1
|
Di Rocco G, Trivisonno A, Trivisonno G, Toietta G. Dissecting human adipose tissue heterogeneity using single-cell omics technologies. Stem Cell Res Ther 2024; 15:322. [PMID: 39334440 PMCID: PMC11437900 DOI: 10.1186/s13287-024-03931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Single-cell omics technologies that profile genes (genomic and epigenomic) and determine the abundance of mRNA (transcriptomic), protein (proteomic and secretomic), lipids (lipidomic), and extracellular matrix (matrisomic) support the dissection of adipose tissue heterogeneity at unprecedented resolution in a temporally and spatially defined manner. In particular, cell omics technologies may provide innovative biomarkers for the identification of rare specific progenitor cell subpopulations, assess transcriptional and proteomic changes affecting cell proliferation and immunomodulatory potential, and accurately define the lineage hierarchy and differentiation status of progenitor cells. Unraveling adipose tissue complexity may also provide for the precise assessment of a dysfunctional state, which has been associated with cancer, as cancer-associated adipocytes play an important role in shaping the tumor microenvironment supporting tumor progression and metastasis, obesity, metabolic syndrome, and type 2 diabetes mellitus. The information collected by single-cell omics has relevant implications for regenerative medicine because adipose tissue is an accessible source of multipotent cells; alternative cell-free approaches, including the use of adipose tissue stromal cell-conditioned medium, extracellular vesicles, or decellularized extracellular matrix, are clinically valid options. Subcutaneous white adipose tissue, which is generally harvested via liposuction, is highly heterogeneous because of intrinsic biological variability and extrinsic inconsistencies in the harvesting and processing procedures. The current limited understanding of adipose tissue heterogeneity impinges on the definition of quality standards appropriate for clinical translation, which requires consistency and uniformity of the administered product. We review the methods used for dissecting adipose tissue heterogeneity and provide an overview of advances in omics technology that may contribute to the exploration of heterogeneity and dynamics of adipose tissue at the single-cell level.
Collapse
Affiliation(s)
- Giuliana Di Rocco
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Angelo Trivisonno
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | | | - Gabriele Toietta
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi, 53, 00144, Rome, Italy.
| |
Collapse
|
2
|
Salvatori L, Magno S, Ceccarini G, Tozzi R, Contini S, Pelosini C, Santini F, Gnessi L, Mariani S. SIRT1 Serum Concentrations in Lipodystrophic Syndromes. Int J Mol Sci 2024; 25:4785. [PMID: 38732001 PMCID: PMC11084952 DOI: 10.3390/ijms25094785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Lipodystrophies (LDs) are rare, complex disorders of the adipose tissue characterized by selective fat loss, altered adipokine profile and metabolic impairment. Sirtuins (SIRTs) are class III NAD+-dependent histone deacetylases linked to fat metabolism. SIRT1 plays a critical role in metabolic health by deacetylating target proteins in tissue types including liver, muscle, and adipose. Circulating SIRT1 levels have been found to be reduced in obesity and increased in anorexia nervosa and patients experiencing weight loss. We evaluated circulating SIRT1 levels in relation to fat levels in 32 lipodystrophic patients affected by congenital or acquired LDs compared to non-LD subjects (24 with anorexia nervosa, 22 normal weight, and 24 with obesity). SIRT1 serum levels were higher in LDs than normal weight subjects (mean ± SEM 4.18 ± 0.48 vs. 2.59 ± 0.20 ng/mL) and subjects with obesity (1.7 ± 0.39 ng/mL), whereas they were close to those measured in anorexia nervosa (3.44 ± 0.46 ng/mL). Our findings show that within the LD group, there was no relationship between SIRT1 levels and the amount of body fat. The mechanisms responsible for secretion and regulation of SIRT1 in LD deserve further investigation.
