1
|
Mo J, Liao W, Du J, Huang X, Li Y, Su A, Zhong L, Gong M, Wang P, Liu Z, Kuang H, Wang L. Buyang huanwu decoction improves synaptic plasticity of ischemic stroke by regulating the cAMP/PKA/CREB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118636. [PMID: 39089658 DOI: 10.1016/j.jep.2024.118636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic stroke is an acute central nervous system disease that poses a threat to human health. It induces a series of severe pathological mechanisms, ultimately leading to neuronal cell death in the brain due to local ischemia and hypoxia. Buyang Huanwu decoction (BYHWD), as a representative formula for treating ischemic stroke, has shown good therapeutic effects in stroke patients. AIM OF THE STUDY This study aimed to explore the mechanism of BYHWD in promoting neural remodeling after ischemic stroke from the perspective of neuronal synaptic plasticity, based on the cAMP/PKA/CREB signaling pathway. MATERIALS AND METHODS A modified suture technique was employed to establish a rat model of MCAO. The rats were divided into sham, model, and BYHWD (20 g/kg) groups. After the corresponding intervention, rat brains from each group were collected. TMT quantitative proteomics technology was employed for the research. Following proteomics studies, we investigated the mechanism of BYHWD in the intervention of ischemic stroke through animal experiments and cell experiments. The experimental animals were divided into sham, model, and BYHWD (5 g/kg, 10 g/kg, and 20 g/kg) groups. Infarct volume and severity of brain injury were measured by TTC staining. HE staining was utilized to evaluate alterations in tissue morphology. The Golgi staining was used to observe changes in cell body, dendrites, and dendritic spines. Transmission electron microscopy was used to observe the ultrastructure of synapses in the cortex and hippocampus. TUNEL staining was conducted to identify apoptotic neurons. Meanwhile, a stable and reliable (OGD/R) SH-SY5Y cell model was established. The effect of BYHWD-containing serum on SH-SY5Y cell viability was measured by CCK-8 kit. The apoptosis situation of SH-SY5Y cells was determined by Annexin V-FITC/PI. Immunofluorescence was employed to measure the fluorescence intensity of synaptic-related factors Syt1, Psd95, and Syn1. Synaptic plasticity pathways were assessed by using RT-qPCR and Western blot to determine the expression levels of cAMP, Psd95, Prkacb, Creb1/p-Creb1, BDNF, Shank2, Syn1, Syt1, Bcl-2, Bcl-2/Bax mRNA and proteins. RESULTS After treatment with BYHWD, notable alterations were detected in the signaling pathways linked to synaptic plasticity and the cAMP signaling pathway-related targets among the intervention targets. This trend of change was also reflected in other bioinformatics analyses, indicating the important role of synaptic plasticity changes before and after modeling and drug intervention. The results of vivo and vitro experiments showed that BYHWD improved local pathological changes, and reduced cerebral infarct volume, and neurological function scores in MCAO rats. It increased dendritic spine density, improved synaptic structural plasticity, and had a certain neuroprotective effect. BYHWD increased the postsynaptic membrane thickness, synaptic interface curvature, and synaptic quantity. 10% BYHWD-containing serum was determined as the optimal concentration for treatment. 10% BYHWD-containing serum significantly reduced the overall apoptotic rate of (OGD/R) SH-SY5Y cells. Immunofluorescence experiments demonstrated that 10% BYHWD-containing serum could improve synaptic plasticity and increase the relative expression levels of synaptic-related proteins Syt1, Psd95, and Syn1. BYHWD and decoction-containing serum upregulated the mRNA and protein expression levels in (OGD/R) SH-SY5Y cells and MCAO rats, suggesting its ability to improve damaged neuronal synaptic plasticity and enhance transmission efficiency, which might be achieved through the regulation of the cAMP/PKA/CREB pathway. CONCLUSIONS This study may provide a basis for clinical medication by elucidating the underlying experimental evidence for the promotion of neural plasticity after ischemic stroke by BYHWD.
Collapse
Affiliation(s)
- Jingyuan Mo
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Weiguo Liao
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China; Maoming Maternal and Child Health Hospital, Maoming, Guangdong, 525000, People's Republic of China
| | - Jinyan Du
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Xiaoling Huang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Yaxin Li
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Anyu Su
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Lanying Zhong
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Mingyu Gong
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Pengcheng Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Zai Liu
- Pharmacy Department, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong, 523000, People's Republic of China.
| | - Huizhen Kuang
- Pharmacy Department, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong, 523000, People's Republic of China.
| | - Lisheng Wang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China.
