1
|
Blandinières A, Rossi E, Gendron N, Rancic J, Rosa M, Dupont A, Idelcadi S, Philippe A, Poitier B, Bièche I, Vacher S, Cholley B, Gaussem P, Susen S, Smadja DM. Unveiling the Angiogenic Potential and Functional Decline of Valve Interstitial Cells During Calcific Aortic Valve Stenosis Progression. J Cell Mol Med 2025; 29:e70511. [PMID: 40159645 PMCID: PMC11955408 DOI: 10.1111/jcmm.70511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/27/2025] [Accepted: 03/14/2025] [Indexed: 04/02/2025] Open
Abstract
Valve interstitial cells (VICs) play a critical role in aortic valve calcification and angiogenic processes associated with calcific aortic valve stenosis (CAVS). Within the same valve, VICs from differently calcified regions can exhibit diverse phenotypic and functional properties. We hypothesised that VICs isolated from noncalcified (NC-VICs) and calcified (C-VICs) areas of human aortic valves possess distinct angiogenic characteristics. In this study, we isolated C-VICs and NC-VICs from 23 valves obtained after aortic valve replacement due to CAVS. Both VIC types exhibited similar phenotypes in culture, characterised by morphology, expression of mesenchymal/fibroblastic markers, proliferation and osteogenic differentiation. No significant differences were observed in the secretion of angiogenic factors, including VEGF-A, Ang-1, Ang-2, PlGF, bFGF between NC-VICs and C-VICs. However, when co-injected with endothelial colony-forming cells (ECFCs) into Matrigel implants in vivo in mice, implants containing NC-VICs showed significantly higher microvessel density compared to those with C-VICs (p < 0.001). Additionally, NC-VICs co-cultured with ECFCs expressed significantly higher levels of the perivascular markers αSMA and calponin compared to C-VICs (p < 0.001 and p < 0.05, respectively). In conclusion, our study reveals the heterogeneity in VIC plasticity within the aortic valve during CAVS. The diminished capacity of VICs from calcified areas to differentiate into perivascular cells suggests a loss of function as valve disease progresses. Furthermore, the ability of VICs to undergo perivascular differentiation may provide insights into valve homeostasis, angiogenesis and the exacerbation of calcification.
Collapse
Affiliation(s)
- Adeline Blandinières
- Université Paris CitéInnovative Therapies in Haemostasis, INSERMParisFrance
- AP‐HP, European Georges Pompidou HospitalHematology DepartmentParisFrance
| | - Elisa Rossi
- Université Paris CitéInnovative Therapies in Haemostasis, INSERMParisFrance
| | - Nicolas Gendron
- Université Paris CitéInnovative Therapies in Haemostasis, INSERMParisFrance
- AP‐HP, European Georges Pompidou HospitalHematology DepartmentParisFrance
| | - Jeanne Rancic
- Université Paris CitéInnovative Therapies in Haemostasis, INSERMParisFrance
| | - Mickael Rosa
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Annabelle Dupont
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Salim Idelcadi
- Université Paris CitéInnovative Therapies in Haemostasis, INSERMParisFrance
| | - Aurélien Philippe
- Université Paris CitéInnovative Therapies in Haemostasis, INSERMParisFrance
- AP‐HP, European Georges Pompidou HospitalHematology DepartmentParisFrance
| | - Bastien Poitier
- Université Paris CitéInnovative Therapies in Haemostasis, INSERMParisFrance
- AP‐HP, European Georges Pompidou HospitalCardiac Surgery DepartmentParisFrance
| | - Ivan Bièche
- Université Paris Cité and Pharmacogenomics Unit, Department of GeneticsParisFrance
| | - Sophie Vacher
- Université Paris Cité and Pharmacogenomics Unit, Department of GeneticsParisFrance
| | - Bernard Cholley
- Université Paris CitéInnovative Therapies in Haemostasis, INSERMParisFrance
- AP‐HP, European Georges Pompidou HospitalDepartment of Anesthesia and Intensive CareParisFrance
| | - Pascale Gaussem
- Université Paris CitéInnovative Therapies in Haemostasis, INSERMParisFrance
- AP‐HP, European Georges Pompidou HospitalHematology DepartmentParisFrance
| | - Sophie Susen
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - David M. Smadja
- Université Paris CitéInnovative Therapies in Haemostasis, INSERMParisFrance
- AP‐HP, European Georges Pompidou HospitalHematology DepartmentParisFrance
| |
Collapse
|
2
|
Watanabe M, Asawa Y, Riu D, Sakamoto T, Hoshi K, Hikita A. Identification of mesenchymal stem cell populations with high osteogenic potential using difference in cell division rate. Regen Ther 2025; 28:498-508. [PMID: 39991510 PMCID: PMC11846930 DOI: 10.1016/j.reth.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/13/2025] [Accepted: 01/25/2025] [Indexed: 02/25/2025] Open
Abstract
Introduction In bone regenerative medicine, mesenchymal stem cells (MSCs) have been widely investigated for their potential in bone regeneration. However, MSCs are a heterogeneous cell population containing a variety of cell types, making it difficult to obtain a homogeneous MSC population sufficient for tissue regeneration. Our group previously reported that by selecting rapidly dividing human auricular chondrocytes, it was possible to enrich for more chondrogenic cells. In this study, we aimed to identify a highly osteogenic MSC population by using a similar approach for mouse bone marrow MSCs. Methods Mouse bone marrow MSCs were fluorescently labeled with carboxyfluorescein succinimidyl ester (CFSE) and sorted according to the fluorescence intensity using flow cytometry on day 3 after labeling. To compare the ability to produce bone matrix in vitro, osteogenic differentiation cultures were performed and mineral deposition was confirmed by alizarin red staining. Real-time qPCR was also performed to examine the differences in gene expression between the fast- and slow-dividing cell groups immediately after aliquoting and after osteogenic differentiation. Results Differences in the growth rate of the fractionated cells were maintained after culture. Results of osteogenic differentiation culture and alizarin red staining showed more extensive mineral deposition in the slow cell group than in the fast cell group. Calcium quantification also showed higher absorbance in the slow cell group compared to the fast cell group, indicating higher osteogenic differentiation potential in the slow cell group. Furthermore, real-time qPCR analysis showed that osteocalcin expression was higher in the slow cell group in cells immediately after preparative differentiation. In addition, the expression of osteocalcin and sclerostin were higher in the slow cells after osteogenic differentiation. Conclusion The slow cell population contains many highly differentiated cells that are already more deeply committed to the bone lineage, suggesting that they have higher osteogenic differentiation potential than the fast cell population. This study will contribute to the realization of better bone regenerative medicine by utilizing the high osteogenic differentiation potential of the slow cell population.