Collapse
Affiliation(s)
- Luisa Salvatori
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185 Rome, Italy;
| | - Silvia Magno
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, 56124 Pisa, Italy (G.C.)
| | - Giovanni Ceccarini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, 56124 Pisa, Italy (G.C.)
| | - Rossella Tozzi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Savina Contini
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy
| | - Caterina Pelosini
- Chemistry and Endocrinology Laboratory, University Hospital of Pisa, 56124 Pisa, Italy
| | - Ferruccio Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, 56124 Pisa, Italy (G.C.)
| | - Lucio Gnessi
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy
| | - Stefania Mariani
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
3
|
Mahmoud M, Abdel-Rasheed M, Galal ER, El-Awady RR. Factors Defining Human Adipose Stem/Stromal Cell Immunomodulation in Vitro. Stem Cell Rev Rep 2024; 20:175-205. [PMID: 37962697 PMCID: PMC10799834 DOI: 10.1007/s12015-023-10654-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Human adipose tissue-derived stem/stromal cells (hASCs) are adult multipotent mesenchymal stem/stromal cells with immunomodulatory capacities. Here, we present up-to-date knowledge on the impact of different experimental and donor-related factors on hASC immunoregulatory functions in vitro. The experimental determinants include the immunological status of hASCs relative to target immune cells, contact vs. contactless interaction, and oxygen tension. Factors such as the ratio of hASCs to immune cells, the cellular context, the immune cell activation status, and coculture duration are also discussed. Conditioning of hASCs with different approaches before interaction with immune cells, hASC culture in xenogenic or xenofree culture medium, hASC culture in two-dimension vs. three-dimension with biomaterials, and the hASC passage number are among the experimental parameters that greatly may impact the hASC immunosuppressive potential in vitro, thus, they are also considered. Moreover, the influence of donor-related characteristics such as age, sex, and health status on hASC immunomodulation in vitro is reviewed. By analysis of the literature studies, most of the indicated determinants have been investigated in broad non-standardized ranges, so the results are not univocal. Clear conclusions cannot be drawn for the fine-tuned scenarios of many important factors to set a standard hASC immunopotency assay. Such variability needs to be carefully considered in further standardized research. Importantly, field experts' opinions may help to make it clearer.
Collapse
Affiliation(s)
- Marwa Mahmoud
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt.
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Mazen Abdel-Rasheed
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt
- Department of Reproductive Health Research, National Research Centre, Cairo, Egypt
| | - Eman Reda Galal
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Rehab R El-Awady
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
4
|
Tozzi R, Campolo F, Baldini E, Venneri MA, Lubrano C, Ulisse S, Gnessi L, Mariani S. Ketogenic Diet Increases Serum and White Adipose Tissue SIRT1 Expression in Mice. Int J Mol Sci 2022; 23:ijms232415860. [PMID: 36555502 PMCID: PMC9785229 DOI: 10.3390/ijms232415860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Overnutrition and its sequelae have become a global concern due to the increasing incidence of obesity and insulin resistance. A ketogenic diet (KD) is widely used as a dietary treatment for metabolic disorders. Sirtuin1 (SIRT1), a metabolic sensor which regulates fat homeostasis, is modulated by dietary interventions. However, the influence of nutritional ketosis on SIRT1 is still debated. We examined the effect of KD on adipose tissue, liver, and serum levels of SIRT1 in mice. Adult C57BL/6J male mice were randomly assigned to two isocaloric dietary groups and fed with either high-fat KD or normal chow (NC) for 4 weeks. Serum SIRT1, beta-hydroxybutyrate (βHB), glucose, and triglyceride levels, as well as SIRT1 expression in visceral (VAT), subcutaneous (SAT), and brown (BAT) adipose tissues, and in the liver, were measured. KD-fed mice showed an increase in serum βHB in parallel with serum SIRT1 (r = 0.732, p = 0.0156), and increased SIRT1 protein expression in SAT and VAT. SIRT1 levels remained unchanged in BAT and in the liver, which developed steatosis. Normal glycemia and triglycerides were observed. Under a KD, serum and white fat phenotypes show higher SIRT1, suggesting that one of the molecular mechanisms underlying a KD's potential benefits on metabolic health involves a synergistic interaction with SIRT1.
