1
|
Aboalola D, Ramadan M, Baadhaim M, Alsiary R, Badraiq H, Alghamdi T, Zakri S, Aboulola N, Falatah T, Malibari D. Public awareness and understanding of stem cell treatments available in Saudi Arabia and their trust in hospitals and research centers involved in stem cell research-a cross sectional study. Front Public Health 2024; 12:1364809. [PMID: 38628851 PMCID: PMC11018913 DOI: 10.3389/fpubh.2024.1364809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction Although stem cell research and therapeutic applications hold great promise for medical advancements, and have rapidly progressed globally, there remains a lack of genuine public awareness of the status of this subject in Saudi Arabia. Successful integration of stem cell therapy into healthcare relies on public awareness, understanding, and trust. Therefore, we aimed in this cross-sectional study to assess the public's knowledge, awareness, trust, support, participation, and confidence in stem cell treatments and centers involved in it. Materials and methods A voluntary questionnaire of 20 questions was distributed randomly via social media outlets. Results Three thousand five hundred eighty four individuals participated in the survey, with approximately half of them falling within the age range of 35-50 years (46.71%). Majority of the participants, 90.71%, would like to know more about stem cell therapy and more than half of the participants (56.94%) were unfamiliar with the idea, and a comparable proportion (50.41%) expressed concerns about the safety of stem cell therapy. A lower level of awareness, indicated by a score of 5, was evenly distributed across all age groups and genders. However, regardless of gender, older participants-especially those 50 years of age or older-tended to report higher levels of confidence, trust, and support than participants in other age groups. Moreover, trust, support, participation, and confidence score for those attained high school or less was statistically significantly lower than those attained master's or PhD degree. Of the participants, 33.57% had either received stem cell therapy themselves or known someone who had; about 24.07% of them reported that it was a cosmetic type of treatment. Conclusion The study emphasizes the persistent need for awareness and educational initiatives to minimize the lack of public awareness and understanding of approved stem cell treatments in Saudi Arabia. It advocates for increased education, transparency, and communication to bridge knowledge gaps and enhance public trust to ensure the understanding of successful treatment.
Collapse
Affiliation(s)
- Doaa Aboalola
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Majed Ramadan
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Moayad Baadhaim
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Rawiah Alsiary
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Heba Badraiq
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Tariq Alghamdi
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Samer Zakri
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Neda Aboulola
- King AbdulAziz University Hospital, Jeddah, Saudi Arabia
| | - Tark Falatah
- King AbdulAziz University Hospital, Jeddah, Saudi Arabia
| | - Dalal Malibari
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Cismaru CA, Tomuleasa C, Jurj A, Chira S, Isachekcu E, Cismaru G, Gherman LM, Gulei D, Munteanu R, Berindan Neagoe I. Synergistic Effect of Human Chorionic Gonadotropin and Granulocyte Colony Stimulating Factor in the Mobilization of HSPCs Improves Overall Survival After PBSCT in a Preclinical Murine Model. Are We Far Enough for Therapy? Stem Cell Rev Rep 2024; 20:206-217. [PMID: 37922107 DOI: 10.1007/s12015-023-10648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 11/05/2023]
Abstract
Strategies to improve hematopoietic stem and progenitor cell (HSPC) mobilization from the bone marrow can have a pivotal role in addressing iatrogenic bone-marrow insufficiency from chemo(radio)therapy and overcoming peripheral blood stem cell transplantation (PBSCT) limitations such as insufficient mobilization. Granulocyte-colony stimulating factor (G-CSF) represents the standard mobilization strategy for HSPC and has done so for more than three decades since its FDA approval. Its association with non-G-CSF agents is often employed for difficult HSPC mobilization. However, obtaining a synergistic effect between the two classes is limited by different timing and mechanisms of action. Based on our previous in vitro results, we tested the mobilization potential of human chorionic gonadotropin (HCG), alone and in combination with G-CSF in vivo in a murine study. Our results show an improved mobilization capability of the combination, which seems to act synergistically in stimulating hematopoiesis. With the current understanding of the dynamics of HSPCs and their origins in more primitive cells related to the germline, new strategies to employ the mobilization of hematopoietic progenitors using chorionic gonadotropins could soon become clinical practice.
