1
|
Calvo B, Schembri-Wismayer P, Durán-Alonso MB. Age-Related Neurodegenerative Diseases: A Stem Cell's Perspective. Cells 2025; 14:347. [PMID: 40072076 PMCID: PMC11898746 DOI: 10.3390/cells14050347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Neurodegenerative diseases encompass a number of very heterogeneous disorders, primarily characterized by neuronal loss and a concomitant decline in neurological function. Examples of this type of clinical condition are Alzheimer's Disease, Parkinson's Disease, Huntington's Disease and Amyotrophic Lateral Sclerosis. Age has been identified as a major risk in the etiology of these disorders, which explains their increased incidence in developed countries. Unfortunately, despite continued and intensive efforts, no cure has yet been found for any of these diseases; reliable markers that allow for an early diagnosis of the disease and the identification of key molecular events leading to disease onset and progression are lacking. Altered adult neurogenesis appears to precede the appearance of severe symptoms. Given the scarcity of human samples and the considerable differences with model species, increasingly complex human stem-cell-based models are being developed. These are shedding light on the molecular alterations that contribute to disease development, facilitating the identification of new clinical targets and providing a screening platform for the testing of candidate drugs. Moreover, the secretome and other promising features of these cell types are being explored, to use them as replacement cells of high plasticity or as co-adjuvant therapy in combinatorial treatments.
Collapse
Affiliation(s)
- Belén Calvo
- Faculty of Health Sciences, Catholic University of Ávila, 05005 Ávila, Spain;
| | - Pierre Schembri-Wismayer
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| | - María Beatriz Durán-Alonso
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
2
|
Frawley L, Taylor NT, Sivills O, McPhillamy E, To TD, Wu Y, Chin BY, Wong CY. Stem Cell Therapy for the Treatment of Amyotrophic Lateral Sclerosis: Comparison of the Efficacy of Mesenchymal Stem Cells, Neural Stem Cells, and Induced Pluripotent Stem Cells. Biomedicines 2024; 13:35. [PMID: 39857620 PMCID: PMC11763168 DOI: 10.3390/biomedicines13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, is a debilitating, incurable neurodegenerative disorder characterised by motor neuron death in the spinal cord, brainstem, and motor cortex. With an incidence rate of about 4.42 cases per 100,000 people annually, ALS severely impacts motor function and quality of life, causing progressive muscle atrophy, spasticity, paralysis, and eventually death. The cause of ALS is largely unknown, with 90% of cases being sporadic and 10% familial. Current research targets molecular mechanisms of inflammation, excitotoxicity, aggregation-prone proteins, and proteinopathy. METHODS This review evaluates the efficacy of three stem cell types in ALS treatment: mesenchymal stem cells (MSCs), neural stem cells (NSCs), and induced pluripotent stem cells (iPSCs). RESULTS MSCs, derived from various tissues, show neuroprotective and regenerative qualities, with clinical trials suggesting potential benefits but limited by small sample sizes and non-randomised designs. NSCs, isolated from the fetal spinal cord or brain, demonstrate promise in animal models but face functional integration and ethical challenges. iPSCs, created by reprogramming patient-specific somatic cells, offer a novel approach by potentially replacing or supporting neurons. iPSC therapy addresses ethical issues related to embryonic stem cells but encounters challenges regarding genotoxicity and epigenetic irregularities, somatic cell sources, privacy concerns, the need for extensive clinical trials, and high reprogramming costs. CONCLUSIONS This research is significant for advancing ALS treatment beyond symptomatic relief and modest survival extensions to actively modifying disease progression and improving patient outcomes. Successful stem cell therapies could lead to new ALS treatments, slowing motor function loss and reducing symptom severity.
Collapse
Affiliation(s)
- Lauren Frawley
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong 2500, Australia; (L.F.); (O.S.); (E.M.)
| | - Noam Tomer Taylor
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia; (N.T.T.); (T.D.T.); (Y.W.)
| | - Olivia Sivills
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong 2500, Australia; (L.F.); (O.S.); (E.M.)
| | - Ella McPhillamy
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong 2500, Australia; (L.F.); (O.S.); (E.M.)
| | - Timothy Duy To
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia; (N.T.T.); (T.D.T.); (Y.W.)
| | - Yibo Wu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia; (N.T.T.); (T.D.T.); (Y.W.)
| | - Beek Yoke Chin
- School of Health Sciences, IMU University, Kuala Lumpur 57000, Malaysia
- Center for Cancer & Stem Cell Research, Institute for Research, Development and Innovation (IRDI), IMU University, Kuala Lumpur 57000, Malaysia
| | - Chiew Yen Wong
- School of Health Sciences, IMU University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
3
|
AlOraibi S, Taurin S, Alshammary S. Advancements in Umbilical Cord Biobanking: A Comprehensive Review of Current Trends and Future Prospects. Stem Cells Cloning 2024; 17:41-58. [PMID: 39655226 PMCID: PMC11626973 DOI: 10.2147/sccaa.s481072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/01/2024] [Indexed: 12/12/2024] Open
Abstract
Biobanking has emerged as a transformative concept in advancing the medical field, particularly with the exponential growth of umbilical cord (UC) biobanking in recent decades. UC blood and tissue provide a rich source of primitive hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) for clinical transplantation, offering distinct advantages over alternative adult stem cell sources. However, to fully realize the therapeutic potential of UC-derived stem cells and establish a comprehensive global UC-biobanking network, it is imperative to optimize and standardize UC processing, cryopreservation methods, quality control protocols, and regulatory frameworks, alongside developing effective consent provisions. This review aims to comprehensively explore recent advancements in UC biobanking, focusing on the establishment of rigorous safety and quality control procedures, the standardization of biobanking operations, and the optimization and automation of UC processing and cryopreservation techniques. Additionally, the review examines the expanded clinical applications of UC stem cells, addresses the challenges associated with umbilical cord biobanking and UC-derived stem cell therapies, and discusses the promising role of artificial intelligence (AI) in enhancing various operational aspects of biobanking, streamlining data processing, and improving data analysis accuracy while ensuring compliance with safety and quality standards. By addressing these critical areas, this review seeks to provide insights into the future direction of UC biobanking and its potential to significantly impact regenerative medicine.
Collapse
Affiliation(s)
- Sahar AlOraibi
- Molecular Medicine Department, Princess Al Jawhara Center for Molecular Medicine, Genetics, and Hereditary Diseases, College of Medicine and Health Sciences, Arabian Gulf University, Manama, Bahrain
| | - Sebastien Taurin
- Molecular Medicine Department, Princess Al Jawhara Center for Molecular Medicine, Genetics, and Hereditary Diseases, College of Medicine and Health Sciences, Arabian Gulf University, Manama, Bahrain
| | - Sfoug Alshammary
- Molecular Medicine Department, Princess Al Jawhara Center for Molecular Medicine, Genetics, and Hereditary Diseases, College of Medicine and Health Sciences, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
4
|
Liu L, Hao X, Zhang J, Li S, Han S, Qian P, Zhang Y, Yu H, Kang Y, Yin Y, Zhang W, Chen J, Yu Y, Jiang H, Chai J, Yin H, Chai W. The wound healing of deep partial-thickness burn in Bama miniature pigs is accelerated by a higher dose of hUCMSCs. Stem Cell Res Ther 2024; 15:437. [PMID: 39563365 PMCID: PMC11575178 DOI: 10.1186/s13287-024-04063-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Deep partial-thickness burns have a significant impact on both the physical and mental health of patients. Our previous study demonstrated human Umbilical Cord Mesenchymal stem cells (hUCMSCs) could enhance the healing of severe burns in small animal burn models, such as rats. Furthermore, our team has developed a deep partial-thickness burn model in Bama miniature pigs, which can be utilized for assessing drug efficacy in preclinical trials for wound healing. Therefore, this study further determine the optimal dosage of hUCMSCs in future clinical practice by comparing the efficacy of low-to-high doses of hUCMSCs on deep partial-thickness burn wounds in Bama miniature pigs. MATERIALS AND METHODS The male Bama miniature pigs (N = 8, weight: 23-28 kg and length: 71-75 cm) were used to establish deep partial-thickness burn models, which used a continuous pressure of 1 kg and contact times of 35 s by the invented electronic burn instrument at 100℃ to prepare 10 round burn wounds with diameter of 5 cm according to our previous report. And then, 0 × 10^7, 1 × 10^7, 2 × 10^7, 5 × 10^7 and 1 × 10^8 doses of hUCMSCs were respectively injected into burn wounds of their corresponding groups. After treatment for 7, 14 and 21 days, the burned wound tissues were obtained for histological evaluation, including HE staining for histopathological changes, immunohistochemistry for neutrophil (MPO+) infiltration and microvessel (CD31+) quantity, as well as Masson staining for collagen deposition. The levels of inflammatory factors TNF-α, IL-1β, IL-10 and angiogenesis factors angiopoietin-2 (Ang-2), vascular endothelial growth factor (VEGF), as well as collagen type-I/type-III of the wound tissues were quantified by ELISA. RESULTS All of doses hUCMSCs can significantly increase wound healing rate and shorten healing time of the deep partial-thickness burn pigs in a dose-dependent manner. Furthermore, all of doses hUCMSCs can significantly promote epithelialization and decreased inflammatory reaction of wound, including infiltration of inflammatory cells and levels inflammatory factors. Meanwhile, the amounts of microvessel were increased in all of doses hUCMSCs group than those in the burn group. Furthermore, the collagen structure was disordered and partially necrotized, and ratios of collagen type-I and type-III were significantly decreased in burn group (4:1 in normal skin tissue), and those of all hUCMSCs groups were significantly improved in a dose-dependent manner. In a word, 1 × 10^8 dose of hUCMSCs could regenerate the deep partial-thickness burn wounds most efficaciously compared to other dosages groups and the burn group. CONCLUSION This regenerative cell therapy study using hUCMSCs demonstrates the best efficacy toward a high dose, that is dose of 1 × 10^8 of hUCMSCs was used as a reference therapeutic dose for treating 20 cm2 deep partial-thickness burns wound in future clinical practice.
