1
|
Saeedifar AM, Ghorban K, Ganji A, Mosayebi G, Gholami M, Dadmanesh M, Rouzbahani NH. Evaluation of Tcell exhaustion based on the expression of EOMES, Tbet and co-inhibitory receptors in severe and non-severe covid-19 patients. GENE REPORTS 2023; 31:101747. [PMID: 36747893 PMCID: PMC9892327 DOI: 10.1016/j.genrep.2023.101747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/13/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
During viral infections, especially Covid-19, Tcell exhaustion plays a crucial role in reducing the activity of lymphocytes and the immune system's antiviral activities. This research aimed to investigate the co-inhibitory receptors and transcription factors involved in the Tcell exhaustion process in ICU-admitted (ICUA) compared to non-ICU admitted (non-ICUA) Covid-19 patients. A total of 60 Covid-19 patients (30 patients in the severe group who were admitted in the ICU (ICUA) and 30 patients in the mild group who were admitted in departments other than the ICU (non-ICUA)) and 10 healthy individuals were included in this study. Laboratory tests and the level of gene expressions related to 4 inhibitory co-receptors, including LAG-3, TIM-3, TIGIT, PD-1, and T-bet and Eomes transcription factors involved in the process of Tcell exhaustion in severe and mild patients of Covid-19 were investigated. The results showed lymphopenia and an increase in other hematologic laboratory factors such as NLR, PLR, CRP, ALT, and AST in people with a severe form of the disease (ICUA) compared to mild groups (non-ICUA) (P < 0.001). Furthermore, a significant increase in 3 co-inhibitory receptors, TIM-3, LAG-3, and PD-1, was observed in severe patients compared to mild and healthy people (P < 0.001). An increase in TIGIT gene expression was lesser than the other three mentioned receptors (P < 0.05). Concerning the transcription factors, we observed a significant increase in Eomes in ICUA patients compared to the non-ICUA group (P < 0.001), and this increment in T-bet gene expression was minor compared to Eomes (P < 0.05). In conclusion, Patients with a severe form of acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represented a higher level of gene expressions in terms of co-inhibitory receptors and transcription factors involved in the T cell exhaustion process.
Collapse
Affiliation(s)
- Amir Mohammad Saeedifar
- Department of Medical Immunology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Khodayar Ghorban
- Department of Medical Immunology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran,Infectious Diseases Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Ali Ganji
- Department of Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran,Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Ghasem Mosayebi
- Department of Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mohammad Gholami
- Department of Medical Microbiology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran,Infectious Diseases Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Maryam Dadmanesh
- Infectious Diseases Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Negin Hosseini Rouzbahani
- Department of Medical Immunology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran,Infectious Diseases Research Center, Aja University of Medical Sciences, Tehran, Iran,Corresponding author at: Department of Medical Immunology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Rajabi H, Mortazavi D, Konyalilar N, Aksoy GT, Erkan S, Korkunc SK, Kayalar O, Bayram H, Rahbarghazi R. Forthcoming complications in recovered COVID-19 patients with COPD and asthma; possible therapeutic opportunities. Cell Commun Signal 2022; 20:173. [PMID: 36320055 PMCID: PMC9623941 DOI: 10.1186/s12964-022-00982-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/01/2022] [Indexed: 11/21/2022] Open
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been growing swiftly worldwide. Patients with background chronic pulmonary inflammations such as asthma or chronic obstructive pulmonary diseases (COPD) are likely to be infected with this virus. Of note, there is an argument that COVID-19 can remain with serious complications like fibrosis or other pathological changes in the pulmonary tissue of patients with chronic diseases. Along with conventional medications, regenerative medicine, and cell-based therapy could be alternative approaches to compensate for organ loss or restore injured sites using different stem cell types. Owing to unique differentiation capacity and paracrine activity, these cells can accelerate the healing procedure. In this review article, we have tried to scrutinize different reports related to the harmful effects of SARS-CoV-2 on patients with asthma and COPD, as well as the possible therapeutic effects of stem cells in the alleviation of post-COVID-19 complications. Video abstract.
