Gastrocnemius Muscle Index (GMI) and muscle fiber area ratio. Best sensory and motor function recovery, as well as GMI and muscle fiber area ratio, were observed in the autograft group, and were comparable to the hEC with hMSC group (p = 0.038). Significant improvements of myelin thickness (p = 0.003), fiber diameter (p = 0.0296), and percentage of myelinated fibers (p < 0.0001) were detected in hEC group supported with hMSC compared to hEC with saline controls. At 12-weeks after nerve gap repair, hEC combined with hMSC revealed increased expression of neurotrophic and proangiogenic factors, which corresponded with improvement of function comparable with the autograft control. Application of our novel hEC supported with hMSC provides a potential alternative to the autograft nerve repair.
Collapse
Affiliation(s)
- Maria Siemionow
- Poznan University of Medical Sciences, Poznan, Poland. .,Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA.
| | - Marcin Michal Strojny
- Poznan University of Medical Sciences, Poznan, Poland.,Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA
| | - Katarzyna Kozlowska
- Poznan University of Medical Sciences, Poznan, Poland.,Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA
| | - Sonia Brodowska
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Joanna Cwykiel
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
13
|
Świątkowska‐Flis B, Zdolińska‐Malinowska I, Sługocka D, Boruczkowski D. The use of umbilical cord-derived mesenchymal stem cells in patients with muscular dystrophies: Results from compassionate use in real-life settings. Stem Cells Transl Med 2021; 10:1372-1383. [PMID: 34313400 PMCID: PMC8459640 DOI: 10.1002/sctm.21-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/10/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
Muscular dystrophies are genetically determined progressive diseases with no cause-related treatment and limited supportive treatment. Although stem cells cannot resolve the underlying genetic conditions, their wide-ranging therapeutic properties may ameliorate the consequences of the involved mutations (oxidative stress, inflammation, mitochondrial dysfunction, necrosis). In this study, we administered advanced therapy medicinal product containing umbilical cord-derived mesenchymal stem cells (UC-MSCs) to 22 patients with muscular dystrophies. Patients received one to five intravenous and/or intrathecal injections per treatment course in up to two courses every 2 months. Four standard doses of 10, 20, 30, or 40 × 106 UC-MSCs per injection were used; the approximate dose per kilogram was 1 × 106 UC-MSCs. Muscle strength was measured with a set of CQ Dynamometer computerized force meters (CQ Elektronik System, Czernica, Poland). Statistical analysis of muscle strength in the whole group showed significant improvement in the right upper limb (+4.0 N); left hip straightening (+4.5 N) and adduction (+0.5 N); right hip straightening (+1.0 N), bending (+7.5 N), and adduction (+2.5 N); right knee straightening (+8.5 N); left shoulder revocation (+13.0 N), straightening (+5.5 N), and bending (+6.5 N); right shoulder adduction (+3.0 N), revocation (+10.5 N), and bending (+5 N); and right elbow straightening (+9.5 N); all these differences were statistically significant. In six patients (27.3%) these changes led to improvement in gait analysis or movement scale result. Only one patient experienced transient headache and lower back pain after the last administration. In conclusion, UC-MSC therapy may be considered as a therapeutic option for these patients.
Collapse
Affiliation(s)
- Beata Świątkowska‐Flis
- Polish Center of Cell Therapy and Immunotherapy in Częstochowa, CM KlaraCzęstochowaPoland
- Faculty of Health SciencesJan Długosz University of Humanities and Life SciencesCzęstochowaPoland
| | | | - Dominika Sługocka
- Polish Center of Cell Therapy and Immunotherapy in Częstochowa, CM KlaraCzęstochowaPoland
| | | |
Collapse
|
14
|
Atkinson SP. A Preview of Selected Articles. Stem Cells Transl Med 2021. [PMCID: PMC8459635 DOI: 10.1002/sctm.21-0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
15
|
Shen OYJ, Chen YF, Xu HT, Lee CW. The Efficacy of Naïve versus Modified Mesenchymal Stem Cells in Improving Muscle Function in Duchenne Muscular Dystrophy: A Systematic Review. Biomedicines 2021; 9:1097. [PMID: 34572283 PMCID: PMC8467288 DOI: 10.3390/biomedicines9091097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
As one of the most common genetic conditions, Duchenne muscular dystrophy (DMD) is a fatal disease caused by a recessive mutation resulting in muscle weakness in both voluntary and involuntary muscles and, eventually, in death because of cardiovascular failure. Currently, there is no pharmacologically curative treatment of DMD, but there is evidence supporting that mesenchymal stem cells (MSCs) are a novel solution for treating DMD. This systematic review focused on elucidating the therapeutic efficacy of MSCs on the DMD in vivo model. A key issue of previous studies was the material-choice, naïve MSCs or modified MSCs; modified MSCs are activated by culture methods or genetic modification. In summary, MSCs seem to improve pulmonary and cardiac functions and thereby improve survival regardless of them being naïve or modified. The improved function of distal skeletal muscles was observed only with primed MSCs treatment but not naïve MSCs. While MSCs can provide significant benefits to DMD mouse models, there is little to no data on the results in human patients. Due to the limited number of human studies, the differences in study design, and the insufficient understanding of mechanisms of action, more rigorous comparative trials are needed to elucidate which types of MSCs and modifications have optimal therapeutic potential.