Collapse
Affiliation(s)
- Lingying Liu
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China.
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, China.
- Hebei North University, Zhangjiakou, Hebei, 075000, China.
| | - Xingxia Hao
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, China
| | - Jing Zhang
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, China
| | - Shaozeng Li
- Department of Clinical Laboratory, The Fourth Medical Center Affiliated to PLA General Hospital, Beijing, 100037, China
| | - Shaofang Han
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China
| | - Peipei Qian
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China
| | - Yong Zhang
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China.
| | - Huaqing Yu
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China
| | - Yuxin Kang
- Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Yue Yin
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, China
| | - Weiouwen Zhang
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China
| | - Jianmei Chen
- Department of Health Medicine, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100037, China
| | - Yang Yu
- Department of Traditional Chinese Medical Science, The Sixth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Hua Jiang
- Department of Endocrinology, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiake Chai
- Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, 100037, China
| | - Huinan Yin
- Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, 100037, China
| | - Wei Chai
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100037, China
| |
Collapse
|
5
|
Chang HH, Liou YS, Sun DS. Unraveling the interplay between inflammation and stem cell mobilization or homing: Implications for tissue repair and therapeutics. Tzu Chi Med J 2024; 36:349-359. [PMID: 39421490 PMCID: PMC11483098 DOI: 10.4103/tcmj.tcmj_100_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 04/29/2024] [Accepted: 06/14/2024] [Indexed: 10/19/2024] Open
Abstract
Inflammation and stem cell mobilization or homing play pivotal roles in tissue repair and regeneration. This review explores their intricate interplay, elucidating their collaborative role in maintaining tissue homeostasis and responding to injury or disease. While examining the fundamentals of stem cells, we detail the mechanisms underlying inflammation, including immune cell recruitment and inflammatory mediator release, highlighting their self-renewal and differentiation capabilities. Central to our exploration is the modulation of hematopoietic stem cell behavior by inflammatory cues, driving their mobilization from the bone marrow niche into circulation. Key cytokines, chemokines, growth factors, and autophagy, an intracellular catabolic mechanism involved in this process, are discussed alongside their clinical relevance. Furthermore, mesenchymal stem cell homing in response to inflammation contributes to tissue repair processes. In addition, we discuss stem cell resilience in the face of inflammatory challenges. Moreover, we examine the reciprocal influence of stem cells on the inflammatory milieu, shaping immune responses and tissue repair. We underscore the potential of targeting inflammation-induced stem cell mobilization for regenerative therapies through extensive literature analysis and clinical insights. By unraveling the complex interplay between inflammation and stem cells, this review advances our understanding of tissue repair mechanisms and offers promising avenues for clinical translation in regenerative medicine.
Collapse
Affiliation(s)
- Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Yu-Shan Liou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
6
|
Mazzini L, De Marchi F, Buzanska L, Follenzi A, Glover JC, Gelati M, Lombardi I, Maioli M, Mesa-Herrera F, Mitrečić D, Olgasi C, Pivoriūnas A, Sanchez-Pernaute R, Sgromo C, Zychowicz M, Vescovi A, Ferrari D. Current status and new avenues of stem cell-based preclinical and therapeutic approaches in amyotrophic lateral sclerosis. Expert Opin Biol Ther 2024; 24:933-954. [PMID: 39162129 DOI: 10.1080/14712598.2024.2392307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
INTRODUCTION Cell therapy development represents a critical challenge in amyotrophic lateral sclerosis (ALS) research. Despite more than 20 years of basic and clinical research, no definitive safety and efficacy results of cell-based therapies for ALS have been published. AREAS COVERED This review summarizes advances using stem cells (SCs) in pre-clinical studies to promote clinical translation and in clinical trials to treat ALS. New technologies have been developed and new experimental in vitro and animal models are now available to facilitate pre-clinical research in this field and to determine the most promising approaches to pursue in patients. New clinical trial designs aimed at developing personalized SC-based treatment with biological endpoints are being defined. EXPERT OPINION Knowledge of the basic biology of ALS and on the use of SCs to study and potentially treat ALS continues to grow. However, a consensus has yet to emerge on how best to translate these results into therapeutic applications. The selection and follow-up of patients should be based on clinical, biological, and molecular criteria. Planning of SC-based clinical trials should be coordinated with patient profiling genetically and molecularly to achieve personalized treatment. Much work within basic and clinical research is still needed to successfully transition SC therapy in ALS.
Collapse
Affiliation(s)
- Letizia Mazzini
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Fabiola De Marchi
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Leonora Buzanska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Antonia Follenzi
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Novara, Italy
- Dipartimento Attività Integrate Ricerca Innovazione, Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e C. Arrigo, Alessandria, Italy
| | - Joel Clinton Glover
- Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital; Laboratory of Neural Development and Optical Recording (NDEVOR), Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maurizio Gelati
- Unità Produttiva per Terapie Avanzate (UPTA), IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Ivan Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Center for Developmental Biology and Reprogramming-CEDEBIOR, University of Sassari, Sassari, Italy
| | - Fatima Mesa-Herrera
- Reprogramming and Neural Regeneration Lab, BioBizkaia Health Research Institute, Barakaldo, Spain
| | - Dinko Mitrečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research and Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Cristina Olgasi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Rosario Sanchez-Pernaute
- Reprogramming and Neural Regeneration Lab, BioBizkaia Health Research Institute, Barakaldo, Spain
- Ikerbaske, Basque Foundation for Science, Bilbao, Spain
| | - Chiara Sgromo
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Novara, Italy
| | - Marzena Zychowicz
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Angelo Vescovi
- Unità Produttiva per Terapie Avanzate (UPTA), IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Daniela Ferrari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
7
|
Krsek A, Jagodic A, Baticic L. Nanomedicine in Neuroprotection, Neuroregeneration, and Blood-Brain Barrier Modulation: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1384. [PMID: 39336425 PMCID: PMC11433843 DOI: 10.3390/medicina60091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
Nanomedicine is a newer, promising approach to promote neuroprotection, neuroregeneration, and modulation of the blood-brain barrier. This review includes the integration of various nanomaterials in neurological disorders. In addition, gelatin-based hydrogels, which have huge potential due to biocompatibility, maintenance of porosity, and enhanced neural process outgrowth, are reviewed. Chemical modification of these hydrogels, especially with guanidine moieties, has shown improved neuron viability and underscores tailored biomaterial design in neural applications. This review further discusses strategies to modulate the blood-brain barrier-a factor critically associated with the effective delivery of drugs to the central nervous system. These advances bring supportive solutions to the solving of neurological conditions and innovative therapies for their treatment. Nanomedicine, as applied to neuroscience, presents a significant leap forward in new therapeutic strategies that might help raise the treatment and management of neurological disorders to much better levels. Our aim was to summarize the current state-of-knowledge in this field.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Ana Jagodic
- Department of Family Medicine, Community Health Center Krapina, 49000 Krapina, Croatia;
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
8
|
Kaur M, Fusco S, Van den Broek B, Aseervatham J, Rostami A, Iacovitti L, Grassi C, Lukomska B, Srivastava AK. Most recent advances and applications of extracellular vesicles in tackling neurological challenges. Med Res Rev 2024; 44:1923-1966. [PMID: 38500405 DOI: 10.1002/med.22035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Over the past few decades, there has been a notable increase in the global burden of central nervous system (CNS) diseases. Despite advances in technology and therapeutic options, neurological and neurodegenerative disorders persist as significant challenges in treatment and cure. Recently, there has been a remarkable surge of interest in extracellular vesicles (EVs) as pivotal mediators of intercellular communication. As carriers of molecular cargo, EVs demonstrate the ability to traverse the blood-brain barrier, enabling bidirectional communication. As a result, they have garnered attention as potential biomarkers and therapeutic agents, whether in their natural form or after being engineered for use in the CNS. This review article aims to provide a comprehensive introduction to EVs, encompassing various aspects such as their diverse isolation methods, characterization, handling, storage, and different routes for EV administration. Additionally, it underscores the recent advances in their potential applications in neurodegenerative disorder therapeutics. By exploring their unique capabilities, this study sheds light on the promising future of EVs in clinical research. It considers the inherent challenges and limitations of these emerging applications while incorporating the most recent updates in the field.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Salvatore Fusco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Bram Van den Broek
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jaya Aseervatham
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Abdolmohamad Rostami
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Lorraine Iacovitti
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Jefferson Stem Cell and Regenerative Neuroscience Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Amit K Srivastava
- Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Pachocki J, Verter F. Polish regulatory system regarding ATMP hospital exemptions. Front Immunol 2024; 15:1379134. [PMID: 38803487 PMCID: PMC11128580 DOI: 10.3389/fimmu.2024.1379134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction This article explains the current regulatory system in Poland regarding Advanced Therapy Medicinal Products given under Hospital Exemptions (ATMP-HE). Methods The relevant sections of Polish legislation are translated into English and their interaction is described. Results We analyze the impact of these regulations from the perspective of three stakeholder groups: manufacturers, physicians, and patients. Amendments enacted between 2018 and 2023 have substantially changed Polish implementation of the ATMP-HE pathway. In Poland, most ATMP-HE treatments have been therapies employing Mesenchymal Stromal Cells (MSC). Discussion Comparison to other European countries shows that Poland is within the mainstream of EU practices regarding ATMP-HE implementation. One notable issue is that Poland has relatively low per capita spending on healthcare, and ATMP-HE in Poland must be funded from outside the government healthcare system. Conclusions. The original intention of the legislation that created ATMP-HE was to allow access to experimental therapies for patients with unmet needs. It remains to be seen if that mission can be fulfilled amidst conflicting pressures from various stakeholder groups.