Collapse
Affiliation(s)
- Maya Watanabe
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yukiyo Asawa
- Division of Tissue Engineering, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Dan Riu
- Division of Tissue Engineering, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tomoaki Sakamoto
- Division of Tissue Engineering, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kazuto Hoshi
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Division of Tissue Engineering, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Oral-maxillofacial Surgery, Dentistry and Orthodontics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Atsuhiko Hikita
- Division of Tissue Engineering, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
3
|
Smadja DM, Mauge L, Rancic J, Gaussem P, Feraud O, Oudrhiri N, Bennaceur-Griscelli A. Comparative Evaluation of Endothelial Colony-Forming Cells from Cord and Adult Blood vs. Human Embryonic Stem Cell-Derived Endothelial Cells: Insights into Therapeutic Angiogenesis Potential. Stem Cell Rev Rep 2025; 21:581-588. [PMID: 39612122 DOI: 10.1007/s12015-024-10830-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
The discovery of endothelial progenitor cells has revolutionized our understanding of postnatal blood vessel formation, with endothelial colony-forming cells (ECFCs) emerging as key players in vasculogenesis. Among various ECFC sources, cord blood-derived ECFCs (CB-ECFCs) are of particular interest due to their superior proliferative and clonogenic potential and their ability to promote vascular network formation. Human embryonic stem cell-derived endothelial cells (hESC-ECs) have also shown potential in regenerative medicine, though their vasculogenic efficacy remains unclear compared to CB- and adult blood-derived ECFCs (AB-ECFCs). This study aimed to directly compare the angiogenic and vasculogenic capabilities of CB-ECFCs, AB-ECFCs, and hESC-ECs in vitro and in vivo. Our results demonstrated that CB-ECFCs had a significantly higher proliferation rate than both AB-ECFCs and hESC-ECs (p < 0.01). In tube formation assays, CB-ECFCs exhibited superior ability to form capillary-like structures compared to hESC-ECs (p < 0.0001) and AB-ECFCs (p < 0.01). In vivo, CB-ECFCs significantly improved blood flow recovery in ischemic tissue (p < 0.01), outperforming both AB-ECFCs and hESC-ECs, with no significant recovery observed in the latter two groups. These findings suggest that CB-ECFCs represent a more effective cell source for therapeutic angiogenesis, while further optimization is needed to enhance the efficacy of hESC-ECs for clinical applications. Future research should explore the molecular mechanisms underlying the superior regenerative potential of CB-ECFCs and focus on improving the stability and functionality of stem cell-derived ECs for therapeutic use.
Collapse
Affiliation(s)
- David M Smadja
- Université Paris Cité, INSERM, Innovative Therapies in Hemostasis, Paris, F-75006, France.
- Hematology Department, AP-HP, Georges Pompidou European Hospital, Paris, F-75015, France.
| | - Laetitia Mauge
- Hematology Department, AP-HP, Georges Pompidou European Hospital, Paris, F-75015, France
- Université Paris Cité, INSERM, PARCC, Paris, F-75015, France
| | - Jeanne Rancic
- Université Paris Cité, INSERM, Innovative Therapies in Hemostasis, Paris, F-75006, France
- Hematology Department, AP-HP, Georges Pompidou European Hospital, Paris, F-75015, France
| | - Pascale Gaussem
- Université Paris Cité, INSERM, Innovative Therapies in Hemostasis, Paris, F-75006, France
- Hematology Department, AP-HP, Georges Pompidou European Hospital, Paris, F-75015, France
| | - Olivier Feraud
- INSERM U935/U1310 ESTeam Paris Sud Human Pluripotent Stem Cell Core Facility, Villejuif, France
| | - Noufissa Oudrhiri
- INSERM U935/U1310 ESTeam Paris Sud Human Pluripotent Stem Cell Core Facility, Villejuif, France
- CITHERA UMS45, Infrastructure-INGESTEM, INSERM, Université Paris-Saclay, Faculté de Médecine, Kremlin Bicêtre, France
- Hematology Department, AP-HP, Hôpital Universitaire Paris Sud-Kremlin Bicêtre, Kremlin-Bicêtre, France
| | - Annelise Bennaceur-Griscelli
- INSERM U935/U1310 ESTeam Paris Sud Human Pluripotent Stem Cell Core Facility, Villejuif, France.
- CITHERA UMS45, Infrastructure-INGESTEM, INSERM, Université Paris-Saclay, Faculté de Médecine, Kremlin Bicêtre, France.