| |
Collapse
|
2
|
Wong Zhang DE, Gibson Hughes TA, Figueiredo Galvao HB, Lo C, Dinh QN, Zhang SR, Kim HA, Selvaraji S, Clarkson AN, Arumugam TV, Drummond G, Sobey CG, De Silva TM. Post-stroke cognitive impairment and brain hemorrhage are augmented in hypertensive mice. J Cereb Blood Flow Metab 2024; 44:1517-1534. [PMID: 38886874 PMCID: PMC11572097 DOI: 10.1177/0271678x241262127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/19/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
Hypertension is a major risk factor for both stroke and cognitive impairment, but it is unclear whether it may specifically affect post-stroke cognitive impairment. We assessed the effect of hypertension and/or stroke on brain injury, cognitive outcome, and the brain transcriptomic profile. C57BL/6J mice (n = 117; 3-5 mo.) received s.c. infusion of either saline or angiotensin II followed by sham surgery or photothrombotic stroke targeting the prefrontal cortex seven days later. Cognitive function was assessed with the Barnes maze and RNA sequencing was used to quantify transcriptomic changes in the brain. Angiotensin II treatment produced spontaneous hemorrhaging after stroke. In the Barnes maze, hypertensive mice that received stroke surgery had an increased escape latency compared to other groups (day 3: hypertensive + stroke = 166.6 ± 6.0 s vs. hypertensive + sham = 122.8 ± 13.8 s vs. normotensive + stroke = 139.9 ± 10.1 s vs. normotensive + sham = 101.9 ± 16.7 s), consistent with impaired cognition. RNA sequencing revealed >1500 differentially expressed genes related to neuroinflammation in hypertensive + stroke vs. normotensive + stroke, which included genes associated with apoptosis, microRNAs, autophagy, anti-cognitive biomarkers and Wnt signaling. Overall, we show that the combination of hypertension and stroke resulted in greater learning impairment and brain injury.
Collapse
Affiliation(s)
- David E Wong Zhang
- Centre for Cardiovascular Biology and Disease Research and La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine, Environment, La Trobe University, Victoria, Australia
| | - Tayla A Gibson Hughes
- Centre for Cardiovascular Biology and Disease Research and La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine, Environment, La Trobe University, Victoria, Australia
| | - Hericka B Figueiredo Galvao
- Centre for Cardiovascular Biology and Disease Research and La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine, Environment, La Trobe University, Victoria, Australia
| | - Cecilia Lo
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine, Environment, La Trobe University, Victoria, Australia
| | - Quynh Nhu Dinh
- Centre for Cardiovascular Biology and Disease Research and La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine, Environment, La Trobe University, Victoria, Australia
| | - Shenpeng R Zhang
- Centre for Cardiovascular Biology and Disease Research and La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine, Environment, La Trobe University, Victoria, Australia
| | - Hyun Ah Kim
- Centre for Cardiovascular Biology and Disease Research and La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine, Environment, La Trobe University, Victoria, Australia
| | - Sharmalee Selvaraji
- Department of Physiology, Yong Loo Lin School Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Andrew N Clarkson
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine, Environment, La Trobe University, Victoria, Australia
| | - Thiruma V Arumugam
- Centre for Cardiovascular Biology and Disease Research and La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine, Environment, La Trobe University, Victoria, Australia
| | - Grant Drummond
- Centre for Cardiovascular Biology and Disease Research and La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine, Environment, La Trobe University, Victoria, Australia
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research and La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine, Environment, La Trobe University, Victoria, Australia
| | - T Michael De Silva
- Centre for Cardiovascular Biology and Disease Research and La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine, Environment, La Trobe University, Victoria, Australia
| |
Collapse
|
3
|
Díaz-Maroto I, Castro-Robles B, Villar M, García-García J, Ayo-Martín Ó, Serrano-Heras G, Segura T. Plasma Levels of Neuron/Glia-Derived Apoptotic Bodies, an In Vivo Biomarker of Apoptosis, Predicts Infarct Growth and Functional Outcome in Patients with Ischemic Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01283-4. [PMID: 39090486 DOI: 10.1007/s12975-024-01283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Evidence demonstrating the involvement of apoptosis in the death of the potentially salvageable area (penumbra zone) in patients during stroke remains limited. Our aim was to investigate whether apoptotic processes occur in penumbral brain tissue by analyzing circulating neuron- and glia-derived apoptotic bodies (CNS-ApBs), which are vesicles released into the bloodstream during the late stage of apoptosis. We have also assessed the clinical utility of plasma neuronal and glial apoptotic bodies in predicting early neurological evolution and functional outcome. The study included a total of 71 patients with acute hemispheric ischemic stroke (73 ± 10 years; 30 women). Blood samples were collected from these patients immediately upon arrival at the hospital (within 9 h) and at 24 and 72 h after symptom onset. Subsequently, isolation, quantification, and phenotypic characterization of CNS-ApBs during the first 72 h post-stroke were performed using centrifugation and flow cytometry techniques. We found a correlation between infarct growth and final infarct size with the amount of plasma CNS-ApBs detected in the first 72 h after stroke. In addition, patients with neurological worsening (progressive ischemic stroke) had higher plasma levels of CNS-ApBs at 24 h after symptom onset than those with a stable or improving course. Circulating CNS-ApB concentration was further associated with patients' functional prognosis. In conclusion, apoptosis may play an important role in the growth of the cerebral infarct area and plasma CNS-ApB quantification could be used as a predictive marker of penumbra death, neurological deterioration, and functional outcome in patients with ischemic stroke.