Collapse
Affiliation(s)
- Hadi Rajabi
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Deniz Mortazavi
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Nur Konyalilar
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Gizem Tuse Aksoy
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Sinem Erkan
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Seval Kubra Korkunc
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Ozgecan Kayalar
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Hasan Bayram
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey.
- Department of Pulmonary Medicine, School of Medicine, Koç University, Istanbul, Turkey.
| | - Reza Rahbarghazi
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Reply to Zandi, M.; Soltani, S. Comment on “Alfassam et al. Development of a Colorimetric Tool for SARS-CoV-2 and Other Respiratory Viruses Detection Using Sialic Acid Fabricated Gold Nanoparticles. Pharmaceutics 2021, 13, 502”. Pharmaceutics 2022; 14:pharmaceutics14091878. [PMID: 36145626 PMCID: PMC9500785 DOI: 10.3390/pharmaceutics14091878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
|
4
|
Rezabakhsh A, Mahdipour M, Nourazarian A, Habibollahi P, Sokullu E, Avci ÇB, Rahbarghazi R. Application of exosomes for the alleviation of COVID-19-related pathologies. Cell Biochem Funct 2022; 40:430-438. [PMID: 35647674 PMCID: PMC9348296 DOI: 10.1002/cbf.3720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 12/17/2022]
Abstract
The pandemic of COVID-19 caused worldwide concern. Due to the lack of appropriate medications and the inefficiency of commercially available vaccines, lots of efforts are being made to develop de novo therapeutic modalities. Besides this, the possibility of several genetic mutations in the viral genome has led to the generation of resistant strains such as Omicron against neutralizing antibodies and vaccines, leading to worsening public health status. Exosomes (Exo), nanosized vesicles, possess several therapeutic properties that participate in intercellular communication. The discovery and application of Exo in regenerative medicine have paved the way for the alleviation of several pathologies. These nanosized particles act as natural bioshuttles and transfer several biomolecules and anti-inflammatory cytokines. To date, several approaches are available for the administration of Exo into the targeted site inside the body, although the establishment of standard administration routes remains unclear. As severe acute respiratory syndrome coronavirus 2 primarily affects the respiratory system, we here tried to highlight the transplantation of Exo in the alleviation of COVID-19 pathologies.
Collapse
Affiliation(s)
- Aysa Rezabakhsh
- Cardiovascular Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mahdi Mahdipour
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
| | - Alireza Nourazarian
- Department of Basic Medical SciencesKhoy University of Medical SciencesKhoyIran
| | - Paria Habibollahi
- Department of Pharmacology and Toxicology, Faculty of PharmacyTabriz University of Medical SciencesTabrizIran
| | - Emel Sokullu
- Koç University Research Center for Translational Medicine (KUTTAM)IstanbulSariyerTurkey
| | - Çigir Biray Avci
- Department of Medical Biology, Faculty of MedicineEge UniversityIzmirTurkey
| | - Reza Rahbarghazi
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
5
|
Rezabakhsh A, Sadat‐Ebrahimi S, Ala A, Nabavi SM, Banach M, Ghaffari S. A close-up view of dynamic biomarkers in the setting of COVID-19: Striking focus on cardiovascular system. J Cell Mol Med 2022; 26:274-286. [PMID: 34894069 PMCID: PMC8743667 DOI: 10.1111/jcmm.17122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 10/15/2021] [Accepted: 12/01/2021] [Indexed: 01/08/2023] Open
Abstract
Based on the recent reports, cardiovascular events encompass a large portion of the mortality caused by the COVID-19 pandemic, which drawn cardiologists into the management of the admitted ill patients. Given that common laboratory values may provide key insights into the illness caused by the life-threatening SARS-CoV-2 virus, it would be more helpful for screening, clinical management and on-time therapeutic strategies. Commensurate with these issues, this review article aimed to discuss the dynamic changes of the common laboratory parameters during COVID-19 and their association with cardiovascular diseases. Besides, the values that changed in the early stage of the disease were considered and monitored during the recovery process. The time required for returning biomarkers to basal levels was also discussed. Finally, of particular interest, we tended to abridge the latest updates regarding the cardiovascular biomarkers as prognostic and diagnostic criteria to determine the severity of COVID-19.