- Hematology Department, AP-HP, Hôpital Universitaire Paris Sud-Kremlin Bicêtre, Kremlin-Bicêtre, France.
| |
Collapse
|
4
|
Yang H, Guo K, Ding P, Ning J, Zhang Y, Wang Y, Wang Z, Liu G, Shao C, Pan M, Ma Z, Yan X, Han J. Histone deacetylases: Regulation of vascular homeostasis via endothelial cells and vascular smooth muscle cells and the role in vascular pathogenesis. Genes Dis 2024; 11:101216. [PMID: 39281836 PMCID: PMC11396065 DOI: 10.1016/j.gendis.2024.101216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 09/18/2024] Open
Abstract
Histone deacetylases (HDACs) are proteases that play a key role in chromosome structural modification and gene expression regulation, and the involvement of HDACs in cancer, the nervous system, and the metabolic and immune system has been well reviewed. Our understanding of the function of HDACs in the vascular system has recently progressed, and a significant variety of HDAC inhibitors have been shown to be effective in the treatment of vascular diseases. However, few reviews have focused on the role of HDACs in the vascular system. In this study, the role of HDACs in the regulation of the vascular system mainly involving endothelial cells and vascular smooth muscle cells was discussed based on recent updates, and the role of HDACs in different vascular pathogenesis was summarized as well. Furthermore, the therapeutic effects and prospects of HDAC inhibitors were also addressed in this review.
Collapse
Affiliation(s)
- Hanyi Yang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
- Xi'an Medical University, Xi'an, Shaanxi 710086, China
| | - Kai Guo
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Jiayi Ning
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
- Xi'an Medical University, Xi'an, Shaanxi 710086, China
| | - Yimeng Zhang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
- Xi'an Medical University, Xi'an, Shaanxi 710086, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Guanglin Liu
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Minghong Pan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, Beijing 100853, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| |
Collapse
|
5
|
Guerra-Ojeda S, Suarez A, Belmonte B, Marchio P, Genovés P, Arias OJ, Aldasoro M, Vila JM, Serna E, Mauricio MD. Sodium valproate treatment reverses endothelial dysfunction in aorta from rabbits with acute myocardial infarction. Eur J Pharmacol 2024; 970:176475. [PMID: 38438061 DOI: 10.1016/j.ejphar.2024.176475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Sodium valproate (VPA), a histone deacetylase (HDAC) inhibitor, could be a promising candidate to treat acute myocardial infarction (AMI). In this study, AMI was induced in New Zealand White rabbits by occluding the left circumflex coronary artery for 1 h, followed by reperfusion. The animals were distributed into three experimental groups: the sham-operated group (SHAM), the AMI group and the AMI + VPA group (AMI treated with VPA 500 mg/kg/day). After 5 weeks, abdominal aorta was removed and used for isometric recording of tension in organ baths or protein expression by Western blot, and plasma for the determination of nitrate/nitrite (NOx) levels by colorimetric assay. Our results indicated that AMI induced a reduction of the endothelium-dependent response to acetylcholine without modifying the endothelium-independent response to sodium nitroprusside, leading to endothelial dysfunction. VPA treatment reversed AMI-induced endothelial dysfunction and even increased NO sensitivity in vascular smooth muscle. This response was consistent with an antioxidant effect of VPA, as it was able to reverse the superoxide dismutase 1 (SOD 1) down-regulation induced by AMI. Our experiments also ruled out that the VPA mechanism was related to eNOS, iNOS, sGC and arginase expression or changes in NOx plasma levels. Therefore, we conclude that VPA improves vasodilation by increasing NO bioavailability, likely due to its antioxidant effect. Since endothelial dysfunction was closely related to AMI, VPA treatment could increase aortic blood flow, making it a potential agent in reperfusion therapy that can prevent the vascular damage.
Collapse
Affiliation(s)
- Sol Guerra-Ojeda
- Department of Physiology. School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain
| | - Andrea Suarez
- Department of Physiology. School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain
| | - Begoña Belmonte
- Department of Physiology. School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain
| | - Patricia Marchio
- Department of Physiology. School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain
| | - Patricia Genovés
- Department of Physiology. School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain; Center for Biomedical Research Network on Cardiovascular Diseases (CIBER-CV), Madrid, Spain
| | - Oscar Julian Arias
- Department of Physiology. School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain; Center for Biomedical Research Network on Cardiovascular Diseases (CIBER-CV), Madrid, Spain; Department of Biomedical Sciences, CEU Cardenal Herrera, Valencia, Spain
| | - Martin Aldasoro
- Department of Physiology. School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain
| | - José M Vila
- Department of Physiology. School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain
| | - Eva Serna
- Department of Physiology. School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain
| | - Maria D Mauricio
- Department of Physiology. School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain.
| |
Collapse
|
6
|
Cras A, Larghero J, Rossi E, Blandinières A, Gaussem P, Smadja DM. Nestin is a New Partner in Endothelial Colony Forming Cell Angiogenic Potential. Stem Cell Rev Rep 2023; 19:2541-2550. [PMID: 37452965 DOI: 10.1007/s12015-023-10587-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Nestin, an intermediate filament protein expressed by progenitor cells, is associated with tissue regeneration. Although nestin expression has been reported in poorly differentiated and newly formed blood vessels, its role in endothelial cells remains unclear. In this study, we investigated the involvement of nestin in the angiogenic properties of endothelial colony-forming cells (ECFCs) derived from human umbilical cord blood. Our results demonstrate that ECFCs express high levels of nestin, and that its inhibition by small interfering RNAs decreased ECFC proliferation, migration in response to SDF-1 and VEGF-A, tubulogenesis, and adhesion on collagen. These effects are associated with modulation of focal adhesion kinase phosphorylation. Furthermore, nestin silencing resulted in reduced revascularization in a mouse hindlimb ischemia model. In conclusion, these findings provide evidence that nestin more than being a structural protein, is an active player in ECFC angiogenic properties.