Collapse
Affiliation(s)
- Inmaculada Díaz-Maroto
- Department of Neurology, General University Hospital of Albacete, Hermanos Falcó, 37, 02008, Albacete, Spain
| | - Beatriz Castro-Robles
- Research Unit, General University Hospital of Albacete, Laurel, s/n, 02008, Albacete, Spain
| | - Miguel Villar
- Department of Radiology, General University Hospital of Albacete, Albacete, Spain
| | - Jorge García-García
- Department of Neurology, General University Hospital of Albacete, Hermanos Falcó, 37, 02008, Albacete, Spain
| | - Óscar Ayo-Martín
- Department of Neurology, General University Hospital of Albacete, Hermanos Falcó, 37, 02008, Albacete, Spain
| | - Gemma Serrano-Heras
- Research Unit, General University Hospital of Albacete, Laurel, s/n, 02008, Albacete, Spain.
| | - Tomás Segura
- Department of Neurology, General University Hospital of Albacete, Hermanos Falcó, 37, 02008, Albacete, Spain.
- Instituto de Biomedicina (IB-UCLM), Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain.
| |
Collapse
|
4
|
Kuang H, Zhu X, Chen H, Tang H, Zhao H. The immunomodulatory mechanism of acupuncture treatment for ischemic stroke: research progress, prospects, and future direction. Front Immunol 2024; 15:1319863. [PMID: 38756772 PMCID: PMC11096548 DOI: 10.3389/fimmu.2024.1319863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
Ischemic stroke (IS) is one of the leading causes of death and disability. Complicated mechanisms are involved in the pathogenesis of IS. Immunomodulatory mechanisms are crucial to IS. Acupuncture is a traditional non-drug treatment that has been extensively used to treat IS. The exploration of neuroimmune modulation will broaden the understanding of the mechanisms underlying acupuncture treatment. This review summarizes the immune response of immune cells, immune cytokines, and immune organs after an IS. The immunomodulatory mechanisms of acupuncture treatment on the central nervous system and peripheral immunity, as well as the factors that influence the effects of acupuncture treatment, were summarized. We suggest prospects and future directions for research on immunomodulatory mechanisms of acupuncture treatment for IS based on current progress, and we hope that these will provide inspiration for researchers. Additionally, acupuncture has shown favorable outcomes in the treatment of immune-based nervous system diseases, generating new directions for research on possible targets and treatments for immune-based nervous system diseases.
Collapse
Affiliation(s)
- Hongjun Kuang
- Department of Acupuncture and Moxibustion, Shanghai University of Traditional Chinese Medicine, Shenzhen Hospital, Shenzhen, China
- Department of Acupuncture and Moxibustion, Luohu District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xinzhou Zhu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Huan Chen
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Science, Beijing, China
| | - Han Tang
- Department of Acupuncture and Moxibustion, Shanghai University of Traditional Chinese Medicine, Shenzhen Hospital, Shenzhen, China
- Department of Acupuncture and Moxibustion, Luohu District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Hong Zhao
- Department of Acupuncture and Moxibustion, Luohu District Hospital of Traditional Chinese Medicine, Shenzhen, China
| |
Collapse
|
5
|
Caserta S, Genovese C, Cicero N, Gangemi S, Allegra A. The Anti-Cancer Effect of Cinnamon Aqueous Extract: A Focus on Hematological Malignancies. Life (Basel) 2023; 13:life13051176. [PMID: 37240821 DOI: 10.3390/life13051176] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Cinnamon is an evergreen and tropical plant of the family Lauraceae, growing particularly in Sri Lanka, whose aqueous extract has been tested in different studies to evaluate its possible use as an anti-cancer compound. Both in vitro and in vivo experiments seem to confirm that it acts on various cellular pathways, contributing to down-regulating the activity of molecules that stimulate the proliferation and survival of cells such as the transcription factors NF-KB and AP-1, COX-2, dihydrofolate reductase and pro-angiogenic substances such as VEGF, while up-regulating the function of immune cells against tumors, such as cytotoxic CD8+ T cells. In hematological malignancies, aqueous cinnamon extract has been studied in order to understand if it is possible to count on its help, alone or in combination with traditional drugs such as doxorubicin, to treat patients. The aim of our work is to investigate results from in vitro and in vivo studies about the possible anti-cancer effect of aqueous cinnamon extract in hematological malignancies and the different pathways involved in its action. The possibility of using cinnamon extract in clinical practice is discussed; even if its use could appear very interesting, more studies are necessary to clear the real potentiality of this substance in cancer.