Collapse
Affiliation(s)
- Rossella Tozzi
- Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Federica Campolo
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Enke Baldini
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Carla Lubrano
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Salvatore Ulisse
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Lucio Gnessi
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Stefania Mariani
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
- Correspondence: ; Tel.: +39-6-49970509; Fax: +39-6-4461450
| |
Collapse
|
5
|
Chen J, Lou R, Zhou F, Li D, Peng C, Lin L. Sirtuins: Key players in obesity-associated adipose tissue remodeling. Front Immunol 2022; 13:1068986. [PMID: 36505468 PMCID: PMC9730827 DOI: 10.3389/fimmu.2022.1068986] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Obesity, a complex disease involving an excessive amount of body fat and a major threat to public health all over the world, is the determining factor of the onset and development of metabolic disorders, including type 2 diabetes, cardiovascular diseases, and non-alcoholic fatty liver disease. Long-term overnutrition results in excessive expansion and dysfunction of adipose tissue, inflammatory responses and over-accumulation of extracellular matrix in adipose tissue, and ectopic lipid deposit in other organs, termed adipose tissue remodeling. The mammalian Sirtuins (SIRT1-7) are a family of conserved NAD+-dependent protein deacetylases. Mounting evidence has disclosed that Sirtuins and their prominent substrates participate in a variety of physiological and pathological processes, including cell cycle regulation, mitochondrial biogenesis and function, glucose and lipid metabolism, insulin action, inflammatory responses, and energy homeostasis. In this review, we provided up-to-date and comprehensive knowledge about the roles of Sirtuins in adipose tissue remodeling, focusing on the fate of adipocytes, lipid mobilization, adipose tissue inflammation and fibrosis, and browning of adipose tissue, and we summarized the clinical trials of Sirtuin activators and inhibitors in treating metabolic diseases, which might shed light on new therapeutic strategies for obesity and its associated metabolic diseases.
Collapse
Affiliation(s)
- Jiali Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Ruohan Lou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Fei Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Cheng Peng, ; Ligen Lin,
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China,Department of Pharmaceutical Sciences and Technology, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China,*Correspondence: Cheng Peng, ; Ligen Lin,
| |
Collapse
|
6
|
Ketone Bodies and SIRT1, Synergic Epigenetic Regulators for Metabolic Health: A Narrative Review. Nutrients 2022; 14:nu14153145. [PMID: 35956321 PMCID: PMC9370141 DOI: 10.3390/nu14153145] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Ketone bodies (KBs) and Sirtuin-1 (SIRT1) have received increasing attention over the past two decades given their pivotal function in a variety of biological contexts, including transcriptional regulation, cell cycle progression, inflammation, metabolism, neurological and cardiovascular physiology, and cancer. As a consequence, the modulation of KBs and SIRT1 is considered a promising therapeutic option for many diseases. The direct regulation of gene expression can occur in vivo through histone modifications mediated by both SIRT1 and KBs during fasting or low-carbohydrate diets, and dietary metabolites may contribute to epigenetic regulation, leading to greater genomic plasticity. In this review, we provide an updated overview of the epigenetic interactions between KBs and SIRT1, with a particular glance at their central, synergistic roles for metabolic health.
Collapse
|
7
|
Тимашева ЯР, Балхиярова ЖР, Кочетова ОВ. [Current state of the obesity research: genetic aspects, the role of microbiome, and susceptibility to COVID-19]. PROBLEMY ENDOKRINOLOGII 2021; 67:20-35. [PMID: 34533011 PMCID: PMC9753850 DOI: 10.14341/probl12775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 11/06/2022]
Abstract
Obesity affects over 700 million people worldwide and its prevalence keeps growing steadily. The problem is particularly relevant due to the increased risk of COVID-19 complications and mortality in obese patients. Obesity prevalence increase is often associated with the influence of environmental and behavioural factors, leading to stigmatization of people with obesity due to beliefs that their problems are caused by poor lifestyle choices. However, hereditary predisposition to obesity has been established, likely polygenic in nature. Morbid obesity can result from rare mutations having a significant effect on energy metabolism and fat deposition, but the majority of patients does not present with monogenic forms. Microbiome low diversity significantly correlates with metabolic disorders (inflammation, insulin resistance), and the success of weight loss (bariatric) surgery. However, data on the long-term consequences of bariatric surgery and changes in the microbiome composition and genetic diversity before and after surgery are currently lacking. In this review, we summarize the results of studies of the genetic characteristics of obesity patients, molecular mechanisms of obesity, contributing to the unfavourable course of coronavirus infection, and the evolution of their microbiome during bariatric surgery, elucidating the mechanisms of disease development and creating opportunities to identify potential new treatment targets and design effective personalized approaches for the diagnosis, management, and prevention of obesity.