Collapse
Affiliation(s)
- Audrey Cras
- Université de Paris Cité, INSERM, Innovative Therapies in Hemostasis, F-75006, Paris, France
- Cell therapy unit, AP-HP, Saint Louis Hospital, F-75010, Paris, France
| | - Jérôme Larghero
- Cell therapy unit, AP-HP, Saint Louis Hospital, F-75010, Paris, France
- Université de Paris Cité, INSERM, U976, CIC-BT, F-75010, Paris, France
| | - Elisa Rossi
- Université de Paris Cité, INSERM, Innovative Therapies in Hemostasis, F-75006, Paris, France
| | - Adeline Blandinières
- Université de Paris Cité, INSERM, Innovative Therapies in Hemostasis, F-75006, Paris, France
- Hematology department, AP-HP, Georges Pompidou European Hospital, F-75015, Paris, France
| | - Pascale Gaussem
- Université de Paris Cité, INSERM, Innovative Therapies in Hemostasis, F-75006, Paris, France
- Hematology department, AP-HP, Georges Pompidou European Hospital, F-75015, Paris, France
| | - David M Smadja
- Université de Paris Cité, INSERM, Innovative Therapies in Hemostasis, F-75006, Paris, France.
- Hematology department, AP-HP, Georges Pompidou European Hospital, F-75015, Paris, France.
- Inserm Innovative Therapies in Haemostasis, 56 rue Leblanc, F-75015, Paris, France.
| |
Collapse
|
7
|
Aries A, Zanetti C, Hénon P, Drénou B, Lahlil R. Deciphering the Cardiovascular Potential of Human CD34 + Stem Cells. Int J Mol Sci 2023; 24:ijms24119551. [PMID: 37298503 DOI: 10.3390/ijms24119551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/17/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Ex vivo monitored human CD34+ stem cells (SCs) injected into myocardium scar tissue have shown real benefits for the recovery of patients with myocardial infarctions. They have been used previously in clinical trials with hopeful results and are expected to be promising for cardiac regenerative medicine following severe acute myocardial infarctions. However, some debates on their potential efficacy in cardiac regenerative therapies remain to be clarified. To elucidate the levels of CD34+ SC implication and contribution in cardiac regeneration, better identification of the main regulators, pathways, and genes involved in their potential cardiovascular differentiation and paracrine secretion needs to be determined. We first developed a protocol thought to commit human CD34+ SCs purified from cord blood toward an early cardiovascular lineage. Then, by using a microarray-based approach, we followed their gene expression during differentiation. We compared the transcriptome of undifferentiated CD34+ cells to those induced at two stages of differentiation (i.e., day three and day fourteen), with human cardiomyocyte progenitor cells (CMPCs), as well as cardiomyocytes as controls. Interestingly, in the treated cells, we observed an increase in the expressions of the main regulators usually present in cardiovascular cells. We identified cell surface markers of the cardiac mesoderm, such as kinase insert domain receptor (KDR) and the cardiogenic surface receptor Frizzled 4 (FZD4), induced in the differentiated cells in comparison to undifferentiated CD34+ cells. The Wnt and TGF-β pathways appeared to be involved in this activation. This study underlined the real capacity of effectively stimulated CD34+ SCs to express cardiac markers and, once induced, allowed the identification of markers that are known to be involved in vascular and early cardiogenesis, demonstrating their potential priming towards cardiovascular cells. These findings could complement their paracrine positive effects known in cell therapy for heart disease and may help improve the efficacy and safety of using ex vivo expanded CD34+ SCs.
Collapse
Affiliation(s)
- Anne Aries
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d'Altkirch, 68100 Mulhouse, France
| | - Céline Zanetti
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d'Altkirch, 68100 Mulhouse, France
| | | | - Bernard Drénou
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d'Altkirch, 68100 Mulhouse, France
- Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, Hôpital E. Muller, 20 Avenue de Dr Laennec, 68100 Mulhouse, France
| | - Rachid Lahlil
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d'Altkirch, 68100 Mulhouse, France
| |
Collapse
|
8
|
Tripathi H, Domingues A, Donahue R, Cras A, Guerin CL, Gao E, Levitan B, Ratajczak MZ, Smadja DM, Abdel-Latif A, Tarhuni WM. Combined Transplantation of Human MSCs and ECFCs Improves Cardiac Function and Decrease Cardiomyocyte Apoptosis After Acute Myocardial Infarction. Stem Cell Rev Rep 2023; 19:573-577. [PMID: 36271311 DOI: 10.1007/s12015-022-10468-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ischemic heart disease, often caused by an acute myocardial infarction (AMI) is one of the leading causes of morbidity and mortality worldwide. Despite significant advances in medical and procedural therapies, millions of AMI patients progress to develop heart failure every year. METHODS Here, we examine the combination therapy of human mesenchymal stromal cells (MSCs) and endothelial colony-forming cells (ECFCs) to reduce the early ischemic damage (MSCs) and enhance angiogenesis (ECFCs) in a pre-clinical model of acute myocardial infarction. NOD/SCID mice were subjected to AMI followed by transplantation of MSCs and ECFCs either alone or in combination. Cardiomyocyte apoptosis and cardiac functional recovery were assessed in short- and long-term follow-up studies. RESULTS At 1 day after AMI, MSC- and ECFC-treated animals demonstrated significantly lower cardiomyocyte apoptosis compared to vehicle-treated animals. This phenomenon was associated with a significant reduction in infarct size, cardiac fibrosis, and improvement in functional cardiac recovery 4 weeks after AMI. CONCLUSIONS The use of ECFCs, MSCs, and the combination of both cell types reduce cardiomyocyte apoptosis, scar size, and adverse cardiac remodeling, compared to vehicle, in a pre-clinical model of AMI. These results support the use of this combined cell therapy approach in future human studies during the acute phase of ischemic cardiac injury.