Collapse
Affiliation(s)
| | - Frances Verter
- Parent’s Guide to Cord Blood Foundation, Brookeville, MD, United States
| |
Collapse
|
10
|
Siwek T, Zwiernik B, Jezierska-Woźniak K, Jezierska K, Mycko MP, Selmaj KW. Intrathecal administration of mesenchymal stem cells in patients with adrenomyeloneuropathy. Front Neurol 2024; 15:1345503. [PMID: 38370525 PMCID: PMC10869536 DOI: 10.3389/fneur.2024.1345503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Background and objectives X-linked adrenomyeloneuropathy (AMN) is an inherited neurodegenerative disorder associated with mutations in the ABCD1 gene and the accumulation of very long-chain fatty acids (VLFCAs) in plasma and tissues. Currently, there is no effective treatment for AMN. We have aimed to evaluate the therapeutic effects of mesenchymal stem cell (MSC) transplantation in patients with AMN. Methods This is a small cohort open-label study with patients with AMN diagnosed and treated at the University Hospital in Olsztyn, Poland. All patients met clinical, biochemical, MRI, and neuropsychological criteria for AMN. MSCs derived from Wharton jelly, 20 × 106 cells, were administered intrathecally three times every 2 months, and patients were followed up for an additional 3 months. The primary outcome measures included a blinded assessment of lower limb muscle strength with the Medical Research Council Manual Muscle Testing scale at baseline and on every month visits until the end of the study. Additional outcomes included measurements of the timed 25-feet walk (T25FW) and VLFCA serum ratio. Results Three male patients with AMN with an age range of 26-37 years participated in this study. All patients experienced increased muscle strength in the lower limbs at the end of the study versus baseline. The power grade increased by 25-43% at the baseline. In addition, all patients showed an improvement trend in walking speed measured with the T25FW test. Treatment with MSCs in patients with AMN appeared to be safe and well tolerated. Discussion The results of this study demonstrated that intrathecal administration of WJ-MSC improves motor symptoms in patients with AMN. The current findings lend support to the safety and feasibility of MSC therapy as a potentially viable treatment option for patients with AMN.
Collapse
Affiliation(s)
- Tomasz Siwek
- Department of Neurology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- University Hospital, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Beata Zwiernik
- Department of Neurology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- University Hospital, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Katarzyna Jezierska-Woźniak
- Laboratory for Regenerative Medicine, Department of Neurosurgery, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamila Jezierska
- University Hospital, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marcin P. Mycko
- Department of Neurology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- University Hospital, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Krzysztof W. Selmaj
- Department of Neurology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- Center of Neurology, Lodz, Poland
| |
Collapse
|
11
|
Tang J, Kang Y, Zhou Y, Chen Q, Lan J, Liu X, Peng Y. Umbilical cord mesenchymal stem cell-conditioned medium inhibits microglial activation to ameliorate neuroinflammation in amyotrophic lateral sclerosis mice and cell models. Brain Res Bull 2023; 202:110760. [PMID: 37704056 DOI: 10.1016/j.brainresbull.2023.110760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/26/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease for which few effective therapeutic strategies are available. Increasing evidence indicates that neuroinflammation plays a significant role in ALS pathogenesis. Mesenchymal stem cell (MSC)-based therapy has been proposed for the treatment of neurodegenerative diseases, including ALS. In this study, we first demonstrated that systemic administration of conditioned medium derived from umbilical cord MSCs (UCMSC-CM) extends the lifespan of transgenic SOD1-G93A mice, a well-characterized model of familial ALS. Moreover, UCMSC-CM inhibits microglial activation and astrogliosis and alleviates the inflammatory milieu by reducing the release of proinflammatory cytokines and the expression of iNOS in the spinal cord. Using BV-2 cells overexpressing the SOD1-G93A mutant as an ALS cellular model, we uncovered that UCMSC-CM also suppresses the lipopolysaccharide (LPS)-induced inflammatory response, including reduced expression of proinflammatory cytokines and iNOS. Importantly, by culturing astrocytes alone in microglia-conditioned medium (MCM) or together with microglia in a transwell coculture system, we found that UCMSC-CM modulates the secretome of microglia exposed to inflammatory stimuli, thereby preventing the conversion of astrocytes to the A1 neurotoxic phenotype. This study revealed the anti-inflammatory properties of UCMSC-CM and its regulatory effect on glial activation in the treatment of neuroinflammation in ALS, providing strong evidence for the clinical application of UCMSC-CM.
Collapse
Affiliation(s)
- Jingshu Tang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuying Kang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yujun Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qiuyu Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jiaqi Lan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xuebin Liu
- Department of Cell Transplantation, General Hospital of Chinese People's Armed Police Forces, Beijing 100039, China; Beijing Zhongguang Tianyi Biotechnology Co., Ltd, Beijing 100026, China.
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
12
|
Jakl V, Popp T, Haupt J, Port M, Roesler R, Wiese S, Friemert B, Rojewski MT, Schrezenmeier H. Effect of Expansion Media on Functional Characteristics of Bone Marrow-Derived Mesenchymal Stromal Cells. Cells 2023; 12:2105. [PMID: 37626914 PMCID: PMC10453497 DOI: 10.3390/cells12162105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The therapeutic efficacy of mesenchymal stromal cells (MSCs) has been shown to rely on their immunomodulatory and regenerative properties. In order to obtain sufficient numbers of cells for clinical applications, MSCs have to be expanded ex vivo. Expansion media with xenogeneic-free (XF) growth-promoting supplements like human platelet lysate (PL) or serum- and xenogeneic-free (SF/XF) formulations have been established as safe and efficient, and both groups provide different beneficial qualities. In this study, MSCs were expanded in XF or SF/XF media as well as in mixtures thereof. MSCs cultured in these media were analyzed for phenotypic and functional properties. MSC expansion was optimal with SF/XF conditions when PL was present. Metabolic patterns, consumption of growth factors, and secretome of MSCs differed depending on the type and concentration of supplement. The lactate per glucose yield increased along with a higher proportion of PL. Many factors in the supernatant of cultured MSCs showed distinct patterns depending on the supplement (e.g., FGF-2, TGFβ, and insulin only in PL-expanded MSC, and leptin, sCD40L PDGF-AA only in SF/XF-expanded MSC). This also resulted in changes in cell characteristics like migratory potential. These findings support current approaches where growth media may be utilized for priming MSCs for specific therapeutic applications.
Collapse
Affiliation(s)
- Viktoria Jakl
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
| | - Tanja Popp
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
| | - Julian Haupt
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
- Clinic for Trauma Surgery and Orthopedics, Army Hospital Ulm, 89081 Ulm, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
| | - Reinhild Roesler
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany; (R.R.); (S.W.)
| | - Sebastian Wiese
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany; (R.R.); (S.W.)
| | - Benedikt Friemert
- Clinic for Trauma Surgery and Orthopedics, Army Hospital Ulm, 89081 Ulm, Germany
| | - Markus T. Rojewski
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|
13
|
Dulak J, Pecyna M. Unproven cell interventions in Poland and the exploitation of European Union law on advanced therapy medicinal products. Stem Cell Reports 2023; 18:1610-1620. [PMID: 37390824 PMCID: PMC10444563 DOI: 10.1016/j.stemcr.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 07/02/2023] Open
Abstract
The global threat of unproven "stem cell therapies" develops despite the repeated statements of scientific organizations and regulatory agencies warning about the improper rationale, lack of effectiveness, and potential health risks of such commercial activities. Here, this problem is discussed from Poland's perspective, where unjustified "stem cell medical experiments" have raised the concern of responsible scientists and physicians. The paper describes how the European Union law on advanced therapy medicinal products and the hospital exemption rule have been used improperly and unlawfully on a mass scale. The article indicates serious scientific, medical, legal, and social issues of these activities.
Collapse
Affiliation(s)
- Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| | - Marlena Pecyna
- Chair of Civil Law, Faculty of Law and Administration, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
14
|
Maldonado VV, Patel NH, Smith EE, Barnes CL, Gustafson MP, Rao RR, Samsonraj RM. Clinical utility of mesenchymal stem/stromal cells in regenerative medicine and cellular therapy. J Biol Eng 2023; 17:44. [PMID: 37434264 DOI: 10.1186/s13036-023-00361-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/19/2023] [Indexed: 07/13/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have been carefully examined to have tremendous potential in regenerative medicine. With their immunomodulatory and regenerative properties, MSCs have numerous applications within the clinical sector. MSCs have the properties of multilineage differentiation, paracrine signaling, and can be isolated from various tissues, which makes them a key candidate for applications in numerous organ systems. To accentuate the importance of MSC therapy for a range of clinical indications, this review highlights MSC-specific studies on the musculoskeletal, nervous, cardiovascular, and immune systems where most trials are reported. Furthermore, an updated list of the different types of MSCs used in clinical trials, as well as the key characteristics of each type of MSCs are included. Many of the studies mentioned revolve around the properties of MSC, such as exosome usage and MSC co-cultures with other cell types. It is worth noting that MSC clinical usage is not limited to these four systems, and MSCs continue to be tested to repair, regenerate, or modulate other diseased or injured organ systems. This review provides an updated compilation of MSCs in clinical trials that paves the way for improvement in the field of MSC therapy.
