1
|
Al Lawati H, Al Busaidi S, Al Rawahi T, Al Lawati A, Kifah A, Das S. Alendronate for Effective Treatment of Male Osteoporosis: An Insight. Curr Pharm Des 2025; 31:26-36. [PMID: 39238374 DOI: 10.2174/0113816128310838240820065324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/12/2024] [Accepted: 07/19/2024] [Indexed: 09/07/2024]
Abstract
Osteoporosis is a major global health problem. The increase in the incidence of osteoporosis in the elderly poses a challenge to treat and also results in an economic burden for the nation. Osteoporosis has been given more importance in females, and there is an urgent need to address this disease in males. Various drugs, such as nitrogen-containing bisphosphonates, RANK ligand inhibitors, parathormones, and alendronate, have been used for effective treatment of osteoporosis. Alendronate (alendronic acid), a nitrogen-containing bisphosphonate that inhibits bone resorption by osteoclasts, was synthesized during the 1970s. In the present review, we discuss the pharmacokinetics, mechanism of action, adverse effects, contraindications, and toxicity monitoring of alendronate. The drug may be effectively used for the treatment of male osteoporosis in order to increase bone mineral density and prevent fractures.
Collapse
Affiliation(s)
- Hanan Al Lawati
- Department of Pharmaceutics, Oman College of Health Sciences, Muscat, Oman
| | - Sara Al Busaidi
- Medical Department, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Thuraiya Al Rawahi
- Medical Department, Royal College of Surgeons in Ireland - Bahrain, Muharraq, Kingdom of Bahrain
| | - Abdullah Al Lawati
- College of Medicine and Health Science, Sultan Qaboos University Hospital, Muscat, Sultanate of Oman
| | - Ahmed Kifah
- Medical Department, National University, Sohar, Oman
| | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
2
|
Ning B, Londono I, Laporte C, Villemure I. Zoledronate reduces loading-induced microdamage in cortical ulna of ovariectomized rats. J Mech Behav Biomed Mater 2024; 150:106350. [PMID: 38171139 DOI: 10.1016/j.jmbbm.2023.106350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024]
Abstract
As a daily physiological mechanism in bone, microdamage accumulation dissipates energy and helps to prevent fractures. However, excessive damage accumulation might bring adverse effects to bone mechanical properties, which is especially problematic among the osteoporotic and osteopenic patients treated by bisphosphonates. Some pre-clinical studies in the literature applied forelimb loading models to produce well-controlled microdamage in cortical bone. Ovariectomized animals were also extensively studied to assimilate human conditions of estrogen-related bone loss. In the present study, we combined both experimental models to investigate microdamage accumulation in the context of osteopenia and zoledronate treatment. Three-month-old normal and ovariectomized rats treated by saline or zoledronate underwent controlled compressive loading on their right forelimb to create in vivo microdamage, which was then quantified by barium sulfate contrast-enhanced micro-CT imaging. Weekly in vivo micro-CT scans were taken to evaluate bone (re)modeling and to capture microstructural changes over time. After sacrifice, three-point-bending tests were performed to assess bone mechanical properties. Results show that the zoledronate treatment can reduce cortical microdamage accumulation in ovariectomized rats, which might be explained by the enhancement of several bone structural properties such as ultimate force, yield force, cortical bone area and volume. The rats showed increased bone formation volume and surface after the generation of microdamage, especially for the normal and the ovariectomized groups. Woven bone formation was also observed in loaded ulnae, which was most significant in ovariectomized rats. Although all the rats showed strong correlations between periosteal bone formation and microdamage accumulation, the correlation levels were lower for the zoledronate-treated groups, potentially because of their lower levels of microdamage. The present study provides insights to further investigations of pharmaceutical treatments for osteoporosis and osteopenia. The same experimental concept can be applied in future studies on microdamage and drug testing.
Collapse
Affiliation(s)
- Bohao Ning
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, QC, H3C 3A7, Canada; CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada
| | - Irène Londono
- CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada
| | - Catherine Laporte
- CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada; Department of Electrical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montréal, QC, H3C 1K3, Canada
| | - Isabelle Villemure
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, QC, H3C 3A7, Canada; CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada.