Collapse
Affiliation(s)
- Oscar Yuan-Jie Shen
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Yi-Fan Chen
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Hong-Tao Xu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Chien-Wei Lee
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
16
|
Siemionow M, Langa P, Harasymczuk M, Cwykiel J, Sielewicz M, Smieszek J, Heydemann A. Human dystrophin expressing chimeric (DEC) cell therapy ameliorates cardiac, respiratory, and skeletal muscle's function in Duchenne muscular dystrophy. Stem Cells Transl Med 2021; 10:1406-1418. [PMID: 34291884 PMCID: PMC8459641 DOI: 10.1002/sctm.21-0054] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/11/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive and lethal disease, caused by X‐linked mutations of the dystrophin encoding gene. The lack of dystrophin leads to muscle weakness, degeneration, fibrosis, and progressive loss of skeletal, cardiac, and respiratory muscle function resulting in premature death due to the cardiac and respiratory failure. There is no cure for DMD and current therapies neither cure nor arrest disease progression. Thus, there is an urgent need to develop new approaches and safer therapies for DMD patients. We have previously reported functional improvements which correlated with increased dystrophin expression following transplantation of dystrophin expressing chimeric (DEC) cells of myoblast origin to the mdx mouse models of DMD. In this study, we demonstrated that systemic‐intraosseous transplantation of DEC human cells derived from myoblasts of normal and DMD‐affected donors, increased dystrophin expression in cardiac, respiratory, and skeletal muscles of the mdx/scid mouse model of DMD. DEC transplant correlated with preservation of ejection fraction and fractional shortening on echocardiography, improved respiratory function on plethysmography, and improved strength and function of the limb skeletal muscles. Enhanced function was associated with improved muscle histopathology, revealing reduced mdx pathology, fibrosis, decreased inflammation, and preserved muscle morphology and architecture. Our findings confirm that DECs generate a systemic protective effect in DMD‐affected target organs. Therefore, DECs represents a novel therapeutic approach with the potential to preserve or enhance multiorgan function of the skeletal, cardiac, and respiratory muscles critical for the well‐being of DMD patients.
Collapse
Affiliation(s)
- Maria Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Paulina Langa
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michal Harasymczuk
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Joanna Cwykiel
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Magdalena Sielewicz
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jaroslaw Smieszek
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ahlke Heydemann
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA.,Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
17
|
Jelinkova S, Sleiman Y, Fojtík P, Aimond F, Finan A, Hugon G, Scheuermann V, Beckerová D, Cazorla O, Vincenti M, Amedro P, Richard S, Jaros J, Dvorak P, Lacampagne A, Carnac G, Rotrekl V, Meli AC. Dystrophin Deficiency Causes Progressive Depletion of Cardiovascular Progenitor Cells in the Heart. Int J Mol Sci 2021; 22:ijms22095025. [PMID: 34068508 PMCID: PMC8125982 DOI: 10.3390/ijms22095025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating condition shortening the lifespan of young men. DMD patients suffer from age-related dilated cardiomyopathy (DCM) that leads to heart failure. Several molecular mechanisms leading to cardiomyocyte death in DMD have been described. However, the pathological progression of DMD-associated DCM remains unclear. In skeletal muscle, a dramatic decrease in stem cells, so-called satellite cells, has been shown in DMD patients. Whether similar dysfunction occurs with cardiac muscle cardiovascular progenitor cells (CVPCs) in DMD remains to be explored. We hypothesized that the number of CVPCs decreases in the dystrophin-deficient heart with age and disease state, contributing to DCM progression. We used the dystrophin-deficient mouse model (mdx) to investigate age-dependent CVPC properties. Using quantitative PCR, flow cytometry, speckle tracking echocardiography, and immunofluorescence, we revealed that young mdx mice exhibit elevated CVPCs. We observed a rapid age-related CVPC depletion, coinciding with the progressive onset of cardiac dysfunction. Moreover, mdx CVPCs displayed increased DNA damage, suggesting impaired cardiac muscle homeostasis. Overall, our results identify the early recruitment of CVPCs in dystrophic hearts and their fast depletion with ageing. This latter depletion may participate in the fibrosis development and the acceleration onset of the cardiomyopathy.