Collapse
Affiliation(s)
- Vitali V Maldonado
- Department of Biomedical Engineering, University of Arkansas, 790 W Dickson St, Fayetteville, AR, USA
| | - Neel H Patel
- Department of Biomedical Engineering, University of Arkansas, 790 W Dickson St, Fayetteville, AR, USA
| | - Emma E Smith
- Department of Biomedical Engineering, University of Arkansas, 790 W Dickson St, Fayetteville, AR, USA
| | - C Lowry Barnes
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Raj R Rao
- Department of Biomedical Engineering, University of Arkansas, 790 W Dickson St, Fayetteville, AR, USA
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
| | - Rebekah M Samsonraj
- Department of Biomedical Engineering, University of Arkansas, 790 W Dickson St, Fayetteville, AR, USA.
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
15
|
Cecerska-Heryć E, Pękała M, Serwin N, Gliźniewicz M, Grygorcewicz B, Michalczyk A, Heryć R, Budkowska M, Dołęgowska B. The Use of Stem Cells as a Potential Treatment Method for Selected Neurodegenerative Diseases: Review. Cell Mol Neurobiol 2023:10.1007/s10571-023-01344-6. [PMID: 37027074 DOI: 10.1007/s10571-023-01344-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Stem cells have been the subject of research for years due to their enormous therapeutic potential. Most neurological diseases such as multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) are incurable or very difficult to treat. Therefore new therapies are sought in which autologous stem cells are used. They are often the patient's only hope for recovery or slowing down the progress of the disease symptoms. The most important conclusions arise after analyzing the literature on the use of stem cells in neurodegenerative diseases. The effectiveness of MSC cell therapy has been confirmed in ALS and HD therapy. MSC cells slow down ALS progression and show early promising signs of efficacy. In HD, they reduced huntingtin (Htt) aggregation and stimulation of endogenous neurogenesis. MS therapy with hematopoietic stem cells (HSCs) inducted significant recalibration of pro-inflammatory and immunoregulatory components of the immune system. iPSC cells allow for accurate PD modeling. They are patient-specific and therefore minimize the risk of immune rejection and, in long-term observation, did not form any tumors in the brain. Extracellular vesicles derived from bone marrow mesenchymal stromal cells (BM-MSC-EVs) and Human adipose-derived stromal/stem cells (hASCs) cells are widely used to treat AD. Due to the reduction of Aβ42 deposits and increasing the survival of neurons, they improve memory and learning abilities. Despite many animal models and clinical trial studies, cell therapy still needs to be refined to increase its effectiveness in the human body.
Collapse
Affiliation(s)
- Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland.
| | - Maja Pękała
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Natalia Serwin
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Marta Gliźniewicz
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Bartłomiej Grygorcewicz
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University of Szczecin, Broniewskiego 26, 71-460, Szczecin, Poland
| | - Rafał Heryć
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| |
Collapse
|
16
|
Stem Cell Therapies in Movement Disorders: Lessons from Clinical Trials. Biomedicines 2023; 11:biomedicines11020505. [PMID: 36831041 PMCID: PMC9953050 DOI: 10.3390/biomedicines11020505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/04/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
Stem cell-based therapies (SCT) to treat neurodegenerative disorders have promise but clinical trials have only recently begun, and results are not expected for several years. While most SCTs largely lead to a symptomatic therapeutic effect by replacing lost cell types, there may also be disease-modifying therapeutic effects. In fact, SCT may complement a multi-drug, subtype-specific therapeutic approach, consistent with the idea of precision medicine, which matches molecular therapies to biological subtypes of disease. In this narrative review, we examine published and ongoing trials in SCT in Parkinson's Disease, atypical parkinsonian disorders, Huntington's disease, amyotrophic lateral sclerosis, and spinocerebellar ataxia in humans. We discuss the benefits and pitfalls of using this treatment approach within the spectrum of disease-modification efforts in neurodegenerative diseases. SCT may hold greater promise in the treatment of neurodegenerative disorders, but much research is required to determine the feasibility, safety, and efficacy of these complementary aims of therapeutic efforts.
Collapse
|
17
|
Sun F, Zhang Y, Wu X, Xu X, Zhu C, Huang W. Breviscapine Combined with BMSCs Reduces Aβ Deposition in Rat with Alzheimer's Disease by Regulating Circular RNA ciRS-7. Curr Mol Med 2023; 23:76-86. [PMID: 35048805 DOI: 10.2174/1566524022666220113151044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/05/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022]
Abstract
AIMS This study aimed to clarify that breviscapine combined with bone marrow mesenchymal stem cells (BMSCs) treatment can reduce Aβ deposition in Alzheimer's disease (AD) patients. BACKGROUND AD is a common degenerative disease of the central nervous system. Aβ protein deposition in the cerebral cortex and hippocampus causes neuronal peroxidation damage, synaptic dysfunction, neuroinflammation, and nerve cell apoptosis, and ultimately leads to AD. OBJECTIVE To investigate whether breviscapine combined with BMSCs treatment can reduce Aβ deposition in AD. METHODS The AD rat model was successfully induced by Aβ1-42. The expression of protein and mRNA was detected by western blot and reverse transcription-quantitative PCR (RT-qPCR), respectively. RESULTS In AD rat brain tissue, the expression of circular RNA ciRS-7 (ciRS-7), ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), and NF-kappaB p65 was significantly downregulated, and the expression of β-amyloid precursor protein (APP), β-site APPcleaving enzyme 1 (BAEC1), and Aβ was upregulated. The expression of ciRS-7, UCHL1, and p65 was significantly upregulated after breviscapine or BMSCs treatment, and there was increased APP and BAEC1 degradation. Notably, breviscapine combined with BMSCs treatment was more effective than either treatment alone. In SH-SY5Y cells, overexpression of ciRS-7 reduced Aβ deposition by upregulating UCHL1 to degrade APP and BAEC1, but these effects were reversed with inhibition of NF-kB signaling. Finally, knockdown of ciRS-7 elevated Aβ, APP, and BAEC1 expression in each group of rats compared with the control. CONCLUSION Breviscapine combined with BMSCs treatment can reduce Aβ deposition in AD rats and promote the degradation of APP and BAEC1 by activating NF-kB to promote UCHL1 expression.
Collapse
Affiliation(s)
- Fengqin Sun
- Department of Neurology, The Third People's Hospital of Yunnan Province, 292 Beijing Road, Kunming, 650011, China
| | - Yulin Zhang
- Department of Neurology, The Third People's Hospital of Yunnan Province, 292 Beijing Road, Kunming, 650011, China
| | - Xinran Wu
- Teaching Research Department, The Third People's Hospital of Yunnan Province, 292 Beijing Road, Kunming, 650011, China
| | - Xu Xu
- Department of Neurology, The Third People's Hospital of Yunnan Province, 292 Beijing Road, Kunming, 650011, China
| | - Chaodie Zhu
- Department of Neurology, The Third People's Hospital of Yunnan Province, 292 Beijing Road, Kunming, 650011, China
| | - Wei Huang
- Department of Neurology, The Third People's Hospital of Yunnan Province, 292 Beijing Road, Kunming, 650011, China
| |
Collapse
|
18
|
Najafi S, Najafi P, Kaffash Farkhad N, Hosseini Torshizi G, Assaran Darban R, Boroumand AR, Sahab-Negah S, Khodadoust MA, Tavakol-Afshari J. Mesenchymal stem cell therapy in amyotrophic lateral sclerosis (ALS) patients: A comprehensive review of disease information and future perspectives. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:872-881. [PMID: 37427325 PMCID: PMC10329242 DOI: 10.22038/ijbms.2023.66364.14572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 03/15/2023] [Indexed: 07/11/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare deadly progressive neurological disease that primarily affects the upper and lower motor neurons with an annual incidence rate of 0.6 to 3.8 per 100,000 people. Weakening and gradual atrophy of the voluntary muscles are the first signs of the disease onset affecting all aspects of patients' lives, including eating, speaking, moving, and even breathing. Only 5-10% of patients have a familial type of the disease and show an autosomal dominant pattern, but the cause of the disease is unknown in the remaining 90% of patients (Sporadic ALS). However, in both types of disease, the patient's survival is 2 to 5 years from the disease onset. Some clinical and molecular biomarkers, magnetic resonance imaging (MRI), blood or urine test, muscle biopsy, and genetic testing are complementary methods for disease diagnosis. Unfortunately, with the exception of Riluzole, the only medically approved drug for the management of this disease, there is still no definitive cure for it. In this regard, the use of mesenchymal stem cells (MSCs) for the treatment or management of the disease has been common in preclinical and clinical studies for many years. MSCs are multipotent cells having immunoregulatory, anti-inflammatory, and differentiation ability that makes them a good candidate for this purpose. This review article aims to discuss multiple aspects of ALS disease and focus on MSCs' role in disease management based on performed clinical trials.