Collapse
Affiliation(s)
- Himi Tripathi
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, USA
| | - Alison Domingues
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.,Université de Paris, INSERM, Innovative Therapies in Haemostasis, 75006, Paris, France
| | - Renee Donahue
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, USA
| | - Audrey Cras
- Université de Paris, INSERM, Innovative Therapies in Haemostasis, 75006, Paris, France.,Cell Therapy Department, AP-HP, Hôpital Saint Louis, 75010, Paris, France
| | - Coralie L Guerin
- Université de Paris, INSERM, Innovative Therapies in Haemostasis, 75006, Paris, France.,Curie Institute, Paris, France
| | - Erhe Gao
- The Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Bryana Levitan
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, USA
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - David M Smadja
- Université de Paris, INSERM, Innovative Therapies in Haemostasis, 75006, Paris, France.,Hematology Department and Biosurgical Research Lab (Carpentier Foundation), AP-HP, Hôpital Européen Georges Pompidou, 75015, Paris, France
| | - Ahmed Abdel-Latif
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, USA. .,Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA. .,Division of Cardiovascular Medicine, University of Michigan and the Ann Arbor VA Medical Center, Ann Arbor, MI, USA.
| | - Wadea M Tarhuni
- Canadian Cardiac Research Center, Department of Internal Medicine, Division of Cardiology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
9
|
Détriché G, Gendron N, Philippe A, Gruest M, Billoir P, Rossi E, Guerin CL, Lokajczyk A, Brabant S, Prié D, Mirault T, Smadja DM. Gonadotropins as novel active partners in vascular diseases: Insight from angiogenic properties and thrombotic potential of endothelial colony-forming cells. J Thromb Haemost 2022; 20:230-237. [PMID: 34623025 DOI: 10.1111/jth.15549] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/06/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND The impact of estrogen and testosterone on atherosclerotic cardiovascular disease is well known, but the role of the gonadotropins follicle-stimulating hormone (FSH), luteinizing hormone (LH), and prolactin (PRL) to some extent remain less studied. OBJECTIVES To explore the angiogenic potential of gonadotropins on endothelial colony-forming cells (ECFCs). METHODS We examined the effects of various doses of gonadotropins on ECFCs obtained from cord blood by assessing colony number, proliferation, migration, and sprouting ability. Moreover, we studied thrombin generation in ECFCs exposed to gonadotropins by performing a thrombin generation assay. Finally, we determined the levels of circulating gonadotropins in 30 men, to exclude the effect of estrogen, with lower extremity arterial disease (LEAD), in comparison with age- and sex-matched controls. RESULTS Exposure to FSH, LH, or PRL resulted in an increase in ECFC migration but showed no effect on proliferation or ECFC commitment from cord blood mononuclear cells. Using a three-dimensional fibrin gel assay, we showed that ECFC sprouting was significantly enhanced by gonadotropins. Exposure to FSH also increased the thrombin generation of ECFCs exposed to FSH. Finally, FSH and LH levels in men with LEAD were higher than those in controls. CONCLUSION Gonadotropins increase ECFC-related angiogenesis and may be involved in thrombin generation in cardiovascular disease. Gonadotropins may act as biomarkers; moreover, we hypothesize that gonadotropin-blocking strategies may be a novel interesting therapeutic approach in atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Grégoire Détriché
- INSERM, Innovative Therapies in Haemostasis, Université de Paris, Paris, France
- Biosurgical Research Lab (Carpentier Foundation), Vascular Medicine Department, Assistance Publique Hôpitaux de Paris, Centre-Université de Paris (APHP-CUP), Paris, France
| | - Nicolas Gendron
- INSERM, Innovative Therapies in Haemostasis, Université de Paris, Paris, France
- Biosurgical Research Lab (Carpentier Foundation), Hematology Department, Assistance Publique Hôpitaux de Paris, Centre-Université de Paris (APHP-CUP), Paris, France
| | - Aurélien Philippe
- INSERM, Innovative Therapies in Haemostasis, Université de Paris, Paris, France
- Biosurgical Research Lab (Carpentier Foundation), Hematology Department, Assistance Publique Hôpitaux de Paris, Centre-Université de Paris (APHP-CUP), Paris, France
| | - Maxime Gruest
- INSERM, Innovative Therapies in Haemostasis, Université de Paris, Paris, France
- Biosurgical Research Lab (Carpentier Foundation), Hematology Department, Assistance Publique Hôpitaux de Paris, Centre-Université de Paris (APHP-CUP), Paris, France
| | - Paul Billoir
- Vascular Hemostasis Unit, UNIROUEN, INSERM U1096, Rouen University Hospital, Normandie Univ, Rouen, France
| | - Elisa Rossi
- INSERM, Innovative Therapies in Haemostasis, Université de Paris, Paris, France
| | - Coralie L Guerin
- INSERM, Innovative Therapies in Haemostasis, Université de Paris, Paris, France
- Cytometry Platform, Institut Curie, Paris, France
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Anna Lokajczyk
- INSERM, Innovative Therapies in Haemostasis, Université de Paris, Paris, France
| | - Séverine Brabant
- AP-HP, Department of Functional Explorations, Necker Enfants Malades Hospital, Paris-Centre University, Paris Cedex, France
| | - Dominique Prié
- AP-HP, Department of Functional Explorations, Necker Enfants Malades Hospital, Paris-Centre University, Paris Cedex, France