Collapse
Affiliation(s)
- Cosmin Andrei Cismaru
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu", University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, P.O. 400393, Cluj-Napoca, Romania.
| | - Ciprian Tomuleasa
- MEDFUTURE - The Research Center for Advanced Medicine "Iuliu Hatieganu", University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu", University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, P.O. 400393, Cluj-Napoca, Romania
| | - Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu", University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, P.O. 400393, Cluj-Napoca, Romania
| | - Ekaterina Isachekcu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu", University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, P.O. 400393, Cluj-Napoca, Romania
| | - Gabriel Cismaru
- Department of Internal Medicine, Cardiology-Rehabilitation, "Iuliu Hatieganu", University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Luciana Madalina Gherman
- Laboratory Animal Facility - Centre for Experimental Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- MEDFUTURE - The Research Center for Advanced Medicine "Iuliu Hatieganu", University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Raluca Munteanu
- MEDFUTURE - The Research Center for Advanced Medicine "Iuliu Hatieganu", University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu", University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, P.O. 400393, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Zeng S, Lei S, Qu C, Wang Y, Teng S, Huang P. CRISPR/Cas-based gene editing in therapeutic strategies for beta-thalassemia. Hum Genet 2023; 142:1677-1703. [PMID: 37878144 DOI: 10.1007/s00439-023-02610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
Beta-thalassemia (β-thalassemia) is an autosomal recessive disorder caused by point mutations, insertions, and deletions in the HBB gene cluster, resulting in the underproduction of β-globin chains. The most severe type may demonstrate complications including massive hepatosplenomegaly, bone deformities, and severe growth retardation in children. Treatments for β-thalassemia include blood transfusion, splenectomy, and allogeneic hematopoietic stem cell transplantation (HSCT). However, long-term blood transfusions require regular iron removal therapy. For allogeneic HSCT, human lymphocyte antigen (HLA)-matched donors are rarely available, and acute graft-versus-host disease (GVHD) may occur after the transplantation. Thus, these conventional treatments are facing significant challenges. In recent years, with the advent and advancement of CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) gene editing technology, precise genome editing has achieved encouraging successes in basic and clinical studies for treating various genetic disorders, including β-thalassemia. Target gene-edited autogeneic HSCT helps patients avoid graft rejection and GVHD, making it a promising curative therapy for transfusion-dependent β-thalassemia (TDT). In this review, we introduce the development and mechanisms of CRISPR/Cas9. Recent advances on feasible strategies of CRISPR/Cas9 targeting three globin genes (HBB, HBG, and HBA) and targeting cell selections for β-thalassemia therapy are highlighted. Current CRISPR-based clinical trials in the treatment of β-thalassemia are summarized, which are focused on γ-globin reactivation and fetal hemoglobin reproduction in hematopoietic stem cells. Lastly, the applications of other promising CRISPR-based technologies, such as base editing and prime editing, in treating β-thalassemia and the limitations of the CRISPR/Cas system in therapeutic applications are discussed.
Collapse
Affiliation(s)
- Shujun Zeng
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, People's Republic of China
| | - Shuangyin Lei
- The Second Norman Bethune Clinical College of Jilin University, Changchun, Jilin, People's Republic of China
| | - Chao Qu
- The First Norman Bethune Clinical College of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yue Wang
- The Second Norman Bethune Clinical College of Jilin University, Changchun, Jilin, People's Republic of China
| | - Shuzhi Teng
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, People's Republic of China.