Collapse
Affiliation(s)
- Shahrzad Najafi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parizad Najafi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Najmeh Kaffash Farkhad
- Immunology Research Center, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Reza Assaran Darban
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Amir Reza Boroumand
- Neuroscience Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Sahab-Negah
- Neuroscience Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Mohammad Ali Khodadoust
- Immunology Research Center, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol-Afshari
- Immunology Research Center, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Zayed MA, Sultan S, Alsaab HO, Yousof SM, Alrefaei GI, Alsubhi NH, Alkarim S, Al Ghamdi KS, Bagabir SA, Jana A, Alghamdi BS, Atta HM, Ashraf GM. Stem-Cell-Based Therapy: The Celestial Weapon against Neurological Disorders. Cells 2022; 11:3476. [PMID: 36359871 PMCID: PMC9655836 DOI: 10.3390/cells11213476] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
Stem cells are a versatile source for cell therapy. Their use is particularly significant for the treatment of neurological disorders for which no definitive conventional medical treatment is available. Neurological disorders are of diverse etiology and pathogenesis. Alzheimer's disease (AD) is caused by abnormal protein deposits, leading to progressive dementia. Parkinson's disease (PD) is due to the specific degeneration of the dopaminergic neurons causing motor and sensory impairment. Huntington's disease (HD) includes a transmittable gene mutation, and any treatment should involve gene modulation of the transplanted cells. Multiple sclerosis (MS) is an autoimmune disorder affecting multiple neurons sporadically but induces progressive neuronal dysfunction. Amyotrophic lateral sclerosis (ALS) impacts upper and lower motor neurons, leading to progressive muscle degeneration. This shows the need to try to tailor different types of cells to repair the specific defect characteristic of each disease. In recent years, several types of stem cells were used in different animal models, including transgenic animals of various neurologic disorders. Based on some of the successful animal studies, some clinical trials were designed and approved. Some studies were successful, others were terminated and, still, a few are ongoing. In this manuscript, we aim to review the current information on both the experimental and clinical trials of stem cell therapy in neurological disorders of various disease mechanisms. The different types of cells used, their mode of transplantation and the molecular and physiologic effects are discussed. Recommendations for future use and hopes are highlighted.
Collapse
Affiliation(s)
- Mohamed A. Zayed
- Physiology Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Physiology Department, Faculty of Medicine, Menoufia University, Menoufia 32511, Egypt
| | - Samar Sultan
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Shimaa Mohammad Yousof
- Physiology Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Medical Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghadeer I. Alrefaei
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Nouf H. Alsubhi
- Department of Biological Sciences, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Saleh Alkarim
- Embryonic and Cancer Stem Cell Research Group, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Embryonic Stem Cells Research Unit, Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kholoud S. Al Ghamdi
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sali Abubaker Bagabir
- Genetic Unit, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Ankit Jana
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Campus-11, Patia, Bhubaneswar 751024, Odisha, India
| | - Badrah S. Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hazem M. Atta
- Clinical Biochemistry Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| |
Collapse
|
20
|
Brianna, Ling APK, Wong YP. Applying stem cell therapy in intractable diseases: a narrative review of decades of progress and challenges. Stem Cell Investig 2022; 9:4. [PMID: 36238449 PMCID: PMC9552054 DOI: 10.21037/sci-2022-021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/09/2022] [Indexed: 08/10/2023]
Abstract
Background and Objective Stem cell therapy (SCT) is one of the vastly researched branches of regenerative medicine as a therapeutic tool to treat incurable diseases. With the use of human stem cells such as embryonic stem cells (ESCs), adult stem cells (ASCs) and induced pluripotent stem cells (iPSCs), stem cell therapy aims to regenerate or repair damaged tissues and congenital defects. As stem cells are able to undergo infinite self-renewal, differentiate into various types of cells and secrete protective paracrine factors, many researchers have investigated the potential of SCT in regenerative medicine. Therefore, this review aims to provide a comprehensive review on the recent application of SCT in various intractable diseases, namely, haematological diseases, neurological diseases, diabetes mellitus, retinal degenerative disorders and COVID-19 infections along with the challenges faced in the clinical translation of SCT. Methods An extensive search was conducted on Google scholar, PubMed and Clinicaltrials.gov using related keywords. Latest articles on stem cell therapy application in selected diseases along with their challenges in clinical applications were selected. Key content and findings In vitro and in vivo studies involving SCT are shown to be safe and efficacious in treating various diseases covered in this review. There are also a number of small-scale clinical trials that validated the positive therapeutic outcomes of SCT. Nevertheless, the effectiveness of SCT are highly variable as some SCT works best in patients with early-stage diseases while in other diseases, SCT is more likely to work in patients in late stages of illnesses. Among the challenges identified in SCT translation are uncertainty in the underlying stem cell mechanism, ethical issues, genetic instability and immune rejection. Conclusions SCT will be a revolutionary treatment in the future that will provide hope to patients with intractable diseases. Therefore, studies ought to be done to ascertain the long-term effects of SCT while addressing the challenges faced in validating SCT for clinical use. Moreover, as there are many studies investigating the safety and efficacy of SCT, future studies should look into elucidating the regenerative and reparative capabilities of stem cells which largely remains unknown.
Collapse
Affiliation(s)
- Brianna
- Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Ying Pei Wong
- Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Huang H, Al Zoubi ZM, Moviglia G, Sharma HS, Sarnowska A, Sanberg PR, Chen L, Xue Q, Siniscalco D, Feng S, Saberi H, Guo X, Xue M, Dimitrijevic MR, Andrews RJ, Mao G, Zhao RC, Han F. Clinical cell therapy guidelines for neurorestoration (IANR/CANR 2022). JOURNAL OF NEURORESTORATOLOGY 2022. [DOI: 10.1016/j.jnrt.2022.100015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
22
|
Margiana R, Markov A, Zekiy AO, Hamza MU, Al-Dabbagh KA, Al-Zubaidi SH, Hameed NM, Ahmad I, Sivaraman R, Kzar HH, Al-Gazally ME, Mustafa YF, Siahmansouri H. Clinical application of mesenchymal stem cell in regenerative medicine: a narrative review. Stem Cell Res Ther 2022; 13:366. [PMID: 35902958 PMCID: PMC9330677 DOI: 10.1186/s13287-022-03054-0] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/18/2022] [Indexed: 12/16/2022] Open
Abstract
The multipotency property of mesenchymal stem cells (MSCs) has attained worldwide consideration because of their immense potential for immunomodulation and their therapeutic function in tissue regeneration. MSCs can migrate to tissue injury areas to contribute to immune modulation, secrete anti-inflammatory cytokines and hide themselves from the immune system. Certainly, various investigations have revealed anti-inflammatory, anti-aging, reconstruction, and wound healing potentials of MSCs in many in vitro and in vivo models. Moreover, current progresses in the field of MSCs biology have facilitated the progress of particular guidelines and quality control approaches, which eventually lead to clinical application of MSCs. In this literature, we provided a brief overview of immunoregulatory characteristics and immunosuppressive activities of MSCs. In addition, we discussed the enhancement, utilization, and therapeutic responses of MSCs in neural, liver, kidney, bone, heart diseases, and wound healing.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Alexander Markov
- Tyumen State Medical University, Tyumen, Russian Federation.,Tyumen Industrial University, Tyumen, Russian Federation
| | - Angelina O Zekiy
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | | | - Noora M Hameed
- Anesthesia Techniques, Al-Nisour University College, Baghdad, Iraq
| | - Irshad Ahmad
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - R Sivaraman
- Department of Mathematics, Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, University of Madras, Chennai, India
| | - Hamzah H Kzar
- Veterinary Medicine College, Al-Qasim Green University, Al-Qasim, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Maksymowicz S, Libura M, Malarkiewicz P. Overcoming therapeutic nihilism. Breaking bad news of amyotrophic lateral sclerosis—a patient-centred perspective in rare diseases. Neurol Sci 2022; 43:4257-4265. [PMID: 35149928 PMCID: PMC9213364 DOI: 10.1007/s10072-022-05931-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/03/2022] [Indexed: 11/24/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare, incurable, and fatal neurodegenerative disease with median survival time from onset to death ranging from 20 to 48 months. Breaking bad news about ALS diagnosis is a challenging task for physicians and a life-changing experience for patients. Several protocols for delivering difficult information are available, including SPIKES and EMPATHY. Our goal was to assess to what extent these guidelines are followed in Polish ALS patients’ experience as well as to identify any other patients’ preferences not addressed by the guidelines. Participants of our study were recruited via a neurology clinic. Twenty-four patients with confirmed ALS diagnosis were interviewed using in-depth interview and a self-constructed questionnaire: 9 females, 15 males in age ranging from 30–39 to 60–69. The analysis showed a pattern of shortcomings and fundamental violations of available protocols reported by ALS patients. Patients also had to deal with therapeutic nihilism, as they were perceived as “hopeless cases”; unlike in oncological setting, their end-of-life needs were not accommodated by some standard schemes. As a conclusion, we recommend using extended breaking bad news protocols with special emphasis on preparing a treatment plan, giving the patient hope and sense of purpose, offering psychological support and counselling directed to patients and caregivers, and providing the patient with meaningful information about the disease, social support, treatment options, and referral to appropriate health care centres.
