1
|
Chen Z, Pang Q, Zhan J, Liu J, Zhao W, Dong L, Huang W. MSCs-derived ECM functionalized hydrogel regulates macrophage reprogramming for osteoarthritis treatment by improving mitochondrial function and energy metabolism. Mater Today Bio 2024; 29:101340. [PMID: 39640869 PMCID: PMC11617891 DOI: 10.1016/j.mtbio.2024.101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/20/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative disease that affects the entire joint, with synovial inflammation being a major pathological feature. Macrophages, as the most abundant immune cells in the synovium, have an M1/M2 imbalance that is closely related to the occurrence and development of OA. Mesenchymal stem cells (MSCs) have been shown to effectively suppress inflammation in the treatment of OA, but they still pose issues such as immune rejection and tumorigenicity. The extracellular matrix (ECM), as a major mediator of MSCs' immunoregulatory effects, offers a cell-free therapy to circumvent these risks. In this study, we developed an ECM-functionalized hydrogel by combining MSC-derived ECM with gelatin methacryloyl (GelMA). To enhance the immunomodulatory potential of MSCs, we pre-stimulated MSCs with the inflammatory factor interleukin-6 (IL-6) present in OA. In vitro results showed that the ECM-functionalized hydrogel promoted M2 macrophage polarization and inhibited the expression of various inflammatory genes, strongly indicating the hydrogel's powerful immunoregulatory capabilities. In an in vivo rat OA model, the ECM-functionalized hydrogel significantly reduced synovial inflammation and cartilage matrix degradation, alleviating the progression of OA. Furthermore, we utilized proteomics and transcriptomics analysis to reveal that the hydrogel accomplished macrophage metabolic reprogramming by regulating mitochondrial function and energy metabolism, thereby reducing inflammation. These findings suggest that the ECM-functionalized hydrogel is a promising biomaterial-based strategy for treating OA by targeting key pathological mechanisms.
Collapse
Affiliation(s)
- Zhuolin Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Qiming Pang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Jingdi Zhan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Junyan Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Weikang Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Lili Dong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Wei Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Zupan J, Stražar K. Synovium-Derived and Bone-Derived Mesenchymal Stem/Stromal Cells from Early OA Patients Show Comparable In Vitro Properties to Those of Non-OA Patients. Cells 2024; 13:1238. [PMID: 39120270 PMCID: PMC11311703 DOI: 10.3390/cells13151238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Degenerative disorders like osteoarthritis (OA) might impair the ability of tissue-resident mesenchymal stem/stromal cells (MSCs) for tissue regeneration. As primary cells with MSC-like properties are exploited for patient-derived stem cell therapies, a detailed evaluation of their in vitro properties is needed. Here, we aimed to compare synovium-derived and bone-derived MSCs in early hip OA with those of patients without OA (non-OA). Tissues from three synovial sites of the hip (paralabral synovium, cotyloid fossa, inner surface of peripheral capsule) were collected along with peripheral trabecular bone from 16 patients undergoing hip arthroscopy (8 early OA and 8 non-OA patients). Primary cells isolated from tissues were compared using detailed in vitro analyses. Gene expression profiling was performed for the skeletal stem cell markers podoplanin (PDPN), CD73, CD164 and CD146 as well as for immune-related molecules to assess their immunomodulatory potential. Synovium-derived and bone-derived MSCs from early OA patients showed comparable clonogenicity, cumulative population doublings, osteogenic, adipogenic and chondrogenic potential, and immunophenotype to those of non-OA patients. High PDPN/low CD146 profile (reminiscent of skeletal stem cells) was identified mainly for non-OA MSCs, while low PDPN/high CD146 mainly defined early OA MSCs. These data suggest that MSCs from early OA patients are not affected by degenerative changes in the hip. Moreover, the synovium represents an alternative source of MSCs for patient-derived stem cell therapies, which is comparable to bone. The expression profile reminiscent of skeletal stem cells suggests the combination of low PDPN and high CD146 as potential biomarkers in early OA.