Collapse
Affiliation(s)
- Я. Р. Тимашева
- Институт биохимии и генетики Уфимского федерального исследовательского центра Российской академии наук;
Башкирский государственный медицинский университет
| | - Ж. Р. Балхиярова
- Институт биохимии и генетики Уфимского федерального исследовательского центра Российской академии наук;
Башкирский государственный медицинский университет;
Университет Суррея
| | - О. В. Кочетова
- Институт биохимии и генетики Уфимского федерального исследовательского центра Российской академии наук
| |
Collapse
|
8
|
Adipose stem cells in obesity: challenges and opportunities. Biosci Rep 2021; 40:225001. [PMID: 32452515 PMCID: PMC7284323 DOI: 10.1042/bsr20194076] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/08/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue, the storage of excessive energy in the body, secretes various proteins called adipokines, which connect the body’s nutritional status to the regulation of energy balance. Obesity triggers alterations of quantity and quality of various types of cells that reside in adipose tissue, including adipose stem cells (ASCs; referred to as adipose-derived stem/stromal cells in vitro). These alterations in the functionalities and properties of ASCs impair adipose tissue remodeling and adipose tissue function, which induces low-grade systemic inflammation, progressive insulin resistance, and other metabolic disorders. In contrast, the ability of ASCs to recruit new adipocytes when faced with caloric excess leads to healthy adipose tissue expansion, associated with lower amounts of inflammation, fibrosis, and insulin resistance. This review focuses on recent advances in our understanding of the identity of ASCs and their roles in adipose tissue development, homeostasis, expansion, and thermogenesis, and how these roles go awry in obesity. A better understanding of the biology of ASCs and their adipogenesis may lead to novel therapeutic targets for obesity and metabolic disease.
Collapse
|
9
|
Maissan P, Mooij EJ, Barberis M. Sirtuins-Mediated System-Level Regulation of Mammalian Tissues at the Interface between Metabolism and Cell Cycle: A Systematic Review. BIOLOGY 2021; 10:194. [PMID: 33806509 PMCID: PMC7999230 DOI: 10.3390/biology10030194] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Sirtuins are a family of highly conserved NAD+-dependent proteins and this dependency links Sirtuins directly to metabolism. Sirtuins' activity has been shown to extend the lifespan of several organisms and mainly through the post-translational modification of their many target proteins, with deacetylation being the most common modification. The seven mammalian Sirtuins, SIRT1 through SIRT7, have been implicated in regulating physiological responses to metabolism and stress by acting as nutrient sensors, linking environmental and nutrient signals to mammalian metabolic homeostasis. Furthermore, mammalian Sirtuins have been implicated in playing major roles in mammalian pathophysiological conditions such as inflammation, obesity and cancer. Mammalian Sirtuins are expressed heterogeneously among different organs and tissues, and the same holds true for their substrates. Thus, the function of mammalian Sirtuins together with their substrates is expected to vary among tissues. Any therapy depending on Sirtuins could therefore have different local as well as systemic effects. Here, an introduction to processes relevant for the actions of Sirtuins, such as metabolism and cell cycle, will be followed by reasoning on the system-level function of Sirtuins and their substrates in different mammalian tissues. Their involvement in the healthy metabolism and metabolic disorders will be reviewed and critically discussed.
Collapse
Affiliation(s)
- Parcival Maissan
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Eva J. Mooij
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | - Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| |
Collapse
|
10
|
Mariani S, Di Giorgio MR, Rossi E, Tozzi R, Contini S, Bauleo L, Cipriani F, Toscano R, Basciani S, Barbaro G, Watanabe M, Valenti A, Cotugno A, Ancona C, Lubrano C, Gnessi L. Blood SIRT1 Shows a Coherent Association with Leptin and Adiponectin in Relation to the Degree and Distribution of Adiposity: A Study in Obesity, Normal Weight and Anorexia Nervosa. Nutrients 2020; 12:nu12113506. [PMID: 33202604 PMCID: PMC7696683 DOI: 10.3390/nu12113506] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Sirtuin 1 (SIRT1) is a sensor of cell energy availability, and with leptin and adiponectin, it regulates metabolic homeostasis. Widely studied in tissues, SIRT1 is under evaluation as a plasmatic marker. We aimed at assessing whether circulating SIRT1 behaves consistently with leptin and adiponectin in conditions of deficiency, excess or normal fat content. Eighty subjects were evaluated: 27 with anorexia nervosa (AN), 26 normal-weight and 27 with obesity. Bloodstream SIRT1, leptin and adiponectin (ELISA), total and trunk fat mass (FM) %, abdominal visceral adipose tissue, liver steatosis and epicardial fat thickness (EFT) were assessed. For each fat store, the coefficient of determination (R2) was used to evaluate the prediction capability of SIRT1, leptin and adiponectin. Plasma SIRT1 and adiponectin coherently decreased with the increase of FM, while the opposite occurred with leptin. Mean levels of each analyte were different between groups (p < 0.005). A significant association between plasma variables and FM depots was observed. SIRT1 showed a good predictive strength for FM, particularly in the obesity group, where the best R2 was recorded for EFT (R2 = 0.7). Blood SIRT1, adiponectin and leptin behave coherently with FM and there is synchrony between them. The association of SIRT1 with FM is substantially superimposable to that of adiponectin and leptin. Given its homeostatic roles, SIRT1 may deserve to be considered as a plasma clinical/biochemical parameter of adiposity and metabolic health.