Collapse
Affiliation(s)
- Stanisław Maksymowicz
- Department of Psychology and Sociology of Health and Public Health, School of Public Health, Collegium Medicum of the University of Warmia and Mazury, Olsztyn, Poland
- Instytut Terapii Komórkowych S.A., Olsztyn, Poland
| | - Maria Libura
- Medical Education and Simulation Department, School of Medicine, Collegium Medicum of the University of Warmia and Mazury, Olsztyn, Poland
| | - Paulina Malarkiewicz
- Department of Obstetrics and Gynaecology, School of Medicine, Collegium Medicum of the University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
24
|
Transplantation of Human Glial Progenitors to Immunodeficient Neonatal Mice with Amyotrophic Lateral Sclerosis (SOD1/rag2). Antioxidants (Basel) 2022; 11:antiox11061050. [PMID: 35739947 PMCID: PMC9219833 DOI: 10.3390/antiox11061050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 02/04/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal disease with no effective therapy. The neurodegenerative character of ALS was an appealing target for stem cell-based regenerative approaches. Different types of stem cells have been transplanted in both preclinical and clinical settings, but no convincing outcomes have been noted. Human glial restricted precursors (hGRPs) transplanted intraventricularly to neonatal, immunodeficient mice rescued lifespan of dysmyelinated mice. Intraspinal injection of hGRPs also provided benefits in the mouse model of ALS. Therefore, we have recently developed an immunodeficient model of ALS (double mutant SOD1/rag2), and, in this study, we tested the strategy previously used in dysmyelinated mice of intraventricular transplantation of hGRPs to immunodeficient mice. To maximize potential therapeutic benefits, the cells were implanted into neonates. We used magnetic resonance imaging to investigate the progression of neurodegeneration and therapeutic responses. A cohort of animals was devoted to survival assessment. Postmortem analysis included immunohistochemistry, Nissl staining, and Western blots. Cell transplantation was not associated with improved animal survival, slowing neurodegeneration, or accumulation of misfolded superoxide dismutase 1. Postmortem analysis did not reveal any surviving hGRPs. Grafting into neonatal immunodeficient recipients did not prevent ALS-induced cell loss, which might explain the lack of positive therapeutic effects. The results of this study are in line with the modest effects of clinical neurotransplantations. Therefore, we urge stem cell and ALS communities to develop and implement cell tracking methods to better understand cell fates in the clinic.
Collapse
|
25
|
Zarrabi M, Akbari MG, Amanat M, Majmaa A, Moaiedi AR, Montazerlotfelahi H, Nouri M, Hamidieh AA, Badv RS, Karimi H, Rabbani A, Mohebbi A, Rahimi-Dehgolan S, Rahimi R, Dehghan E, Vosough M, Abroun S, Shamsabadi FM, Tavasoli AR, Alizadeh H, Pak N, Zamani GR, Mohammadi M, Javadzadeh M, Ghofrani M, Hassanpour SH, Heidari M, Taghdiri MM, Mohseni MJ, Noparast Z, Masoomi S, Goudarzi M, Mohamadpour M, Shodjaee R, Samimi S, Mohammad M, Gholami M, Vafaei N, Koochakzadeh L, Valizadeh A, Malamiri RA, Ashrafi MR. The safety and efficacy of umbilical cord blood mononuclear cells in individuals with spastic cerebral palsy: a randomized double-blind sham-controlled clinical trial. BMC Neurol 2022; 22:123. [PMID: 35351020 PMCID: PMC8966246 DOI: 10.1186/s12883-022-02636-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION The current multi-center, randomized, double-blind study was conducted among children with cerebral palsy (CP) to assess the safety and efficacy of umbilical cord blood mononuclear cell (UCB-MNC). We performed the diffusion tensor imaging to assess the changes in the white matter structure. METHODS Males and females aged 4 to 14 years old with spastic CP were included. Eligible participants were allocated in 4:1 ratio to be in the experimental or control groups; respectively. Individuals who were assigned in UCB-MNC group were tested for human leukocyte antigen (HLA) and fully-matched individuals were treated with UCB-MNCs. A single dose (5 × 106 /kg) UCB-MNCs were administered via intrathecal route in experimental group. The changes in gross motor function measure (GMFM)-66 from baseline to one year after treatment were the primary endpoints. The mean changes in modified Ashworth scale (MAS), pediatric evaluation of disability inventory (PEDI), and CP quality of life (CP-QoL) were also evaluated and compared between groups. The mean changes in fractional anisotropy (FA) and mean diffusivity (MD) of corticospinal tract (CST) and posterior thalamic radiation (PTR) were the secondary endpoints. Adverse events were safety endpoint. RESULTS There were 72 included individuals (36 cases in each group). The mean GMFM-66 scores increased in experimental group; compared to baseline (+ 9.62; 95%CI: 6.75, 12.49) and control arm (β: 7.10; 95%CI: 2.08, 12.76; Cohen's d: 0.62) and mean MAS reduced in individuals treated with UCB-MNCs compared to the baseline (-0.87; 95%CI: -1.2, -0.54) and control group (β: -0.58; 95%CI: -1.18, -0.11; Cohen's d: 0.36). The mean PEDI scores and mean CP-QoL scores in two domains were higher in the experimental group compared to the control. The imaging data indicated that mean FA increased and MD decreased in participants of UCB-MNC group indicating improvements in white matter structure. Lower back pain, headaches, and irritability were the most common adverse events within 24 h of treatment that were related to lumbar puncture. No side effects were observed during follow-up. CONCLUSIONS This trial showed that intrathecal injection of UCB-MNCs were safe and effective in children with CP. TRIAL REGISTRATION The study was registered with ClinicalTrials.gov ( NCT03795974 ).
Collapse
Affiliation(s)
- Morteza Zarrabi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Masood Ghahvechi Akbari
- Physical Medicine and Rehabilitation Department, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Man Amanat
- Division of Neurogenetics and Neuroscience, The Moser Center for Leukodystrophies, Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Anahita Majmaa
- Pediatrics Center of Excellence, Pediatric Intensive Unit, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Moaiedi
- Department of Pediatric Neurology, Clinical Research Development Center of Children Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hadi Montazerlotfelahi
- Department of Pediatrics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Masoumeh Nouri
- R & D Department, Royan Stem Cell Technology Co, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatrics Center of Excellence Pediatric Hematology, Oncology and Stem Cell Transplantation Department, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Karimi
- Neurorehabilitation Research Center University of Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ali Rabbani
- Pediatrics Center of Excellence Pediatric Endocrinology Department, Growth and Development Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mohebbi
- Pediatrics Center of Excellence, Growth and Development Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Rahimi-Dehgolan
- Physical Medicine and Rehabilitation Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Rosa Rahimi
- Physical Medicine and Rehabilitation Department, Khatamolanbia Hospital, Tehran, Iran
| | - Ensieh Dehghan
- Transplantation Department, Royan Stem Cell Technology Co, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saeed Abroun
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Ali Reza Tavasoli
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Houman Alizadeh
- Pediatrics Center of Excellence, Department of Radiology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Pak
- Pediatrics Center of Excellence, Department of Radiology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholam Reza Zamani
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Mohammadi
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Javadzadeh
- Department of Pediatric Neurology, Mofid Children's Hospital, Pediatric Neurology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ghofrani
- Department of Pediatric Neurology, Mofid Children's Hospital, Pediatric Neurology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Hossein Hassanpour
- Department of Pediatric Neurology, Aliasghar Children's Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Heidari
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Taghdiri
- Department of Pediatric Neurology, Mofid Children's Hospital, Pediatric Neurology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohamad Javad Mohseni
- Pediatric Urology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Noparast
- Department of Pediatric Nephrology, Bahrami Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Safdar Masoomi
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Goudarzi
- Department of Pediatric Anesthesiology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Mohamadpour
- Pediatrics Center of Excellence, Pediatric Intensive Unit, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Shodjaee
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Solaleh Samimi
- Physical Medicine and Rehabilitation Department, Khatamolanbia Hospital, Tehran, Iran
| | | | - Mona Gholami
- Physical Medicine and Rehabilitation Department, Khatamolanbia Hospital, Tehran, Iran
| | - Nahid Vafaei
- Faculty of Medicine, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Leyli Koochakzadeh
- Pediatrics Center of Excellence Pediatric Hematology, Department of Hematology & Oncology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Valizadeh
- Faculty of Medicine, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Azizi Malamiri
- Department of Paediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Reza Ashrafi
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Ding Y, Botchway BOA, Zhang Y, Jin T, Liu X. The combination of autologous mesenchymal stem cell-derived exosomes and neurotrophic factors as an intervention for amyotrophic lateral sclerosis. Ann Anat 2022; 242:151921. [PMID: 35278658 DOI: 10.1016/j.aanat.2022.151921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
Abstract
Amyotrophic lateral sclerosis is a chronic progressive degeneration of motor neurons and has a high mortality. Riluzole and edaravone are the only approved medications currently being used for amyotrophic lateral sclerosis in clinical settings. However, they can lead to serious complications, such as injuries to the liver and kidney. To date, there is no effective treatment for amyotrophic lateral sclerosis. In this regard, investigations concerning the employment of exosomes, mesenchymal stem cells, and neurotrophic factors to ameliorate amyotrophic lateral sclerosis are attracting considerable attention in the scientific community. Herein, we systematically analyze the relationship relevant to autologous mesenchymal stem cell derived-exosomes, neurotrophic factors and amyotrophic lateral sclerosis. Mesenchymal stem cells modulate immune response, mitigate oxidative stress, promote neuronal regeneration, and differentiate into neuronal and glial cells. Furthermore, exosomes from mesenchymal stem cells exert beneficial effects on their mother cells by preventing abnormal differentiation of mesenchymal stem cells. Similarly, neurotrophic factors regulate inflammatory response, stimulate the neuron repair, and the recovery of neuronal functioning. Therefore, autologous mesenchymal stem cells-derived exosomes combined with neurotrophic factors could potentially be an effective interventional medium for amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Yingying Ding
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China; School of Basic Medical Sciences, Hangzhou Normal University, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Tian Jin
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China.