Collapse
Affiliation(s)
- Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Claudia Genovese
- National Research Council, Institute for Agricultural and Forest Systems in the Mediterranean, Via Empedocle 58, 95128 Catania, Italy
| | - Nicola Cicero
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| |
Collapse
|
6
|
Zhao N, Gao Y, Jia H, Jiang X. Anti-apoptosis effect of traditional Chinese medicine in the treatment of cerebral ischemia-reperfusion injury. Apoptosis 2023; 28:702-729. [PMID: 36892639 DOI: 10.1007/s10495-023-01824-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
Cerebral ischemia, one of the leading causes of neurological dysfunction of brain cells, muscle dysfunction, and death, brings great harm and challenges to individual health, families, and society. Blood flow disruption causes decreased glucose and oxygen, insufficient to maintain normal brain tissue metabolism, resulting in intracellular calcium overload, oxidative stress, neurotoxicity of excitatory amino acids, and inflammation, ultimately leading to neuronal cell necrosis, apoptosis, or neurological abnormalities. This paper summarizes the specific mechanism of cell injury that apoptosis triggered by reperfusion after cerebral ischemia, the related proteins involved in apoptosis, and the experimental progress of herbal medicine treatment through searching, analyzing, and summarizing the PubMed and Web Of Science databases, which includes active ingredients of herbal medicine, prescriptions, Chinese patent medicines, and herbal extracts, providing a new target or new strategy for drug treatment, and providing a reference for future experimental directions and using them to develop suitable small molecule drugs for clinical application. With the research of anti-apoptosis as the core, it is important to find highly effective, low toxicity, safe and cheap compounds from natural plants and animals with abundant resources to prevent and treat Cerebral ischemia/reperfusion (I/R) injury (CIR) and solve human suffering. In addition, understanding and summarizing the apoptotic mechanism of cerebral ischemia-reperfusion injury, the microscopic mechanism of CIR treatment, and the cellular pathways involved will help to develop new drugs.
Collapse
Affiliation(s)
- Nan Zhao
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yuhe Gao
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Hongtao Jia
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xicheng Jiang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China.
| |
Collapse
|
7
|
Yang Y, Deng P, Si Y, Xu H, Zhang J, Sun H. Acupuncture at GV20 and ST36 Improves the Recovery of Behavioral Activity in Rats Subjected to Cerebral Ischemia/Reperfusion Injury. Front Behav Neurosci 2022; 16:909512. [PMID: 35775011 PMCID: PMC9239252 DOI: 10.3389/fnbeh.2022.909512] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Traditional acupuncture and electroacupuncture (EA) have been widely performed to treat ischemic stroke. To provide experimental support for the clinical application of acupuncture to ameliorate post-stroke sequelae, in this study, we investigated the therapeutic effect of acupuncture and EA on CIRI following middle cerebral artery occlusion (MCAO) in rats. The animals were randomly divided into five groups: sham-operated (S), model (M), traditional acupuncture (A) treatment, electroacupuncture (EA) treatment, and drug (D; edaravone) therapies. Neurological behavioral characteristics (neurological deficit score, forelimb muscle strength, sensorimotor function, body symmetry, sucrose consumption, and mood) were examined in all the groups on days 1, 3, 5, and 7 after reperfusion. Expressions of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α) were detected by immunohistochemistry. Both acupuncture and EA significantly reduced neurological deficits and improved forelimb muscle strength, sensorimotor function, body symmetry recovery, and neurovascular regeneration in the rats after ischemia/reperfusion injury. The efficacies of both acupuncture and EA were comparable to that of edaravone, a commonly used medicine for stroke in the clinic. Thus, our data suggest that acupuncture and EA therapy at acupoints GV20 and ST36 might represent alternative or complementary treatments to the conventional management of ischemic stroke, providing additional support for the experimental evidence for acupuncture therapy in clinical settings. In summary, EA might provide alternative or complementary treatment strategies for treating patients with apoplexy in the clinic. However, potential mechanisms underlying the role of acupuncture require further investigation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Peiying Deng
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yingkui Si
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hong Xu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jianmin Zhang
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Department of Immunology, School of Basic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Jianmin Zhang,
| | - Hua Sun
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Hua Sun,
| |
Collapse
|