Collapse
Affiliation(s)
- Stefania Mariani
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, Rome, Italy; (M.R.D.G.); (E.R.); (S.C.); (F.C.); (R.T.); (S.B.); (G.B.); (M.W.); (C.L.); (L.G.)
- Correspondence: ; Tel.: +39-06-499-70509
| | - Maria Rosaria Di Giorgio
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, Rome, Italy; (M.R.D.G.); (E.R.); (S.C.); (F.C.); (R.T.); (S.B.); (G.B.); (M.W.); (C.L.); (L.G.)
| | - Erica Rossi
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, Rome, Italy; (M.R.D.G.); (E.R.); (S.C.); (F.C.); (R.T.); (S.B.); (G.B.); (M.W.); (C.L.); (L.G.)
| | - Rossella Tozzi
- Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Savina Contini
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, Rome, Italy; (M.R.D.G.); (E.R.); (S.C.); (F.C.); (R.T.); (S.B.); (G.B.); (M.W.); (C.L.); (L.G.)
| | - Lisa Bauleo
- Department of Epidemiology, Lazio Regional Health Service, 00147 Rome, Italy; (L.B.); (C.A.)
| | - Fiammetta Cipriani
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, Rome, Italy; (M.R.D.G.); (E.R.); (S.C.); (F.C.); (R.T.); (S.B.); (G.B.); (M.W.); (C.L.); (L.G.)
| | - Raffaella Toscano
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, Rome, Italy; (M.R.D.G.); (E.R.); (S.C.); (F.C.); (R.T.); (S.B.); (G.B.); (M.W.); (C.L.); (L.G.)
| | - Sabrina Basciani
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, Rome, Italy; (M.R.D.G.); (E.R.); (S.C.); (F.C.); (R.T.); (S.B.); (G.B.); (M.W.); (C.L.); (L.G.)
| | - Giuseppe Barbaro
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, Rome, Italy; (M.R.D.G.); (E.R.); (S.C.); (F.C.); (R.T.); (S.B.); (G.B.); (M.W.); (C.L.); (L.G.)
| | - Mikiko Watanabe
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, Rome, Italy; (M.R.D.G.); (E.R.); (S.C.); (F.C.); (R.T.); (S.B.); (G.B.); (M.W.); (C.L.); (L.G.)
| | - Agostino Valenti
- Internal Medicine, Santo Spirito in Sassia Hospital, 00193 Rome, Italy;
| | - Armando Cotugno
- Department of Mental Health, UOSD eating behavior disorders, Padiglione I, Comprensorio S. Maria della Pietà, 00135 Rome, Italy;
| | - Carla Ancona
- Department of Epidemiology, Lazio Regional Health Service, 00147 Rome, Italy; (L.B.); (C.A.)
| | - Carla Lubrano
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, Rome, Italy; (M.R.D.G.); (E.R.); (S.C.); (F.C.); (R.T.); (S.B.); (G.B.); (M.W.); (C.L.); (L.G.)
| | - Lucio Gnessi
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, Rome, Italy; (M.R.D.G.); (E.R.); (S.C.); (F.C.); (R.T.); (S.B.); (G.B.); (M.W.); (C.L.); (L.G.)