| |
Collapse
|
27
|
Nabavi SM, Karimi SK, Arab L, Sanjari L, Mardpour S, Azimian V, Jarughi N, Ghaheri A, Hosseini SE, Aghdami N, Vosough M. Safety and Efficacy of Allogeneic Adipose Tissue Mesenchymal Stromal Cells in Amyotrophic Lateral Sclerosis Patients, Single-Center, Prospective, Open-Label, Single-Arm Clinical Trial, Long-Term Follow-up. CELL JOURNAL 2021; 23. [PMID: 34979067 PMCID: PMC8753106 DOI: 10.22074/cellj.2021.7984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with very limited treatment options. Stem cells have been raised as a new treatment modality for these patients. We have designed a single-center, prospective, open-label, and single arm clinical trial to assess the safety, feasibility, and rather efficacy of administrating allogeneic adipose-derived mesenchymal stromal cells (Ad-MSCs) in ALS patients. We enrolled 17 patients with confirmed ALS diagnosis with ALS Functional Rating Scale-Revised (ALSFRS-R) ≥24 and predicted forced vital capacity (FVC) ≥40%. Allogeneic Ad-MSCs were transplanted intravenously for all patients. Follow-ups were done at 24 hours, 2, 4, 6, and 12 months after cell infusion by checking adverse events, laboratory tests, and clinically by ALSFRS-R and FVC. Patients were also followed five years later and ALSFRS-R score was recorded in the survived individuals. There was no report of severe adverse events related to cell infusion. Two patients experienced dyspnea and chest pain 36 and 65 days after cell infusion due to pulmonary emboli. The progressive decrease in ALSFRS-R and FVC levels was recorded and three patients died in the first year. During five years follow up, despite a notable decrease in functional scores, 5 patients survived. Intravenous (IV) infusion of allogeneic Ad-MSCs in ALS patients is safe and feasible. The survival rate of the patients is more than IV autologous MSCs (Registration number: IRCT20080728001031N26).
Collapse
Affiliation(s)
- Seyed Massood Nabavi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran,
Iran,P.O.Box: 1665664511Department of Regenerative MedicineCell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyTehranIran
Emails:,
| | - Shahedeh Karimi Karimi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran,
Iran
| | - Leila Arab
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran,
Iran
| | - Leila Sanjari
- International Medicine Department, Mostafa Khomeini Medical Center, Shahed University, Tehran, Iran
| | - Soura Mardpour
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran,
Iran
| | - Vajiheh Azimian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran,
Iran,Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Neda Jarughi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran,
Iran
| | - Azadeh Ghaheri
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Seyedeh-Esmat Hosseini
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran,
Iran,Nursing Care Research Center, School of Nursing and Midwifery, Iran University of Medical Science, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran,
Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran,
Iran,P.O.Box: 1665664511Department of Regenerative MedicineCell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyTehranIran
Emails:,
| |
Collapse
|
28
|
Świątkowska‐Flis B, Zdolińska‐Malinowska I, Sługocka D, Boruczkowski D. The use of umbilical cord-derived mesenchymal stem cells in patients with muscular dystrophies: Results from compassionate use in real-life settings. Stem Cells Transl Med 2021; 10:1372-1383. [PMID: 34313400 PMCID: PMC8459640 DOI: 10.1002/sctm.21-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/10/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
Muscular dystrophies are genetically determined progressive diseases with no cause-related treatment and limited supportive treatment. Although stem cells cannot resolve the underlying genetic conditions, their wide-ranging therapeutic properties may ameliorate the consequences of the involved mutations (oxidative stress, inflammation, mitochondrial dysfunction, necrosis). In this study, we administered advanced therapy medicinal product containing umbilical cord-derived mesenchymal stem cells (UC-MSCs) to 22 patients with muscular dystrophies. Patients received one to five intravenous and/or intrathecal injections per treatment course in up to two courses every 2 months. Four standard doses of 10, 20, 30, or 40 × 106 UC-MSCs per injection were used; the approximate dose per kilogram was 1 × 106 UC-MSCs. Muscle strength was measured with a set of CQ Dynamometer computerized force meters (CQ Elektronik System, Czernica, Poland). Statistical analysis of muscle strength in the whole group showed significant improvement in the right upper limb (+4.0 N); left hip straightening (+4.5 N) and adduction (+0.5 N); right hip straightening (+1.0 N), bending (+7.5 N), and adduction (+2.5 N); right knee straightening (+8.5 N); left shoulder revocation (+13.0 N), straightening (+5.5 N), and bending (+6.5 N); right shoulder adduction (+3.0 N), revocation (+10.5 N), and bending (+5 N); and right elbow straightening (+9.5 N); all these differences were statistically significant. In six patients (27.3%) these changes led to improvement in gait analysis or movement scale result. Only one patient experienced transient headache and lower back pain after the last administration. In conclusion, UC-MSC therapy may be considered as a therapeutic option for these patients.
Collapse
Affiliation(s)
- Beata Świątkowska‐Flis
- Polish Center of Cell Therapy and Immunotherapy in Częstochowa, CM KlaraCzęstochowaPoland
- Faculty of Health SciencesJan Długosz University of Humanities and Life SciencesCzęstochowaPoland
| | | | - Dominika Sługocka
- Polish Center of Cell Therapy and Immunotherapy in Częstochowa, CM KlaraCzęstochowaPoland
| | | |
Collapse
|
29
|
De Marchi F, Munitic I, Amedei A, Berry JD, Feldman EL, Aronica E, Nardo G, Van Weehaeghe D, Niccolai E, Prtenjaca N, Sakowski SA, Bendotti C, Mazzini L. Interplay between immunity and amyotrophic lateral sclerosis: Clinical impact. Neurosci Biobehav Rev 2021; 127:958-978. [PMID: 34153344 PMCID: PMC8428677 DOI: 10.1016/j.neubiorev.2021.06.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/07/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a debilitating and rapidly fatal neurodegenerative disease. Despite decades of research and many new insights into disease biology over the 150 years since the disease was first described, causative pathogenic mechanisms in ALS remain poorly understood, especially in sporadic cases. Our understanding of the role of the immune system in ALS pathophysiology, however, is rapidly expanding. The aim of this manuscript is to summarize the recent advances regarding the immune system involvement in ALS, with particular attention to clinical translation. We focus on the potential pathophysiologic mechanism of the immune system in ALS, discussing local and systemic factors (blood, cerebrospinal fluid, and microbiota) that influence ALS onset and progression in animal models and people. We also explore the potential of Positron Emission Tomography to detect neuroinflammation in vivo, and discuss ongoing clinical trials of therapies targeting the immune system. With validation in human patients, new evidence in this emerging field will serve to identify novel therapeutic targets and provide realistic hope for personalized treatment strategies.
Collapse
Affiliation(s)
- Fabiola De Marchi
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, Novara, 28100, Italy
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000, Rijeka, Croatia
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - James D Berry
- Sean M. Healey & AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, MA, 02114, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Giovanni Nardo
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milanm, 20156, Italy
| | - Donatienne Van Weehaeghe
- Division of Nuclear Medicine, Department of Imaging and Pathology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Elena Niccolai
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Nikolina Prtenjaca
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000, Rijeka, Croatia
| | - Stacey A Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milanm, 20156, Italy
| | - Letizia Mazzini
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, Novara, 28100, Italy.
| |
Collapse
|
30
|
Sykova E, Cizkova D, Kubinova S. Mesenchymal Stem Cells in Treatment of Spinal Cord Injury and Amyotrophic Lateral Sclerosis. Front Cell Dev Biol 2021; 9:695900. [PMID: 34295897 PMCID: PMC8290345 DOI: 10.3389/fcell.2021.695900] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/31/2021] [Indexed: 01/01/2023] Open
Abstract
Preclinical and clinical studies with various stem cells, their secretomes, and extracellular vesicles (EVs) indicate their use as a promising strategy for the treatment of various diseases and tissue defects, including neurodegenerative diseases such as spinal cord injury (SCI) and amyotrophic lateral sclerosis (ALS). Autologous and allogenic mesenchymal stem cells (MSCs) are so far the best candidates for use in regenerative medicine. Here we review the effects of the implantation of MSCs (progenitors of mesodermal origin) in animal models of SCI and ALS and in clinical studies. MSCs possess multilineage differentiation potential and are easily expandable in vitro. These cells, obtained from bone marrow (BM), adipose tissue, Wharton jelly, or even other tissues, have immunomodulatory and paracrine potential, releasing a number of cytokines and factors which inhibit the proliferation of T cells, B cells, and natural killer cells and modify dendritic cell activity. They are hypoimmunogenic, migrate toward lesion sites, induce better regeneration, preserve perineuronal nets, and stimulate neural plasticity. There is a wide use of MSC systemic application or MSCs seeded on scaffolds and tissue bridges made from various synthetic and natural biomaterials, including human decellularized extracellular matrix (ECM) or nanofibers. The positive effects of MSC implantation have been recorded in animals with SCI lesions and ALS. Moreover, promising effects of autologous as well as allogenic MSCs for the treatment of SCI and ALS were demonstrated in recent clinical studies.