| | - Ping Huang
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
4
|
Canarutto D, Omer Javed A, Pedrazzani G, Ferrari S, Naldini L. Mobilization-based engraftment of haematopoietic stem cells: a new perspective for chemotherapy-free gene therapy and transplantation. Br Med Bull 2023; 147:108-120. [PMID: 37460391 PMCID: PMC10502445 DOI: 10.1093/bmb/ldad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION In haematopoietic stem cell transplantation (HSCT), haematopoietic stem cells (HSCs) from a healthy donor replace the patient's ones. Ex vivo HSC gene therapy (HSC-GT) is a form of HSCT in which HSCs, usually from an autologous source, are genetically modified before infusion, to generate a progeny of gene-modified cells. In HSCT and HSC-GT, chemotherapy is administered before infusion to free space in the bone marrow (BM) niche, which is required for the engraftment of infused cells. Here, we review alternative chemotherapy-free approaches to niche voidance that could replace conventional regimens and alleviate the morbidity of the procedure. SOURCES OF DATA Literature was reviewed from PubMed-listed peer-reviewed articles. No new data are presented in this article. AREAS OF AGREEMENT Chemotherapy exerts short and long-term toxicity to haematopoietic and non-haematopoietic organs. Whenever chemotherapy is solely used to allow engraftment of donor HSCs, rather than eliminating malignant cells, as in the case of HSC-GT for inborn genetic diseases, non-genotoxic approaches sparing off-target tissues are highly desirable. AREAS OF CONTROVERSY In principle, HSCs can be temporarily moved from the BM niches using mobilizing drugs or selectively cleared with targeted antibodies or immunotoxins to make space for the infused cells. However, translation of these principles into clinically relevant settings is only at the beginning, and whether therapeutically meaningful levels of chimerism can be safely established with these approaches remains to be determined. GROWING POINTS In pre-clinical models, mobilization of HSCs from the niche can be tailored to accommodate the exchange and engraftment of infused cells. Infused cells can be further endowed with a transient engraftment advantage. AREAS TIMELY FOR DEVELOPING RESEARCH Inter-individual efficiency and kinetics of HSC mobilization need to be carefully assessed. Investigations in large animal models of emerging non-genotoxic approaches will further strengthen the rationale and encourage application to the treatment of selected diseases.
Collapse
Affiliation(s)
- Daniele Canarutto
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, MI, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132 Milano, MI, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, MI, Italy
| | - Attya Omer Javed
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, MI, Italy
| | - Gabriele Pedrazzani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, MI, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132 Milano, MI, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, MI, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132 Milano, MI, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, MI, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132 Milano, MI, Italy
| |
Collapse
|
5
|
Favaro P, Glass DR, Borges L, Baskar R, Reynolds W, Ho D, Bruce T, Tebaykin D, Scanlon VM, Shestopalov I, Bendall SC. Unravelling human hematopoietic progenitor cell diversity through association with intrinsic regulatory factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555623. [PMID: 37693547 PMCID: PMC10491219 DOI: 10.1101/2023.08.30.555623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Hematopoietic stem and progenitor cell (HSPC) transplantation is an essential therapy for hematological conditions, but finer definitions of human HSPC subsets with associated function could enable better tuning of grafts and more routine, lower-risk application. To deeply phenotype HSPCs, following a screen of 328 antigens, we quantified 41 surface proteins and functional regulators on millions of CD34+ and CD34- cells, spanning four primary human hematopoietic tissues: bone marrow, mobilized peripheral blood, cord blood, and fetal liver. We propose more granular definitions of HSPC subsets and provide new, detailed differentiation trajectories of erythroid and myeloid lineages. These aspects of our revised human hematopoietic model were validated with corresponding epigenetic analysis and in vitro clonal differentiation assays. Overall, we demonstrate the utility of using molecular regulators as surrogates for cellular identity and functional potential, providing a framework for description, prospective isolation, and cross-tissue comparison of HSPCs in humans.
Collapse
Affiliation(s)
- Patricia Favaro
- Department of Pathology, Stanford University
- These authors contributed equally
| | - David R. Glass
- Department of Pathology, Stanford University
- Immunology Graduate Program, Stanford University
- Present address: Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- These authors contributed equally
| | - Luciene Borges
- Department of Pathology, Stanford University
- Present address: Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
- These authors contributed equally
| | - Reema Baskar
- Department of Pathology, Stanford University
- Present address: Genome Institute of Singapore
| | | | - Daniel Ho
- Department of Pathology, Stanford University
| | | | | | - Vanessa M. Scanlon
- Department of Laboratory Medicine, Yale School of Medicine
- Present address: Center for Regenerative Medicine and Skeletal Biology, University of Connecticut Health
| | | | - Sean C. Bendall
- Department of Pathology, Stanford University
- Immunology Graduate Program, Stanford University
- Lead author
| |
Collapse
|