Collapse
Affiliation(s)
- Janja Zupan
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Askerceva 7, 1000 Ljubljana, Slovenia;
| | - Klemen Stražar
- Department of Orthopaedic Surgery, University Medical Centre Ljubljana, Zaloska 9, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Wei C, Guo Y, Ci Z, Li M, Zhang Y, Zhou Y. Advances of Schwann cells in peripheral nerve regeneration: From mechanism to cell therapy. Biomed Pharmacother 2024; 175:116645. [PMID: 38729050 DOI: 10.1016/j.biopha.2024.116645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Peripheral nerve injuries (PNIs) frequently occur due to various factors, including mechanical trauma such as accidents or tool-related incidents, as well as complications arising from diseases like tumor resection. These injuries frequently result in persistent numbness, impaired motor and sensory functions, neuropathic pain, or even paralysis, which can impose a significant financial burden on patients due to outcomes that often fall short of expectations. The most frequently employed clinical treatment for PNIs involves either direct sutures of the severed ends or bridging the proximal and distal stumps using autologous nerve grafts. However, autologous nerve transplantation may result in sensory and motor functional loss at the donor site, as well as neuroma formation and scarring. Transplantation of Schwann cells/Schwann cell-like cells has emerged as a promising cellular therapy to reconstruct the microenvironment and facilitate peripheral nerve regeneration. In this review, we summarize the role of Schwann cells and recent advances in Schwann cell therapy in peripheral nerve regeneration. We summarize current techniques used in cell therapy, including cell injection, 3D-printed scaffolds for cell delivery, cell encapsulation techniques, as well as the cell types employed in experiments, experimental models, and research findings. At the end of the paper, we summarize the challenges and advantages of various cells (including ESCs, iPSCs, and BMSCs) in clinical cell therapy. Our goal is to provide the theoretical and experimental basis for future treatments targeting peripheral nerves, highlighting the potential of cell therapy and tissue engineering as invaluable resources for promoting nerve regeneration.
Collapse
Affiliation(s)
- Chuqiao Wei
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yuanxin Guo
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhen Ci
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Mucong Li
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yidi Zhang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China.
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
4
|
Lyamina S, Baranovskii D, Kozhevnikova E, Ivanova T, Kalish S, Sadekov T, Klabukov I, Maev I, Govorun V. Mesenchymal Stromal Cells as a Driver of Inflammaging. Int J Mol Sci 2023; 24:6372. [PMID: 37047346 PMCID: PMC10094085 DOI: 10.3390/ijms24076372] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
Life expectancy and age-related diseases burden increased significantly over the past few decades. Age-related conditions are commonly discussed in a very limited paradigm of depleted cellular proliferation and maturation with exponential accumulation of senescent cells. However, most recent evidence showed that the majority of age-associated ailments, i.e., diabetes mellitus, cardiovascular diseases and neurodegeneration. These diseases are closely associated with tissue nonspecific inflammation triggered and controlled by mesenchymal stromal cell secretion. Mesenchymal stromal cells (MSCs) are known as the most common type of cells for therapeutic approaches in clinical practice. Side effects and complications of MSC-based treatments increased interest in the MSCs secretome as an alternative concept for validation tests in regenerative medicine. The most recent data also proposed it as an ideal tool for cell-free regenerative therapy and tissue engineering. However, senescent MSCs secretome was shown to hold the role of 'key-driver' in inflammaging. We aimed to review the immunomodulatory effects of the MSCs-secretome during cell senescence and provide eventual insight into the interpretation of its beneficial biological actions in inflammaging-associated diseases.