Collapse
Affiliation(s)
- Eva Sykova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dasa Cizkova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia.,Centre for Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Sarka Kubinova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
31
|
Semenova E, Grudniak MP, Machaj EK, Bocian K, Chroscinska-Krawczyk M, Trochonowicz M, Stepaniec IM, Murzyn M, Zagorska KE, Boruczkowski D, Kolanowski TJ, Oldak T, Rozwadowska N. Mesenchymal Stromal Cells from Different Parts of Umbilical Cord: Approach to Comparison & Characteristics. Stem Cell Rev Rep 2021; 17:1780-1795. [PMID: 33860454 PMCID: PMC8553697 DOI: 10.1007/s12015-021-10157-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
Mesenchymal stromal/stem cells (MSCs) are a unique population of cells that play an important role in the regeneration potential of the body. MSCs exhibit a characteristic phenotype and are capable of modulating the immune response. MSCs can be isolated from various tissues such as: bone marrow, adipose tissue, placenta, umbilical cord and others. The umbilical cord as a source of MSCs, has strong advantages, such as no-risk procedure of tissue retrieval after birth and easiness of the MSCs isolation. As the umbilical cord (UC) is a complex organ and we decided to evaluate, whether the cells derived from different regions of umbilical cord show similar or distinct properties. In this study we characterized and compared MSCs from three regions of the umbilical cord: Wharton's Jelly (WJ), the perivascular space (PRV) and the umbilical membrane (UCM). The analysis was carried out in terms of morphology, phenotype, immunomodulation potential and secretome. Based on the obtained results, we were able to conclude, that MSCs derived from distinct UC regions differ in their properties. According to our result WJ-MSCs have high and stabile proliferation potential and phenotype, when compare with other MSCs and can be treated as a preferable source of cells for medical application.
Collapse
Affiliation(s)
- Ekaterina Semenova
- Research and Development Department, Polish Stem Cell Bank, FamiCord Group, Ul. Jana Pawla II 29, 00-867, Warsaw, Poland
| | - Mariusz P Grudniak
- Research and Development Department, Polish Stem Cell Bank, FamiCord Group, Ul. Jana Pawla II 29, 00-867, Warsaw, Poland
| | - Eugeniusz K Machaj
- Research and Development Department, Polish Stem Cell Bank, FamiCord Group, Ul. Jana Pawla II 29, 00-867, Warsaw, Poland
| | - Katarzyna Bocian
- Research and Development Department, Polish Stem Cell Bank, FamiCord Group, Ul. Jana Pawla II 29, 00-867, Warsaw, Poland.,Faculty of Biology, Department of Immunology, University of Warsaw, Warsaw, Poland
| | | | - Marzena Trochonowicz
- Research and Development Department, Polish Stem Cell Bank, FamiCord Group, Ul. Jana Pawla II 29, 00-867, Warsaw, Poland
| | - Igor M Stepaniec
- Research and Development Department, Polish Stem Cell Bank, FamiCord Group, Ul. Jana Pawla II 29, 00-867, Warsaw, Poland
| | - Magdalena Murzyn
- Research and Development Department, Polish Stem Cell Bank, FamiCord Group, Ul. Jana Pawla II 29, 00-867, Warsaw, Poland.,Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Karolina E Zagorska
- Research and Development Department, Polish Stem Cell Bank, FamiCord Group, Ul. Jana Pawla II 29, 00-867, Warsaw, Poland
| | - Dariusz Boruczkowski
- Research and Development Department, Polish Stem Cell Bank, FamiCord Group, Ul. Jana Pawla II 29, 00-867, Warsaw, Poland
| | - Tomasz J Kolanowski
- Research and Development Department, Polish Stem Cell Bank, FamiCord Group, Ul. Jana Pawla II 29, 00-867, Warsaw, Poland.,Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Tomasz Oldak
- Research and Development Department, Polish Stem Cell Bank, FamiCord Group, Ul. Jana Pawla II 29, 00-867, Warsaw, Poland.
| | | |
Collapse
|
32
|
Andrzejewska A, Dabrowska S, Lukomska B, Janowski M. Mesenchymal Stem Cells for Neurological Disorders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002944. [PMID: 33854883 PMCID: PMC8024997 DOI: 10.1002/advs.202002944] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/23/2020] [Indexed: 05/13/2023]
Abstract
Neurological disorders are becoming a growing burden as society ages, and there is a compelling need to address this spiraling problem. Stem cell-based regenerative medicine is becoming an increasingly attractive approach to designing therapies for such disorders. The unique characteristics of mesenchymal stem cells (MSCs) make them among the most sought after cell sources. Researchers have extensively studied the modulatory properties of MSCs and their engineering, labeling, and delivery methods to the brain. The first part of this review provides an overview of studies on the application of MSCs to various neurological diseases, including stroke, traumatic brain injury, spinal cord injury, multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, Parkinson's disease, and other less frequently studied clinical entities. In the second part, stem cell delivery to the brain is focused. This fundamental but still understudied problem needs to be overcome to apply stem cells to brain diseases successfully. Here the value of cell engineering is also emphasized to facilitate MSC diapedesis, migration, and homing to brain areas affected by the disease to implement precision medicine paradigms into stem cell-based therapies.
Collapse
Affiliation(s)
- Anna Andrzejewska
- NeuroRepair DepartmentMossakowski Medical Research CentrePASWarsaw02‐106Poland
| | - Sylwia Dabrowska
- NeuroRepair DepartmentMossakowski Medical Research CentrePASWarsaw02‐106Poland
| | - Barbara Lukomska
- NeuroRepair DepartmentMossakowski Medical Research CentrePASWarsaw02‐106Poland
| | - Miroslaw Janowski
- NeuroRepair DepartmentMossakowski Medical Research CentrePASWarsaw02‐106Poland
- Center for Advanced Imaging ResearchDepartment of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of MarylandBaltimoreMD21201‐1595USA
- Tumor Immunology and Immunotherapy ProgramUniversity of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of MarylandBaltimoreMD21201‐1595USA
| |
Collapse
|
33
|
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of upper and lower motor neurons with high burden on society. Despite tremendous efforts over the last several decades, there is still no definite cure for ALS. Up to now, only two disease-modifying agents, riluzole and edaravone, are approved by U.S. Food and Drug Administration (FDA) for ALS treatment, which only modestly improves survival and disease progression. Major challenging issues to find an effective therapy are heterogeneity in the pathogenesis and genetic variability of ALS. As such, stem cell therapy has been recently a focus of both preclinical and clinical investigations of ALS. This is because stem cells have multifaceted features that can potentially target multiple pathogenic mechanisms in ALS even though its underlying mechanisms are not completely elucidated. Methods & Results: Here, we will have an overview of stem cell therapy in ALS, including their therapeutic mechanisms, the results of recent clinical trials as well as ongoing clinical trials. In addition, we will further discuss complications and limitations of stem cell therapy in ALS. Conclusion: The determination of whether stem cells offer a viable treatment strategy for ALS rests on well-designed and appropriately powered future clinical trials. Randomized, double-blinded, and sham-controlled studies would be valuable.
Collapse
Affiliation(s)
- Goun Je
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA USA
| | - Kiandokht Keyhanian
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA USA
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA USA
| |
Collapse
|
34
|
Siwek T, Jezierska-Woźniak K, Maksymowicz S, Barczewska M, Sowa M, Badowska W, Maksymowicz W. Repeat Administration of Bone Marrow-Derived Mesenchymal Stem Cells for Treatment of Amyotrophic Lateral Sclerosis. Med Sci Monit 2020; 26:e927484. [PMID: 33301428 PMCID: PMC7737405 DOI: 10.12659/msm.927484] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background The aim of this study was to investigate repeated intrathecal injection of autologous bone marrow-derived mesenchymal stem cells (BM-D MSCs) to patients for treatment of sporadic amyotrophic lateral sclerosis (ALS). Material/Methods Autologous MSCs were isolated from the patients’ bone marrow, plated, expanded, harvested, and passaged. Stem cells from a single bone marrow collection were used for 3 injections per patient, given over a 3-month period. Outcomes were measured with the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R). Participants were observed for a minimum of 6 months before transplantation to assess the natural course of ALS and for the same amount of time after transplantation to compare the rate of disease progression, estimated based on average monthly changes in ALSFRS-R scores. Data from 8 of the 15 participants eligible for the study were analyzed. Results The safety of the MSC injections was confirmed and various effects of the therapy were documented. In patients who had ALS with an inherently slow course, there were no significant changes in the rate of disease progression. In patients who had ALS with an inherently rapid course, slowing of the disease was noted following treatment with MSCs. However, because that subgroup was so small, it was not possible to assess whether the changes were statistically significant. Conclusions Identifying groups of patients who are not responding or potentially responding negatively to injection of MSCs may help prevent it from being offered to individuals who may not benefit from the therapy. One of the limitations of this treatment method is the amount of time required for long-lasting preparation of bone marrow-derived MSCs for a disease that is rapidly progressive. Therefore, it is worth looking for other allogeneic sources of stromal cells for these types of injections.
Collapse
Affiliation(s)
- Tomasz Siwek
- Department of Neurology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland.,Department of Neurology, University Hospital in Olsztyn, Olsztyn, Poland
| | | | - Stanisław Maksymowicz
- Department of Psychology and Sociology of Health and Public Health, School of Public Health, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Monika Barczewska
- Department of Neurosurgery, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland.,Departament of Neurosurgery, University Hospital in Olsztyn, Olsztyn, Poland
| | - Mariusz Sowa
- Department of Neurosurgery, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland.,Department of Neurosurgery, University Hospital in Olsztyn, Olsztyn, Poland
| | - Wanda Badowska
- Department of Clinical Paediatrics, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Wojciech Maksymowicz
- Department of Neurosurgery, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland.,Department of Neurosurgery, University Hospital in Olsztyn, Olsztyn, Poland
| |
Collapse
|