| |
Collapse
|
11
|
Ritter A, Kreis NN, Louwen F, Yuan J. Obesity and COVID-19: Molecular Mechanisms Linking Both Pandemics. Int J Mol Sci 2020; 21:E5793. [PMID: 32806722 PMCID: PMC7460849 DOI: 10.3390/ijms21165793] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 COVID-19 pandemic is rapidly spreading worldwide and is becoming a major public health crisis. Increasing evidence demonstrates a strong correlation between obesity and the COVID-19 disease. We have summarized recent studies and addressed the impact of obesity on COVID-19 in terms of hospitalization, severity, mortality, and patient outcome. We discuss the potential molecular mechanisms whereby obesity contributes to the pathogenesis of COVID-19. In addition to obesity-related deregulated immune response, chronic inflammation, endothelium imbalance, metabolic dysfunction, and its associated comorbidities, dysfunctional mesenchymal stem cells/adipose-derived mesenchymal stem cells may also play crucial roles in fueling systemic inflammation contributing to the cytokine storm and promoting pulmonary fibrosis causing lung functional failure, characteristic of severe COVID-19. Moreover, obesity may also compromise motile cilia on airway epithelial cells and impair functioning of the mucociliary escalators, reducing the clearance of severe acute respiratory syndrome coronavirus (SARS-CoV-2). Obese diseased adipose tissues overexpress the receptors and proteases for the SARS-CoV-2 entry, implicating its possible roles as virus reservoir and accelerator reinforcing violent systemic inflammation and immune response. Finally, anti-inflammatory cytokines like anti-interleukin 6 and administration of mesenchymal stromal/stem cells may serve as potential immune modulatory therapies for supportively combating COVID-19. Obesity is conversely related to the development of COVID-19 through numerous molecular mechanisms and individuals with obesity belong to the COVID-19-susceptible population requiring more protective measures.
Collapse
Affiliation(s)
- Andreas Ritter
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J.W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (N.-N.K.); (F.L.)
| | | | | | - Juping Yuan
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J.W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (N.-N.K.); (F.L.)
| |
Collapse
|
12
|
Vyas KS, Bole M, Vasconez HC, Banuelos JM, Martinez-Jorge J, Tran N, Lemaine V, Mardini S, Bakri K. Profile of Adipose-Derived Stem Cells in Obese and Lean Environments. Aesthetic Plast Surg 2019; 43:1635-1645. [PMID: 31267153 DOI: 10.1007/s00266-019-01397-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 05/04/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND With the demand for stem cells in regenerative medicine, new methods of isolating stem cells are highly sought. Adipose tissue is a readily available and non-controversial source of multipotent stem cells that carries a low risk for potential donors. However, elevated donor body mass index has been associated with an altered cellular microenvironment and thus has implications for stem cell efficacy in recipients. This review explored the literature on adipose-derived stem cells (ASCs) and the effect of donor obesity on cellular function. METHODS A review of published articles on obesity and ASCs was conducted with the PubMed database and the following search terms: obesity, overweight, adipose-derived stem cells and ASCs. Two investigators screened and reviewed the relevant abstracts. RESULTS There is agreement on reduced ASC function in response to obesity in terms of angiogenic differentiation, proliferation, migration, viability, and an altered and inflammatory transcriptome. Osteogenic differentiation and cell yield do not show reasonable agreement. Weight loss partially rescues some of the aforementioned features. CONCLUSIONS Generally, obesity reduces ASC qualities and may have an effect on the therapeutic value of ASCs. Because weight loss and some biomolecules have been shown to rescue these qualities, further research should be conducted on methods to return obese-derived ASCs to baseline. LEVEL V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors- www.springer.com/00266.