| | - Tristan Mirault
- INSERM, Innovative Therapies in Haemostasis, Université de Paris, Paris, France
- Biosurgical Research Lab (Carpentier Foundation), Vascular Medicine Department, Assistance Publique Hôpitaux de Paris, Centre-Université de Paris (APHP-CUP), Paris, France
| | - David M Smadja
- INSERM, Innovative Therapies in Haemostasis, Université de Paris, Paris, France
- Biosurgical Research Lab (Carpentier Foundation), Hematology Department, Assistance Publique Hôpitaux de Paris, Centre-Université de Paris (APHP-CUP), Paris, France
| |
Collapse
|
10
|
Rossi E, Kauskot A, Saller F, Frezza E, Poirault-Chassac S, Lokajczyk A, Bourdoncle P, Saubaméa B, Gaussem P, Pericacho M, Bobe R, Bachelot-Loza C, Pasquali S, Bernabeu C, Smadja DM. Endoglin Is an Endothelial Housekeeper against Inflammation: Insight in ECFC-Related Permeability through LIMK/Cofilin Pathway. Int J Mol Sci 2021; 22:ijms22168837. [PMID: 34445542 PMCID: PMC8396367 DOI: 10.3390/ijms22168837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
Endoglin (Eng) is an endothelial cell (EC) transmembrane glycoprotein involved in adhesion and angiogenesis. Eng mutations result in vessel abnormalities as observed in hereditary hemorrhagic telangiectasia of type 1. The role of Eng was investigated in endothelial functions and permeability under inflammatory conditions, focusing on the actin dynamic signaling pathway. Endothelial Colony-Forming Cells (ECFC) from human cord blood and mouse lung/aortic EC (MLEC, MAEC) from Eng+/+ and Eng+/- mice were used. ECFC silenced for Eng with Eng-siRNA and ctr-siRNA were used to test tubulogenesis and permeability +/- TNFα and +/- LIM kinase inhibitors (LIMKi). In silico modeling of TNFα-Eng interactions was carried out from PDB IDs 5HZW and 5HZV. Calcium ions (Ca2+) flux was studied by Oregon Green 488 in epifluorescence microscopy. Levels of cofilin phosphorylation and tubulin post-translational modifications were evaluated by Western blot. F-actin and actin-tubulin distribution/co-localization were evaluated in cells by confocal microscopy. Eng silencing in ECFCs resulted in a decrease of cell sprouting by 50 ± 15% (p < 0.05) and an increase in pseudo-tube width (41 ± 4.5%; p < 0.001) compared to control. Upon TNFα stimulation, ECFC Eng-siRNA displayed a significant higher permeability compared to ctr-siRNA (p < 0.01), which is associated to a higher Ca2+ mobilization (p < 0.01). Computational analysis suggested that Eng mitigated TNFα activity. F-actin polymerization was significantly increased in ECFC Eng-siRNA, MAEC+/-, and MLEC+/- compared to controls (p < 0.001, p < 0.01, and p < 0.01, respectively) as well as actin/tubulin distribution (p < 0.01). Furthermore, the inactive form of cofilin (P-cofilin at Ser3) was significantly decreased by 36.7 ± 4.8% in ECFC Eng-siRNA compared to ctr-siRNA (p < 0.001). Interestingly, LIMKi reproduced the absence of Eng on TNFα-induced ECFC-increased permeability. Our data suggest that Eng plays a critical role in the homeostasis regulation of endothelial cells under inflammatory conditions (TNFα), and loss of Eng influences ECFC-related permeability through the LIMK/cofilin/actin rearrangement-signaling pathway.
Collapse
Affiliation(s)
- Elisa Rossi
- Faculty of Pharmacy, University of Paris, F-75006 Paris, France; (E.F.); (S.P.-C.); (A.L.); (B.S.); (P.G.); (C.B.-L.); (S.P.); (D.M.S.)
- IThEM, Inserm UMR-S 1140, F-75006 Paris, France
- Correspondence:
| | - Alexandre Kauskot
- HITh, UMR-S 1176, INSERM—Faculty of Medicine, University Paris-Saclay, F-94270 Le Kremlin-Bicêtre, France; (A.K.); (F.S.); (R.B.)
| | - François Saller
- HITh, UMR-S 1176, INSERM—Faculty of Medicine, University Paris-Saclay, F-94270 Le Kremlin-Bicêtre, France; (A.K.); (F.S.); (R.B.)
| | - Elisa Frezza
- Faculty of Pharmacy, University of Paris, F-75006 Paris, France; (E.F.); (S.P.-C.); (A.L.); (B.S.); (P.G.); (C.B.-L.); (S.P.); (D.M.S.)
- CiTCoM, CNRS, Université de Paris, F-75006 Paris, France
| | - Sonia Poirault-Chassac
- Faculty of Pharmacy, University of Paris, F-75006 Paris, France; (E.F.); (S.P.-C.); (A.L.); (B.S.); (P.G.); (C.B.-L.); (S.P.); (D.M.S.)
- IThEM, Inserm UMR-S 1140, F-75006 Paris, France
| | - Anna Lokajczyk
- Faculty of Pharmacy, University of Paris, F-75006 Paris, France; (E.F.); (S.P.-C.); (A.L.); (B.S.); (P.G.); (C.B.-L.); (S.P.); (D.M.S.)
- IThEM, Inserm UMR-S 1140, F-75006 Paris, France
| | - Pierre Bourdoncle
- Plate-Forme IMAG’IC Institut Cochin Inserm U1016-CNRS UMR8104, Université Paris Descartes, F-75006 Paris, France;
| | - Bruno Saubaméa
- Faculty of Pharmacy, University of Paris, F-75006 Paris, France; (E.F.); (S.P.-C.); (A.L.); (B.S.); (P.G.); (C.B.-L.); (S.P.); (D.M.S.)
- UMR-S 1144, F-75006 Paris, France
| | - Pascale Gaussem
- Faculty of Pharmacy, University of Paris, F-75006 Paris, France; (E.F.); (S.P.-C.); (A.L.); (B.S.); (P.G.); (C.B.-L.); (S.P.); (D.M.S.)
- IThEM, Inserm UMR-S 1140, F-75006 Paris, France
- AP-HP, Hematology Department, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Miguel Pericacho
- Department of Physiology and Pharmacology, Universidad de Salamanca, 37008 Salamanca, Spain;
| | - Regis Bobe
- HITh, UMR-S 1176, INSERM—Faculty of Medicine, University Paris-Saclay, F-94270 Le Kremlin-Bicêtre, France; (A.K.); (F.S.); (R.B.)
| | - Christilla Bachelot-Loza
- Faculty of Pharmacy, University of Paris, F-75006 Paris, France; (E.F.); (S.P.-C.); (A.L.); (B.S.); (P.G.); (C.B.-L.); (S.P.); (D.M.S.)