Collapse
Affiliation(s)
- Svetlana Lyamina
- Molecular Pathology of Digestion Laboratory, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya Str., 20/1, 127473 Moscow, Russia
- Scientific Research Institute for Systems Biology and Medicine, Nauchniy Proezd, 18, 117246 Moscow, Russia
| | - Denis Baranovskii
- Molecular Pathology of Digestion Laboratory, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya Str., 20/1, 127473 Moscow, Russia
- Research and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia
| | - Ekaterina Kozhevnikova
- Molecular Pathology of Digestion Laboratory, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya Str., 20/1, 127473 Moscow, Russia
| | - Tatiana Ivanova
- Molecular Pathology of Digestion Laboratory, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya Str., 20/1, 127473 Moscow, Russia
| | - Sergey Kalish
- Molecular Pathology of Digestion Laboratory, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya Str., 20/1, 127473 Moscow, Russia
- Scientific Research Institute for Systems Biology and Medicine, Nauchniy Proezd, 18, 117246 Moscow, Russia
| | - Timur Sadekov
- Molecular Pathology of Digestion Laboratory, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya Str., 20/1, 127473 Moscow, Russia
| | - Ilya Klabukov
- Research and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia
| | - Igor Maev
- Molecular Pathology of Digestion Laboratory, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya Str., 20/1, 127473 Moscow, Russia
| | - Vadim Govorun
- Molecular Pathology of Digestion Laboratory, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya Str., 20/1, 127473 Moscow, Russia
- Scientific Research Institute for Systems Biology and Medicine, Nauchniy Proezd, 18, 117246 Moscow, Russia
| |
Collapse
|
5
|
Cha S, Lee SM, Wang J, Zhao Q, Bai D. Enhanced Circadian Clock in MSCs-Based Cytotherapy Ameliorates Age-Related Temporomandibular Joint Condyle Degeneration. Int J Mol Sci 2021; 22:10632. [PMID: 34638972 PMCID: PMC8508754 DOI: 10.3390/ijms221910632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
Aging has been proven to be one of the major causes of temporomandibular joint (TMJ) disability and pain in older people. Peripheral circadian rhythms play a crucial role in endochondral ossification and chondrogenesis. However, the age-related alterations of circadian clock in TMJ structures are seldom reported. In the current study, TMJ condyles were extracted from young (4-month-old), middle-aged (10-month-old), and old-aged (20-month-old) adults to detect the morphology and circadian oscillation changes in TMJ condyles with aging. The transcriptome profile of Bmal1-deleted bone-marrow mesenchymal stem cells (BMSCs) and controls were explored to reveal the circadian-related differences at the molecular level. Furthermore, the reparative effects of Bmal1-overexpressed BMSCs-based cytotherapy in aged TMJ condyles were investigated in vitro and in vivo. Aged TMJ condyles displayed damaged tissue structure and an abolished circadian rhythm, accompanied by a progressively decreasing chondrogenesis capability and bone turnover activities. The deletion of Bmal1 significantly down-regulated chondrogenesis-related genes Prg4, Sox9, and Col7a1. Bmal1-overexpressed BMSCs presented improved migration capability ex vivo and attenuated age-related TMJ condylar degeneration in vivo. These data demonstrate the crucial role of circadian timing in the maintenance of osteochondral homeostasis, and indicate the potential clinical prospects of circadian-modified MSCs therapy in tissue regeneration.
Collapse
Affiliation(s)
| | | | | | - Qing Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (S.C.); (S.-M.L.); (J.W.)
| | - Ding Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (S.C.); (S.-M.L.); (J.W.)
| |
Collapse
|
6
|
Zupan J, Strazar K, Kocijan R, Nau T, Grillari J, Marolt Presen D. Age-related alterations and senescence of mesenchymal stromal cells: Implications for regenerative treatments of bones and joints. Mech Ageing Dev 2021; 198:111539. [PMID: 34242668 DOI: 10.1016/j.mad.2021.111539] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022]
Abstract
The most common clinical manifestations of age-related musculoskeletal degeneration are osteoarthritis and osteoporosis, and these represent an enormous burden on modern society. Mesenchymal stromal cells (MSCs) have pivotal roles in musculoskeletal tissue development. In adult organisms, MSCs retain their ability to regenerate tissues following bone fractures, articular cartilage injuries, and other traumatic injuries of connective tissue. However, their remarkable regenerative ability appears to be impaired through aging, and in particular in age-related diseases of bones and joints. Here, we review age-related alterations of MSCs in musculoskeletal tissues, and address the underlying mechanisms of aging and senescence of MSCs. Furthermore, we focus on the properties of MSCs in osteoarthritis and osteoporosis, and how their changes contribute to onset and progression of these disorders. Finally, we consider current treatments that exploit the enormous potential of MSCs for tissue regeneration, as well as for innovative cell-free extracellular-vesicle-based and anti-aging treatment approaches.