Collapse
Affiliation(s)
- Krishna S Vyas
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
| | - Madhav Bole
- Division of Orthopaedic Surgery, London Health Sciences Centre, University Hospital, 339 Windermere Rd., London, ON, N6A 5A5, Canada
| | - Henry C Vasconez
- Division of Plastic Surgery, University of Kentucky, Lexington, KY, USA
| | - Joseph M Banuelos
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Jorys Martinez-Jorge
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Nho Tran
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Valerie Lemaine
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Samir Mardini
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Karim Bakri
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
13
|
Aliashrafi S, Arefhosseini SR, Lotfi-Dizaji L, Ebrahimi-Mameghani M. Effect of vitamin D supplementation in combination with weight loss diet on lipid profile and sirtuin 1 in obese subjects with vitamin D deficiency: a double blind randomized clinical trial. Health Promot Perspect 2019; 9:263-269. [PMID: 31777705 PMCID: PMC6875552 DOI: 10.15171/hpp.2019.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/22/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Due to inconsistent evidence regarding the potential role of vitamin D on lipid profile and sirtuin 1 (SIRT-1), this study was designed to investigate the effect of vitamin D supplementation in combination with weight loss diet on lipid profile and SIRT-1 in obese subjects with vitamin D deficiency. Methods: Forty-four obese subjects with vitamin D deficiency were randomly assigned in a randomized clinical trial to receive either a weight reduction diet supplemented with 50000IU vitamin D3 pearl (n = 22) or placebo (n = 22) once weekly for 12 weeks. Changes in total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG) and low high density lipoprotein cholesterol (HDL-C) and SIRT-1 were the primary outcomes. Secondary outcomes were changes in body mass index (BMI), 25(OH) D and parathyroid hormone (PTH). Physical activity and dietary intakes were also assessed. Results: During the intervention, PTH (mean difference, -33.36; 95% CI: -49.15 to -17.57;P<0.001) and LDL-C (mean difference, -15.91; 95% CI: -21.76 to -10.07; P<0.001) decreased and 25(OH) D (mean difference, 36.44; 95% CI: 29.05 to 43.83; P<0.001) increased significantly in the vitamin D group. BMI (mean differences: -2.40; 95% CI: [-2.92 to-1.88] in vitamin D group and mean differences: -1.90; 95% CI [-6.58 to -3.01] in placebo group, P<0.05 for both groups), TC (mean difference,-21.31; 95% CI: -27.24 to -15.38; P<0.001 in vitamin D group and mean difference, -12.54; 95% CI: -19.02 to -6.06; P<0.001 in placebo group) and TG (mean difference,-21.31; 95% CI: -27.24 to -15.38; P<0.001in vitamin D group and mean difference, -12.54; 95% CI: -19.02 to -6.06; P<0.001 in placebo group) decreased and SIRT-1(mean difference, 3.95; 95% CI: 1.18 to 6.73; P=0.007in vitamin D group and mean difference,1.91; 95% CI: 0.31 to 3.63 in placebo group, P=0.022) increase significantly in both group. At end of the study, 25(OH) D and PTH showed significant differences in between-group analyses(P<0.05). No significant difference was detected for HDL-C in within and between groups. Conclusion: This study gives no support for any beneficial effect of vitamin D supplementation on lipid profile and SIRT-1 in obese subjects with vitamin D deficiency.
Collapse
Affiliation(s)
- Soodabeh Aliashrafi
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Rafie- Arefhosseini
- Nutritional Biochemistry, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lida Lotfi-Dizaji
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrangiz Ebrahimi-Mameghani
- Social Determinant of Health Research Center, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Sirt5 Attenuates Cisplatin-Induced Acute Kidney Injury through Regulation of Nrf2/HO-1 and Bcl-2. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4745132. [PMID: 31815138 PMCID: PMC6878818 DOI: 10.1155/2019/4745132] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/11/2019] [Accepted: 08/29/2019] [Indexed: 12/30/2022]
Abstract
Cisplatin- (CDDP) induced acute kidney injury (AKI) limits the clinical use of cisplatin. Several sirtuin (SIRT) family proteins are involved in AKI, while the roles of Sirt5 in cisplatin-induced AKI remain unknown. In the present study, we characterized the role and mechanism of Sirt5 in cisplatin-induced apoptosis using the human kidney 2 (HK-2) cell line. CDDP treatment decreased Sirt5 expression of HK-2 cells in a dose-dependent manner. In addition, Sirt5 overexpression enhanced the metabolic activity in CDDP-treated HK-2 cells while Sirt5 siRNA attenuated it. Forced expression of Sirt5 inhibited CDDP-induced apoptosis while Sirt5 siRNA showed the opposite effects. Accordingly, Sirt5 overexpression inhibited the level of caspase 3 cleavage and cytochrome c levels. Furthermore, we found that Sirt5 increased mitochondrial membrane potentials and ameliorated intracellular ROS production. Mitotracker Red staining indicated that Sirt5 overexpression was able to maintain the mitochondrial density during CDDP treatment. We also investigated possible downstream targets of Sirt5 and found that Sirt5 increased Nrf2, HO-1, and Bcl-2 while it decreased Bax protein expression. Sirt5 siRNA showed the opposite effect on these proteins. The levels of Nrf2, HO-1, and Bcl-2 proteins in HK-2 cells were also decreased after CDDP treatment. Moreover, Nrf2 and Bcl-2 siRNA partly abolished the protecting effect of Sirt5 on CDDP-induced apoptosis and cytochrome c release. Catalase inhibitor 3-AT also abolished the cytoprotective effect of Sirt5. Together, the results demonstrated that Sirt5 attenuated cisplatin-induced apoptosis and mitochondrial injury in human kidney HK-2 cells, possibly through the regulation of Nrf2/HO-1 and Bcl-2.
