1
|
Pawlak WA, Howard N. Neuromorphic algorithms for brain implants: a review. Front Neurosci 2025; 19:1570104. [PMID: 40292025 PMCID: PMC12021827 DOI: 10.3389/fnins.2025.1570104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Neuromorphic computing technologies are about to change modern computing, yet most work thus far has emphasized hardware development. This review focuses on the latest progress in algorithmic advances specifically for potential use in brain implants. We discuss current algorithms and emerging neurocomputational models that, when implemented on neuromorphic hardware, could match or surpass traditional methods in efficiency. Our aim is to inspire the creation and deployment of models that not only enhance computational performance for implants but also serve broader fields like medical diagnostics and robotics inspiring next generations of neural implants.
Collapse
|
2
|
Asimakidou E, Sidiropoulos C. Immunomodulatory effects of invasive and non-invasive brain stimulation in Parkinson's disease. Parkinsonism Relat Disord 2025; 133:107314. [PMID: 39956706 DOI: 10.1016/j.parkreldis.2025.107314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/18/2025]
Abstract
Accumulating evidence points to a critical role of the immune system in the neurodegenerative process in Parkinson's disease (PD). This late knowledge has revolutionised our understanding of the pathogenetic mechanisms underlying PD and has opened new avenues toward disease-modifying rather than dopamine-replacement therapeutic approaches. When pharmacological treatments fail to adequately alleviate clinical symptoms, brain stimulation techniques are taken into consideration. Deep brain stimulation (DBS) constitutes the most common method for invasive brain stimulation, while the non-invasive brain stimulation paradigms comprise among others repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS). How each brain stimulation paradigm interferes with disease pathogenesis still remains elusive. In light of recent evidence supporting the involvement of the immune system in PD, a question that arises is whether brain stimulation techniques have an immunomodulatory potential. Here, we summarize the existing knowledge and provide mechanistic insights that should foster future research. Overall, it appears that DBS and rTMS can modulate both the central and the peripheral component of the immune system and can lead to clinical improvement through immunosuppressive/anti-inflammatory mechanisms. The paucity of evidence for tDCS and tACS precludes any conclusions and highlights the necessity of more mechanistic studies focusing on their immunomodulatory potential, if any. Any pre-clinical findings warrant further clinical validation using human in vivo markers and post-mortem human brain tissue. Unravelling the mechanisms that underpin the beneficial therapeutic effects of brain stimulation in PD patients can contribute substantially to the fine-tuning of the current stimulation protocols and pave the way for more efficient and clinically meaningful neuromodulation paradigms.
Collapse
Affiliation(s)
| | - Christos Sidiropoulos
- Department of Neurology, Michigan State University, East Lansing, MI 48824-7015, USA.
| |
Collapse
|
3
|
Perez FP, Walker B, Morisaki J, Kanakri H, Rizkalla M. Neurostimulation devices to treat Alzheimer's disease. EXPLORATION OF NEUROSCIENCE 2025; 4:100674. [PMID: 40084342 PMCID: PMC11904933 DOI: 10.37349/en.2025.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/14/2025] [Indexed: 03/16/2025]
Abstract
The use of neurostimulation devices for the treatment of Alzheimer's disease (AD) is a growing field. In this review, we examine the mechanism of action and therapeutic indications of these neurostimulation devices in the AD process. Rapid advancements in neurostimulation technologies are providing non-pharmacological relief to patients affected by AD pathology. Neurostimulation therapies include electrical stimulation that targets the circuitry-level connection in important brain areas such as the hippocampus to induce therapeutic neuromodulation of dysfunctional neural circuitry and electromagnetic field (EMF) stimulation that targets anti-amyloid molecular pathways to promote the degradation of beta-amyloid (Aβ). These devices target specific or diffuse cortical and subcortical brain areas to modulate neuronal activity at the electrophysiological or molecular pathway level, providing therapeutic effects for AD. This review attempts to determine the most effective and safe neurostimulation device for AD and provides an overview of potential and current clinical indications. Several EMF devices have shown a beneficial or harmful effect in cell cultures and animal models but not in AD human studies. These contradictory results may be related to the stimulation parameters of these devices, such as frequency, penetration depth, power deposition measured by specific absorption rate, time of exposure, type of cell, and tissue dielectric properties. Based on this, determining the optimal stimulation parameters for EMF devices in AD and understanding their mechanism of action is essential to promote their clinical application, our review suggests that repeated EMF stimulation (REMFS) is the most appropriate device for human AD treatments. Before its clinical application, it is necessary to consider the complicated and interconnected genetic and epigenetic effects of REMFS-biological system interaction. This will move forward the urgently needed therapy of EMF in human AD.