- IThEM, Inserm UMR-S 1140, F-75006 Paris, France
| | - Samuela Pasquali
- Faculty of Pharmacy, University of Paris, F-75006 Paris, France; (E.F.); (S.P.-C.); (A.L.); (B.S.); (P.G.); (C.B.-L.); (S.P.); (D.M.S.)
- CiTCoM, CNRS, Université de Paris, F-75006 Paris, France
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas Margarita Salas, 28040 Madrid, Spain;
- Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
| | - David M. Smadja
- Faculty of Pharmacy, University of Paris, F-75006 Paris, France; (E.F.); (S.P.-C.); (A.L.); (B.S.); (P.G.); (C.B.-L.); (S.P.); (D.M.S.)
- IThEM, Inserm UMR-S 1140, F-75006 Paris, France
- AP-HP, Hematology Department, Hôpital Européen Georges Pompidou, F-75015 Paris, France
- Biosurgical Research Lab (Carpentier Foundation), F-75000 Paris, France
| |
Collapse
|
11
|
Detriche G, Guerin CL, Gendron N, Mirault T, Smadja DM. Do Endothelial Colony-forming Cells Come From Bone Marrow or Vessels/VSELs? Stem Cell Rev Rep 2021; 17:1500-1502. [PMID: 33651335 DOI: 10.1007/s12015-021-10140-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Affiliation(s)
- Grégoire Detriche
- Innovative Therapies in Hemostasis, Université de Paris, INSERM, F-75006, Paris, France.,Vascular Medicine Department, Assistance Publique Hôpitaux de Paris, Centre-Université de Paris (APHP- CUP), F-75015, Paris, France
| | - Coralie L Guerin
- Innovative Therapies in Hemostasis, Université de Paris, INSERM, F-75006, Paris, France.,Institut Curie, 75006, Paris, France
| | - Nicolas Gendron
- Innovative Therapies in Hemostasis, Université de Paris, INSERM, F-75006, Paris, France.,Hematology Department and Biosurgical Research Lab (Carpentier Foundation), Assistance Publique Hôpitaux de Paris, Centre-Université de Paris (APHP-CUP), F-75015, Paris, France
| | - Tristan Mirault
- Vascular Medicine Department, Assistance Publique Hôpitaux de Paris, Centre-Université de Paris (APHP- CUP), F-75015, Paris, France.,Université de Paris, PARCC, INSERM, F-75015, Paris, France
| | - David M Smadja
- Innovative Therapies in Hemostasis, Université de Paris, INSERM, F-75006, Paris, France. .,Hematology Department and Biosurgical Research Lab (Carpentier Foundation), Assistance Publique Hôpitaux de Paris, Centre-Université de Paris (APHP-CUP), F-75015, Paris, France.
| |
Collapse
|
12
|
Blandinières A, Hong X, Philippe A, Bièche I, Vacher S, Rossi E, Detriche G, Gendron N, Gaussem P, Guerin CL, Melero-Martin JM, Smadja DM. Interleukin-8 Receptors CXCR1 and CXCR2 Are Not Expressed by Endothelial Colony-forming Cells. Stem Cell Rev Rep 2020; 17:628-638. [PMID: 33185837 DOI: 10.1007/s12015-020-10081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2020] [Indexed: 11/24/2022]
Abstract
Endothelial colony-forming cells (ECFCs) are human vasculogenic cells described as potential cell therapy product and good candidates for being a vascular liquid biopsy. Since interleukin-8 (IL-8) is a main actor in senescence, its ability to interact with ECFCs has been explored. However, expression of CXCR1 and CXCR2, the two cellular receptors for IL-8, by ECFCs remain controversial as several teams published contradictory reports. Using complementary technical approaches, we have investigated the presence of these receptors on ECFCs isolated from cord blood. First, CXCR1 and CXCR2 were not detected on several clones of cord blood- endothelial colony-forming cell using different antibodies available, in contrast to well-known positive cells. We then compared the RT-PCR primers used in different papers to search for the presence of CXCR1 and CXCR2 mRNA and found that several primer pairs used could lead to non-specific DNA amplification. Last, we confirmed those results by RNA sequencing. CXCR1 and CXCR2 were not detected in ECFCs in contrary to human-induced pluripotent stem cell-derived endothelial cells (h-iECs). In conclusion, using three different approaches, we confirmed that CXCR1 and CXCR2 were not expressed at mRNA or protein level by ECFCs. Thus, IL-8 secretion by ECFCs, its effects in angiogenesis and their involvement in senescent process need to be reanalyzed according to this absence of CXCR-1 and - 2 in ECFCs.Graphical Abstract.
Collapse
Affiliation(s)
- Adeline Blandinières
- Innovative Therapies in Haemostasis, INSERM, Université de Paris, F-75006 , Paris, France.,Service d'Hématologie et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), AH-HP, Georges Pompidou European Hospital, F-75015, Paris, France
| | - Xuechong Hong
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Aurélien Philippe
- Innovative Therapies in Haemostasis, INSERM, Université de Paris, F-75006 , Paris, France.,Service d'Hématologie et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), AH-HP, Georges Pompidou European Hospital, F-75015, Paris, France
| | - Ivan Bièche
- Department of Genetics, Université de Paris and Pharmacogenomics Unit, Institut Curie, Paris, France
| | - Sophie Vacher
- Department of Genetics, Université de Paris and Pharmacogenomics Unit, Institut Curie, Paris, France
| | - Elisa Rossi
- Innovative Therapies in Haemostasis, INSERM, Université de Paris, F-75006 , Paris, France
| | - Grégoire Detriche
- Innovative Therapies in Haemostasis, INSERM, Université de Paris, F-75006 , Paris, France
| | - Nicolas Gendron
- Innovative Therapies in Haemostasis, INSERM, Université de Paris, F-75006 , Paris, France.,Service d'Hématologie et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), AH-HP, Georges Pompidou European Hospital, F-75015, Paris, France
| | - Pascale Gaussem
- Innovative Therapies in Haemostasis, INSERM, Université de Paris, F-75006 , Paris, France.,Service d'Hématologie, AH-HP, Georges Pompidou European Hospital, F-75015, Paris, France
| | - Coralie L Guerin
- Innovative Therapies in Haemostasis, INSERM, Université de Paris, F-75006 , Paris, France.,Plateforme de cytométrie, Institut Curie, F-75006, Paris, France
| | - Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - David M Smadja
- Innovative Therapies in Haemostasis, INSERM, Université de Paris, F-75006 , Paris, France. .,Service d'Hématologie et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), AH-HP, Georges Pompidou European Hospital, F-75015, Paris, France.