Collapse
Affiliation(s)
- Janja Zupan
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Klemen Strazar
- Department of Orthopaedic Surgery, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Roland Kocijan
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; Medical Faculty of Bone Diseases, Sigmund Freud University Vienna, 1020, Vienna, Austria
| | - Thomas Nau
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Centre, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria; Building 14, Mohamed Bin Rashid University of Medicine and Health Sciences Dubai, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Centre, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1180, Vienna, Austria
| | - Darja Marolt Presen
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Centre, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria.
| |
Collapse
|
7
|
Theerakittayakorn K, Thi Nguyen H, Musika J, Kunkanjanawan H, Imsoonthornruksa S, Somredngan S, Ketudat-Cairns M, Parnpai R. Differentiation Induction of Human Stem Cells for Corneal Epithelial Regeneration. Int J Mol Sci 2020; 21:E7834. [PMID: 33105778 PMCID: PMC7660084 DOI: 10.3390/ijms21217834] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
Deficiency of corneal epithelium causes vision impairment or blindness in severe cases. Transplantation of corneal epithelial cells is an effective treatment but the availability of the tissue source for those cells is inadequate. Stem cells can be induced to differentiate to corneal epithelial cells and used in the treatment. Multipotent stem cells (mesenchymal stem cells) and pluripotent stem cells (embryonic stem cells and induced pluripotent stem cells) are promising cells to address the problem. Various protocols have been developed to induce differentiation of the stem cells into corneal epithelial cells. The feasibility and efficacy of both human stem cells and animal stem cells have been investigated for corneal epithelium regeneration. However, some physiological aspects of animal stem cells are different from those of human stem cells, the protocols suited for animal stem cells might not be suitable for human stem cells. Therefore, in this review, only the investigations of corneal epithelial differentiation of human stem cells are taken into account. The available protocols for inducing the differentiation of human stem cells into corneal epithelial cells are gathered and compared. Also, the pathways involving in the differentiation are provided to elucidate the relevant mechanisms.
Collapse
Affiliation(s)
- Kasem Theerakittayakorn
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (K.T.); (H.T.N.); (J.M.); (S.I.); (S.S.); (M.K.-C.)
| | - Hong Thi Nguyen
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (K.T.); (H.T.N.); (J.M.); (S.I.); (S.S.); (M.K.-C.)
| | - Jidapa Musika
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (K.T.); (H.T.N.); (J.M.); (S.I.); (S.S.); (M.K.-C.)
| | - Hataiwan Kunkanjanawan
- Medeze Research and Development Co., Ltd. 28/9 Moo 8, Phutthamonthon Sai 4 Rd., Krathum Lom, Sam Phran, Nakhon Pathom 73220, Thailand;
| | - Sumeth Imsoonthornruksa
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (K.T.); (H.T.N.); (J.M.); (S.I.); (S.S.); (M.K.-C.)
| | - Sirilak Somredngan
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (K.T.); (H.T.N.); (J.M.); (S.I.); (S.S.); (M.K.-C.)
| | - Mariena Ketudat-Cairns
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (K.T.); (H.T.N.); (J.M.); (S.I.); (S.S.); (M.K.-C.)
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (K.T.); (H.T.N.); (J.M.); (S.I.); (S.S.); (M.K.-C.)
| |
Collapse
|