| |
Collapse
|
3
|
Burr DB. Fifty years of bisphosphonates: What are their mechanical effects on bone? Bone 2020; 138:115518. [PMID: 32622873 DOI: 10.1016/j.bone.2020.115518] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Abstract
After fifty years of experience with several generations of bisphosphonates (BPs), and 25 years after these drugs were approved for use in humans, their mechanical effects on bone are still not fully understood. Certainly, these drugs have transformed the treatment of osteoporosis in both men and women. There is no question that they do prevent fractures related to low bone mass, and there is widespread agreement that they increase strength and stiffness of the vertebrae. There is less consensus, however, about their effects on cortical bone, or on bone tissue properties in either trabecular or cortical bone, or their effects with longer periods of treatment. The consensus of most studies, both those based on ovariectomized and intact animal models and on testing of human bone, is that long-term treatment and/or high doses with certain BPs make the bone tissue more brittle and less tough. This translates into reduced energy to fracture and potentially a shorter bone fatigue life. Many studies have been done, but Interpretation of the results of these studies is complicated by variations in which BP is used, the animal model used, dose, duration, and methods of testing. Duration effects and effects on impact properties of bone are gaps that should be filled with additional testing.
Collapse
Affiliation(s)
- David B Burr
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America; Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis, Indianapolis, IN 46202, United States of America.
| |
Collapse
|
4
|
Agnew AM, Murach MM, Dominguez VM, Sreedhar A, Misicka E, Harden A, Bolte JH, Kang YS, Stammen J, Moorhouse K. Sources of Variability in Structural Bending Response of Pediatric and Adult Human Ribs in Dynamic Frontal Impacts. STAPP CAR CRASH JOURNAL 2018; 62:119-192. [PMID: 30608995 DOI: 10.4271/2018-22-0004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Despite safety advances, thoracic injuries in motor vehicle crashes remain a significant source of morbidity and mortality, and rib fractures are the most prevalent of thoracic injuries. The objective of this study was to explore sources of variation in rib structural properties in order to identify sources of differential risk of rib fracture between vehicle occupants. A hierarchical model was employed to quantify the effects of demographic differences and rib geometry on structural properties including stiffness, force, displacement, and energy at failure and yield. Three-hundred forty-seven mid-level ribs from 182 individual anatomical donors were dynamically (~2 m/s) tested to failure in a simplified bending scenario mimicking a frontal thoracic impact. Individuals ranged in age from 4 - 108 years (mean 53 ± 23 years) and included 59 females and 123 males of diverse body sizes. Age, sex, body size, aBMD, whole rib geometry and cross-sectional geometry were explored as predictors of rib structural properties. Measures of cross-sectional rib size (Tt.Ar), bone quantity (Ct.Ar), and bone distribution (Z) generally explained more variation than any other predictors, and were further improved when normalized by rib length (e.g., robustness and WBSI). Cortical thickness (Ct.Th) was not found to be a useful predictor. Rib level predictors performed better than individual level predictors. These findings moderately explain differential risk for rib fracture and with additional exploration of the rib's role in thoracic response, may be able contribute to ATD and HBM development and alterations in addition to improvements to thoracic injury criteria and scaling methods.
Collapse
Affiliation(s)
- Amanda M Agnew
- Injury Biomechanics Research Center, The Ohio State University
| | | | | | | | - Elina Misicka
- Injury Biomechanics Research Center, The Ohio State University
| | - Angela Harden
- Injury Biomechanics Research Center, The Ohio State University
| | - John H Bolte
- Injury Biomechanics Research Center, The Ohio State University
| | - Yun-Seok Kang
- Injury Biomechanics Research Center, The Ohio State University
| | - Jason Stammen
- National Highway Traffic Safety Administration, Vehicle Research and Test Center
| | - Kevin Moorhouse
- National Highway Traffic Safety Administration, Vehicle Research and Test Center
| |
Collapse
|
5
|
Awasthi H, Mani D, Singh D, Gupta A. The underlying pathophysiology and therapeutic approaches for osteoporosis. Med Res Rev 2018; 38:2024-2057. [DOI: 10.1002/med.21504] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/28/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Harshika Awasthi
- Herbal Medicinal Products Department; CSIR-Central Institute of Medicinal and Aromatic Plants; Lucknow India
| | - Dayanandan Mani
- Herbal Medicinal Products Department; CSIR-Central Institute of Medicinal and Aromatic Plants; Lucknow India
| | - Divya Singh
- Division of Endocrinology; CSIR-Central Drug Research Institute; Lucknow India
| | - Atul Gupta
- Medicinal Chemistry Department; CSIR-Central Institute of Medicinal and Aromatic Plants; Lucknow India
| |
Collapse
|
6
|
Burr DB. The use of finite element analysis to estimate the changing strength of bone following treatment for osteoporosis. Osteoporos Int 2016; 27:2651-2654. [PMID: 27447170 DOI: 10.1007/s00198-016-3707-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/08/2016] [Indexed: 02/03/2023]
Affiliation(s)
- D B Burr
- Department of Anatomy and Cell Biology, MS 5035, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
7
|
|