Collapse
Affiliation(s)
- Felipe P. Perez
- Department of Medicine, Division of General Internal Medicine and Geriatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brett Walker
- Department of Medicine, Division of General Internal Medicine and Geriatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jorge Morisaki
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Haitham Kanakri
- Department of Electrical and Computer Engineering, Purdue University, Indianapolis, IN 46202, USA
| | - Maher Rizkalla
- Department of Electrical and Computer Engineering, Purdue University, Indianapolis, IN 46202, USA
| |
Collapse
|
4
|
Yu J, Wong S, Lin Z, Shan Z, Fan C, Xia Z, Cheung M, Zhu X, Liu JA, Cheung CW. High-Frequency Spinal Stimulation Suppresses Microglial Kaiso-P2X7 Receptor Axis-Induced Inflammation to Alleviate Neuropathic Pain in Rats. Ann Neurol 2024; 95:966-983. [PMID: 38450773 DOI: 10.1002/ana.26898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE Neuropathic pain poses a persistent challenge in clinical management. Neuromodulation has emerged as a last-resort therapy. Conventional spinal cord stimulation (Con SCS) often causes abnormal sensations and provides short analgesia, whereas high-frequency spinal cord stimulation (HF SCS) is a newer therapy that effectively alleviates pain without paresthesia. However, the modes of action of 10kHz HF SCS (HF10 SCS) in pain relief remain unclear. To bridge this knowledge gap, we employed preclinical models that mimic certain features of clinical SCS to explore the underlying mechanisms of HF10 SCS. Addressing these issues would provide the scientific basis for improving and evaluating the effectiveness, reliability, and practicality of different frequency SCS in clinical settings. METHODS We established a preclinical SCS model to examine its effects in a neuropathic pain rat model. We conducted bulk and single-cell RNA sequencing in the spinal dorsal horn (SDH) to examine cellular and molecular changes under different treatments. We employed genetic manipulations through intrathecal injection of a lentiviral system to explore the SCS-mediated signaling axis in pain. Various behavioral tests were performed to evaluate pain conditions under different treatments. RESULTS We found that HF10 SCS significantly reduces immune responses in the SDH by inactivating the Kaiso-P2X7R pathological axis in microglia, promoting long-lasting pain relief. Targeting Kaiso-P2X7R in microglia dramatically improved efficacy of Con SCS treatment, leading to reduced neuroinflammation and long-lasting pain relief. INTERPRETATION HF10 SCS could improve the immunopathologic state in the SDH, extending its benefits beyond symptom relief. Targeting the Kaiso-P2X7R axis may enhance Con SCS therapy and offer a new strategy for pain management. ANN NEUROL 2024;95:966-983.
Collapse
Affiliation(s)
- Jing Yu
- Department of Anesthesiology, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Stanley Wong
- Department of Anesthesiology, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Zhinan Lin
- Department of Neuroscience, City University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Zhiming Shan
- Department of Anesthesiology, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Chaoyang Fan
- Department of Neuroscience, City University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Zhengyuan Xia
- Department of Anesthesiology, University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Martin Cheung
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Xiaowei Zhu
- Department of Neuroscience, City University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Jessica Aijia Liu
- Department of Anesthesiology, University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Neuroscience, City University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Chi Wai Cheung
- Department of Anesthesiology, University of Hong Kong, Hong Kong, Hong Kong SAR
- Hong Kong Sanatorium Hospital, Hong Kong, Hong Kong SAR
| |
Collapse
|
5
|
Valentim WL, Tylee DS, Polimanti R. A perspective on translating genomic discoveries into targets for brain-machine interface and deep brain stimulation devices. WIREs Mech Dis 2024; 16:e1635. [PMID: 38059513 PMCID: PMC11163995 DOI: 10.1002/wsbm.1635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/22/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023]
Abstract
Mental illnesses have a huge impact on individuals, families, and society, so there is a growing need for more efficient treatments. In this context, brain-computer interface (BCI) technology has the potential to revolutionize the options for neuropsychiatric therapies. However, the development of BCI-based therapies faces enormous challenges, such as power dissipation constraints, lack of credible feedback mechanisms, uncertainty of which brain areas and frequencies to target, and even which patients to treat. Some of these setbacks are due to the large gap in our understanding of brain function. In recent years, large-scale genomic analyses uncovered an unprecedented amount of information regarding the biology of the altered brain function observed across the psychopathology spectrum. We believe findings from genetic studies can be useful to refine BCI technology to develop novel treatment options for mental illnesses. Here, we assess the latest advancements in both fields, the possibilities that can be generated from their intersection, and the challenges that these research areas will need to address to ensure that translational efforts can lead to effective and reliable interventions. Specifically, starting from highlighting the overlap between mechanisms uncovered by large-scale genetic studies and the current targets of deep brain stimulation treatments, we describe the steps that could help to translate genomic discoveries into BCI targets. Because these two research areas have not been previously presented together, the present article can provide a novel perspective for scientists with different research backgrounds. This article is categorized under: Neurological Diseases > Genetics/Genomics/Epigenetics Neurological Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Wander L. Valentim
- Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Daniel S. Tylee
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
- VA CT Healthcare Center, West Haven, CT, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
- VA CT Healthcare Center, West Haven, CT, USA
| |
Collapse
|
6
|
Campos ACP, Pagano RL, Lipsman N, Hamani C. What do we know about astrocytes and the antidepressant effects of DBS? Exp Neurol 2023; 368:114501. [PMID: 37558154 DOI: 10.1016/j.expneurol.2023.114501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/29/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Treatment-resistant depression (TRD) is a debilitating condition that affects millions of individuals worldwide. Deep brain stimulation (DBS) has been widely used with excellent outcomes in neurological disorders such as Parkinson's disease, tremor, and dystonia. More recently, DBS has been proposed as an adjuvant therapy for TRD. To date, the antidepressant efficacy of DBS is still controversial, and its mechanisms of action remain poorly understood. Astrocytes are the most abundant cells in the nervous system. Once believed to be a "supporting" element for neuronal function, astrocytes are now recognized to play a major role in brain homeostasis, neuroinflammation and neuroplasticity. Because of its many roles in complex multi-factorial disorders, including TRD, understanding the effect of DBS on astrocytes is pivotal to improve our knowledge about the antidepressant effects of this therapy. In depression, the number of astrocytes and the expression of astrocytic markers are decreased. One of the potential consequences of this reduced astrocytic function is the development of aberrant glutamatergic neurotransmission, which has been documented in several models of depression-like behavior. Evidence from preclinical work suggests that DBS may directly influence astrocytic activity, modulating the release of gliotransmitters, reducing neuroinflammation, and altering structural tissue organization. Compelling evidence for an involvement of astrocytes in potential mechanisms of DBS derive from studies suggesting that pharmacological lesions or the inhibition of these cells abolishes the antidepressant-like effect of DBS. In this review, we summarize preclinical data suggesting that the modulation of astrocytes may be an important mechanism for the antidepressant-like effects of DBS.
Collapse
Affiliation(s)
- Ana Carolina P Campos
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Centre, Toronto, Canada; Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Nir Lipsman
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Centre, Toronto, Canada; Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Clement Hamani
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Centre, Toronto, Canada; Division of Neurosurgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
7
|
Kim TW, Kim AG, Lee KH, Hwang MH, Choi H. Microfluidic Electroceuticals Platform for Therapeutic Strategies of Intervertebral Disc Degeneration: Effects of Electrical Stimulation on Human Nucleus Pulposus Cells under Inflammatory Conditions. Int J Mol Sci 2022; 23:10122. [PMID: 36077518 PMCID: PMC9456475 DOI: 10.3390/ijms231710122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022] Open
Abstract
The degeneration of an intervertebral disc (IVD) is a major cause of lower back pain. IVD degeneration is characterized by the abnormal expression of inflammatory cytokines and matrix degradation enzymes secreted by IVD cells. In addition, macrophage-mediated inflammation is strongly associated with IVD degeneration. However, the precise pathomechanisms of macrophage-mediated inflammation in IVD are still unknown. In this study, we developed a microfluidic platform integrated with an electrical stimulation (ES) array to investigate macrophage-mediated inflammation in human nucleus pulposus (NP). This platform provides multiple cocultures of different cell types with ES. We observed macrophage-mediated inflammation and considerable migration properties via upregulated expression of interleukin (IL)-6 (p < 0.001), IL-8 (p < 0.05), matrix metalloproteinase (MMP)-1 (p < 0.05), and MMP-3 (p < 0.05) in human NP cells cocultured with macrophages. We also confirmed the inhibitory effects of ES at 10 μA due to the production of IL-6 (p < 0.05) and IL-8 (p < 0.01) under these conditions. Our findings indicate that ES positively affects degenerative inflammation in diverse diseases. Accordingly, the microfluidic electroceutical platform can serve as a degenerative IVD inflammation in vitro model and provide a therapeutic strategy for electroceuticals.
Collapse
Affiliation(s)
- Tae-Won Kim
- Department of Medical Sciences, Graduate School of Medicine, Korea University, 148, Gurodong-ro, Guro-gu, Seoul 08308, Korea
| | - An-Gi Kim
- Department of Medical Sciences, Graduate School of Medicine, Korea University, 148, Gurodong-ro, Guro-gu, Seoul 08308, Korea
| | - Kwang-Ho Lee
- Division of Mechanical and Biomedical Mechatronics, and Materials Science and Engineering, College of and Engineering, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si 24341, Korea
| | - Min-Ho Hwang
- Department of Medical Sciences, Graduate School of Medicine, Korea University, 148, Gurodong-ro, Guro-gu, Seoul 08308, Korea
| | - Hyuk Choi
- Department of Medical Sciences, Graduate School of Medicine, Korea University, 148, Gurodong-ro, Guro-gu, Seoul 08308, Korea
| |
Collapse
|
8
|
Lee SM, Lee JE, Lee YK, Yoo DA, Seon DB, Lee DW, Kim CB, Choi H, Lee KH. Thermal-Corrosion-Free Electrode-Integrated Cell Chip for Promotion of Electrically Stimulated Neurite Outgrowth. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00049-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|