Collapse
MESH Headings
- Aging/genetics
- Aging/pathology
- Animals
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Cardiovascular System/metabolism
- Cardiovascular System/pathology
- DNA Damage/genetics
- Disease Models, Animal
- Dystrophin/deficiency
- Dystrophin/genetics
- Gene Expression Regulation/genetics
- Humans
- Mice
- Mice, Inbred mdx/genetics
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Proto-Oncogene Proteins c-kit/genetics
- Stem Cells/metabolism
- Stem Cells/pathology
Collapse
Affiliation(s)
- Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
| | - Yvonne Sleiman
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Petr Fojtík
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
| | - Franck Aimond
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Amanda Finan
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Gerald Hugon
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Valerie Scheuermann
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Deborah Beckerová
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
| | - Olivier Cazorla
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Marie Vincenti
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
- Pediatric and Adult Congenital Cardiology Department, M3C Regional Reference CHD Center, CHU Montpellier, 371 Avenue du Doyen Giraud, 34295 Montpellier, France
| | - Pascal Amedro
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
- Pediatric and Adult Congenital Cardiology Department, M3C Regional Reference CHD Center, CHU Montpellier, 371 Avenue du Doyen Giraud, 34295 Montpellier, France
| | - Sylvain Richard
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Josef Jaros
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5/A1, 62500 Brno, Czech Republic
| | - Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Gilles Carnac
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
- Correspondence: (V.R.); (A.C.M.); Tel.: +420-549-498-002 (V.R.); +33-4-67-41-52-44 (A.C.M.); Fax: +420-549-491-327 (V.R.); +33-4-67-41-52-42 (A.C.M.)
| | - Albano C. Meli
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
- Correspondence: (V.R.); (A.C.M.); Tel.: +420-549-498-002 (V.R.); +33-4-67-41-52-44 (A.C.M.); Fax: +420-549-491-327 (V.R.); +33-4-67-41-52-42 (A.C.M.)
| |
Collapse
|
18
|
Cwykiel J, Madajka-Niemeyer M, Siemionow M. Development of Donor Recipient Chimeric Cells of bone marrow origin as a novel approach for tolerance induction in transplantation. Stem Cell Investig 2021; 8:8. [PMID: 33969113 DOI: 10.21037/sci-2020-044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Background Cell therapies and chimerism-based strategies are currently the most successful approach for tolerance induction in transplantation. This study aimed to establish and characterize novel Donor Recipient Chimeric Ccell (DRCC) therapy of bone marrow (BM) origin presenting donor-recipient phenotype to support tolerance induction. Methods Ex vivo fusions of fully MHC-mismatched BM cells from ACI (RT1a) and Lewis (RT1l) rats were performed using polyethylene-glycol (PEG). The creation of rat DRCC was tested by flow cytometry (FC), confocal microscopy and PCR. FC characterized DRCC's phenotype (CD3, CD4, CD8, CD45, CD90, CD11b/c, CD45RA, OX-82, or CD4/CD25) and apoptosis, while mixed lymphocyte reaction assessed DRCC's immunogenicity and colony forming unit assay tested DRCC's differentiation and proliferation. DRCC's polyploidy was evaluated using Hoechst33342 staining and COMET assay tested genotoxicity of fusion procedure. ELISA analyzed the secretion of IL-2, IL-4, IL-10, TGFß1, IFNγ and TNFα by DRCC at day 1, 5 and 14 post-fusion. The DRCC's phenotype after long-term culturing was assessed by reverse-transcription PCR. Results The chimeric state of DRCC was confirmed. Fusion did not change the expression of hematopoietic markers compared to BM controls. Although an increased number of early and late apoptotic (Annexin V+/Sytox blue- and Annexin V+/Sytox blue+, respectively) DRCC was detected at 24h post-fusion, the number significantly decreased at day 5 (38.4%±3.1% and 22.6%±2.5%, vs. 28.3%±2.5% and 13.9%±2.6%, respectively, P<0.05). DRCC presented decreased immunogenicity, increased expression of IL-10 and TGFβ1 and proliferative potential comparable to BM controls. The average percentage of tetraploid DRCC was 3.1%±0.2% compared to 0.96%±0.1% in BM controls. The lack of damage to the DRCC's DNA content supported the DRCC's safety. In culture, DRCC maintained proliferation for up to 28 days while preserving hematopoietic profile. Conclusions This study confirmed feasibility of DRCC creation via ex vivo PEG mediated fusion. The created DRCC revealed pro-tolerogenic properties indicating potential immunomodulatory effect of DRCC therapy when applied in vivo to support tolerance induction in solid organ and vascularized composite allograft transplantation.