| |
Collapse
|
13
|
Smadja DM, Chocron R, Rossi E, Poitier B, Pya Y, Bekbossynova M, Peronino C, Rancic J, Roussel JC, Kindo M, Gendron N, Migliozzi L, Capel A, Perles JC, Gaussem P, Ivak P, Jansen P, Girard C, Carpentier A, Latremouille C, Guerin C, Netuka I. Autoregulation of Pulsatile Bioprosthetic Total Artificial Heart is Involved in Endothelial Homeostasis Preservation. Thromb Haemost 2020; 120:1313-1322. [PMID: 32688422 DOI: 10.1055/s-0040-1713751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pulsatile Carmat bioprosthetic total artificial heart (C-TAH) is designed to be implanted in patients with biventricular end-stage heart failure. Since flow variation might contribute to endothelial dysfunction, we explored circulating endothelial biomarkers after C-TAH implantation in seven patients and compared the manual and autoregulated mode. Markers of endothelial dysfunction and regeneration were compared before and during a 6- to 9-month follow-up after implantation. The follow-up was divided into three periods (< 3, 3-6, and > 6 months) and used to estimate the temporal trends during the study period. A linear mixed model was used to analyze repeated measures and association between tested parameters according to the mode of C-TAH and the time. Relevance of soluble endoglin (sEndoglin) level increase has been tested on differentiation and migration potential of human vasculogenic progenitor cells (endothelial colony forming cells [ECFCs]). Normal sEndoglin and soluble endothelial protein C receptor (sEPCR) levels were found in patients after implantation with autoregulated C-TAH, whereas they significantly increased in the manual mode, as compared with pretransplant values (p = 0.005 and 0.001, respectively). In the autoregulated mode, a significant increase in the mobilization of cytokine stromal cell-derived factor 1 was found (p = 0.03). After adjustment on the mode of C-TAH, creatinine or C-reactive protein level, sEndoglin, and sEPCR, were found significantly associated with plasma total protein levels. Moreover, a significant decrease in pseudotubes formation and migration ability was observed in vitro in ECFCs receiving sEndoglin activation. Our combined analysis of endothelial biomarkers confirms the favorable impact of blood flow variation achieved with autoregulation in patients implanted with the bioprosthetic total artificial heart.
Collapse
Affiliation(s)
- David M Smadja
- Inserm UMR-S 1140, Innovative Therapies in Haemostasis, Service d'Hématologie et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), Université de Paris, Georges Pompidou European Hospital, Paris, France
| | - Richard Chocron
- Inserm UMR-S 970 PARCC, Service d'urgences, Université de Paris, Georges Pompidou European Hospital, Paris, France
| | - Elisa Rossi
- Innovative Therapies in Haemostasis, Université de Paris, Paris, France
| | - Bastien Poitier
- Innovative Therapies in Haemostasis, Service de Chirurgie Cardiaque et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), Université de Paris, Georges Pompidou European Hospital, Paris, France
| | - Yuri Pya
- National Research Cardiac Surgery Center, Astana, Kazakhstan
| | | | - Christophe Peronino
- Inserm UMR-S 1140, Innovative Therapies in Haemostasis, Service d'Hématologie et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), Université de Paris, Georges Pompidou European Hospital, Paris, France
| | - Jeanne Rancic
- Inserm UMR-S 1140, Innovative Therapies in Haemostasis, Service d'Hématologie et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), Université de Paris, Georges Pompidou European Hospital, Paris, France
| | - Jean Christian Roussel
- Service de Chirurgie Thoracique et Cardiovasculaire, Unité de transplantation thoracique, CHU de Nantes, Hôpital Nord Laënnec, Saint-Herblain, Nantes Cedex 1, France
| | - Michel Kindo
- Service de Chirurgie Cardiovasculaire, NHC - Hôpital Civil, Hôpitaux Universitaires de Strasbourg, 1, Place de L'Hôpital, Strasbourg, Cedex, France
| | - Nicolas Gendron
- Inserm UMR-S 1140, Innovative Therapies in Haemostasis, Service d'Hématologie et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), Université de Paris, Georges Pompidou European Hospital, Paris, France
| | - Ludovica Migliozzi
- Innovative Therapies in Haemostasis, Service de Chirurgie Cardiaque et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), Université de Paris, Georges Pompidou European Hospital, Paris, France
| | | | | | - Pascale Gaussem
- Innovative Therapies in Haemostasis, Service d'Hématologie, Université de Paris, Georges Pompidou European Hospital, Paris, France
| | - Peter Ivak
- Department of Cardiovascular Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Claude Girard
- Unité d'Anesthesie Réanimation Cardio-Vasculaire, CHU François Mitterrand, Dijon Cedex, France
| | - Alain Carpentier
- Innovative Therapies in Haemostasis, Université de Paris, Paris, France
| | - Christian Latremouille
- Innovative Therapies in Haemostasis, Service de Chirurgie Cardiaque et Laboratoire de Recherches Biochirugicales (Fondation Carpentier), Université de Paris, Georges Pompidou European Hospital, Paris, France
| | - Coralie Guerin
- Innovative Therapies in Haemostasis, Plateforme de Cytométrie, Institut Curie, Université de Paris, Paris, France
| | - Ivan Netuka
- Department of Cardiovascular Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|