Collapse
Affiliation(s)
- Aysa Rezabakhsh
- Cardiovascular Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Alireza Ala
- Emergency Medicine Research TeamTabriz University of Medical SciencesTabrizIran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and HypertensionMedical University of LodzLodzPoland
- Polish Mother’s Memorial Hospital Research Institute (PMMHRI)LodzPoland
| | - Samad Ghaffari
- Cardiovascular Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
6
|
Zandi M, Behboudi E, Soltani S. Role of Glycoprotein Hemagglutinin-Esterase in COVID-19 Pathophysiology? Stem Cell Rev Rep 2021; 17:2359-2360. [PMID: 34181186 PMCID: PMC8237253 DOI: 10.1007/s12015-021-10210-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2021] [Indexed: 02/04/2023]
Affiliation(s)
- Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| | - Emad Behboudi
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Saber Soltani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Deane R. Response to the letter, entitled "Role of hemagglutinin esterase protein in neurological manifestation of COVID-19". Fluids Barriers CNS 2021; 18:41. [PMID: 34479578 PMCID: PMC8415694 DOI: 10.1186/s12987-021-00275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
- Rashid Deane
- Department of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
8
|
Zhang X, Jiang M, Yang J. Potential value of circulating endothelial cells for the diagnosis and treatment of COVID-19. Int J Infect Dis 2021; 107:232-233. [PMID: 33965598 PMCID: PMC8119437 DOI: 10.1016/j.ijid.2021.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 02/05/2023] Open
Abstract
The ongoing severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic has been a formidable global challenge. As yet, there are very few drugs to treat this infection and no vaccine is currently available. It has gradually become apparant that coronavirus disease 2019 (COVID-19) is not a simple disease involving a single organ; rather, many vital organs and systems are affected. The endothelium is one target of SARS-CoV-2. Damaged endothelial cells, which break away from organs and enter the bloodstream to form circulating endothelial cells, were recently reported as putative biomarkers for COVID-19. Modulation of the expression level of sphingosine-1 phosphate via sphingosine kinase activation can control endothelial cell proliferation and apoptosis. As such, it may be possible to obtain a sensitive and specific diagnosis of the severity of COVID-19 by assessing the absolute number and the viable/apoptotic ratio of circulating endothelial cells. Furthermore, a focus on the endothelium could help to develop a strategy for COVID-19 treatment from the perspective of endothelial protection and repair.
Collapse
Affiliation(s)
- Xuchang Zhang
- Third Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China; Department of Oncology, Longgang District People's Hospital, Shenzhen, China
| | - Man Jiang
- Third Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China; Department of Oncology, Longgang District People's Hospital, Shenzhen, China
| | - Jianshe Yang
- Third Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China; Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
9
|
Heidarzadeh M, Rahbarghazi R, Saberianpour S, Delkhosh A, Amini H, Sokullu E, Hassanpour M. Distinct chemical composition and enzymatic treatment induced human endothelial cells survival in acellular ovine aortae. BMC Res Notes 2021; 14:126. [PMID: 33827673 PMCID: PMC8028817 DOI: 10.1186/s13104-021-05538-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 03/23/2021] [Indexed: 11/27/2022] Open
Abstract
Objective The current experiment aimed to assess the impact of detergents such as 3% Triton X-100, 1% peracetic acid, 1% Tween-20, and 1% SDS in combination with Trypsin–EDTA on acellularization of ovine aortae after 7 days. Results Hematoxylin–Eosin staining showed an appropriate acellularization rate in ovine aortae, indicated by a lack of cell nuclei in the tunica media layer. DAPI staining confirmed the lack of nuclei in the vascular wall after being exposed to the combination of chemical and enzymatic solutions. Verhoeff-Van Gieson staining showed that elastin fibers were diminished in acellular samples compared to the control group while collagen stands were unchanged. CCK-8 survival assay showed enhanced viability in human umbilical vein endothelial cells 5 days after being cultured on decellularized samples compared to the cells cultured on a plastic surface (p < 0.05). SEM imaging showed flattening of endothelial cells on the acellular surface.
Collapse
Affiliation(s)
- Morteza Heidarzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer, Istanbul, Turkey
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Shirin Saberianpour
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aref Delkhosh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emel Sokullu
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer, Istanbul, Turkey
| | - Mehdi Hassanpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|