Collapse
Affiliation(s)
- Joanna Cwykiel
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA.,Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Maria Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA.,Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Surgery, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
19
|
Siemionow M, Szilagyi E, Cwykiel J, Domaszewska-Szostek A, Heydemann A, Garcia-Martinez J, Siemionow K. Transplantation of Dystrophin Expressing Chimeric Human Cells of Myoblast/Mesenchymal Stem Cell Origin Improves Function in Duchenne Muscular Dystrophy Model. Stem Cells Dev 2021; 30:190-202. [PMID: 33349121 DOI: 10.1089/scd.2020.0161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked disorder caused by mutations in dystrophin gene. Currently, there is no cure for DMD. Cell therapies are challenged by limited engraftment and rejection. Thus, more effective and safer therapeutic approaches are needed for DMD. We previously reported increased dystrophin expression correlating with improved function after transplantation of dystrophin expressing chimeric (DEC) cells of myoblast origin in the mdx mouse models of DMD. This study established new DEC cell line of myoblasts and mesenchymal stem cells (MSC) origin and tested its efficacy and therapeutic potential in mdx/scid mouse model of DMD. Fifteen ex vivo cell fusions of allogenic human myoblast [normal myoblasts (MBN)] and normal human bone marrow-derived MSC (MSCN) from normal donors were performed using polyethylene glycol. Flow cytometry, confocal microscopy, polymerase chain reaction (PCR)-short tandem repeats, polymerase chain reaction-reverse sequence-specific oligonucleotide probe assessed chimeric state of fused MBN/MSCN DEC cells, whereas Comet assay assessed fusion procedure safety testing genotoxicity. Immunofluorescence and real-time PCR assessed dystrophin expression and myogenic differentiation. Mixed lymphocyte reaction (MLR) evaluated DEC's immunogenicity. To test MBN/MSCN DEC efficacy in vivo, gastrocnemius muscle of mdx/scid mice were injected with vehicle (n = 12), nonfused MBN and MSCN (n = 9, 0.25 × 106/each) or MBN/MSCN DEC (n = 9, 0.5 × 106). Animals were evaluated for 90 days using ex vivo and in vivo muscle strength tests. Histology and immunofluorescence staining assessed dystrophin expression, centrally nucleated fibers and scar tissue formation. Post-fusion, MBN/MSCN DEC chimeric state, myogenic differentiation, and dystrophin expression were confirmed. MLR reveled reduced DEC's immune response compared with controls (P < 0.05). At 90 days post-DEC transplant, increase in dystrophin expression (20.26% ± 2.5%, P < 0.05) correlated with improved muscle strength and function in mdx/scid mice. The created human MBN/MSCN DEC cell line introduces novel therapeutic approach combining myogenic and immunomodulatory properties of MB and MSC, and as such may open a universal approach for muscle regeneration in DMD.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Fusion
- Cells, Cultured
- Disease Models, Animal
- Dystrophin/genetics
- Dystrophin/metabolism
- Gene Expression
- Humans
- Hybrid Cells/cytology
- Hybrid Cells/metabolism
- Hybrid Cells/transplantation
- Mesenchymal Stem Cells/cytology
- Mesenchymal Stem Cells/metabolism
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Mice, SCID
- Muscle, Skeletal/cytology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/physiopathology
- Muscular Dystrophy, Duchenne/therapy
- Myoblasts/cytology
- Myoblasts/metabolism
- Stem Cell Transplantation/methods
- Transplantation, Heterologous
- Mice
Collapse
Affiliation(s)
- Maria Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Erzsebet Szilagyi
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Joanna Cwykiel
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Anna Domaszewska-Szostek
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Human Epigenetics, Mossakowski Medical Research Center Polish Academy of Science, Warsaw, Poland
| | - Ahlke Heydemann
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jesus Garcia-Martinez
- Department of Clinical Health Sciences, Saint Louis University, Saint Louis, Missouri, USA
| | - Krzysztof Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|