Collapse
|
15
|
Raza SHA, Khan R, Abdelnour SA, Abd El-Hack ME, Khafaga AF, Taha A, Ohran H, Mei C, Schreurs NM, Zan L. Advances of Molecular Markers and Their Application for Body Variables and Carcass Traits in Qinchuan Cattle. Genes (Basel) 2019; 10:E717. [PMID: 31533236 PMCID: PMC6771018 DOI: 10.3390/genes10090717] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/27/2022] Open
Abstract
This review considers the unique characteristics of Chinese cattle and intramuscular fat content (IMF) as factors influencing meat quality, including tenderness, flavor, and juiciness of meat. Due to its nutritional qualities, meat contributes to a healthy and balanced diet. The intramuscular fat content and eating quality of beef are influenced by many factors, which can generally be divided into on-farm and pre-slaughter factors (breed, sex of cattle, age at slaughter, housing system, diet, and pre-slaughter handling) and postmortem factors (post-slaughter processing, chilling temperature, and packaging). Meat quality traits can also be influenced by the individual genetic background of the animal. Worldwide, the function of genes and genetic polymorphisms that have potential effects on fattening of cattle and beef quality have been investigated. The use of DNA markers is recognized as a powerful and efficient approach to achieve genetic gain for desirable phenotypic characteristics, which is helpful for economic growth. The polymorphisms of the SIRT4, SIRT6, SIRT7, CRTC3, ABHD5, KLF6, H-FABP, and ELOVL6 genes for body and growth characteristics of cattle, and also for beef quality, are considered with the aim of highlighting the significance of beef intramuscular fat content, and that growth, body, and meat quality characteristics are polygenically regulated.
Collapse
Affiliation(s)
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt.
| | - Ayman Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22578, Egypt.
| | - Husein Ohran
- Department of Physiology, University of Sarajevo, Veterinary Faculty, Zmaja od Bosne Sarajevo 9071000, Bosnia and Herzegovina.
| | - Chugang Mei
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Nicola M Schreurs
- Animal Science, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand.
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
16
|
Wang X, Buechler NL, Long DL, Furdui CM, Yoza BK, McCall CE, Vachharajani V. Cysteine thiol oxidation on SIRT2 regulates inflammation in obese mice with sepsis. Inflammation 2019; 42:156-169. [PMID: 30203196 DOI: 10.1007/s10753-018-0881-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity increases morbidity and mortality in acute illnesses such as sepsis and septic shock. We showed previously that the early/hyper-inflammatory phase of sepsis is exaggerated in obese mice with sepsis; sirtuin 2 (SIRT2) modulates sepsis inflammation in obesity. Evidence suggests that obesity with sepsis is associated with increased oxidative stress. It is unknown whether exaggerated hyper-inflammation of obesity with sepsis modulates the SIRT2 function in return. We showed recently that SIRT6 oxidation during hyper-inflammation of sepsis modulates its glycolytic function. This study tested the hypothesis that increased oxidative stress and direct SIRT2 oxidation exaggerate hyper-inflammation in obesity with sepsis. Using spleen and liver tissue from mice with diet-induced obesity (DIO) we studied oxidized vs. total SIRT2 expression during hyper- and hypo-inflammation of sepsis. To elucidate the mechanism of SIRT2 oxidation (specific modifications of redox-sensitive cysteines) and its effect on inflammation, we performed site-directed mutations of redox-sensitive cysteines Cys221 and Cys224 on SIRT2 to serine (C221S and C224S), transfected HEK293 cells with mutants or WT SIRT2, and studied SIRT2 enzymatic activity and NFĸBp65 deacetylation. Finally, we studied the effect of SIRT2 mutation on LPS-induced inflammation using RAW 264.7 macrophages. In an inverse relationship, total SIRT2 decreased while oxidized SIRT2 expression increased during hyper-inflammation and SIRT2 was unable to deacetylate NFĸBp65 with increased oxidative stress of obesity with sepsis. Mechanistically, both the mutants (C221S and C224S) show decreased (1) SIRT2 enzymatic activity, (2) deacetylation of NFĸBp65, and (3) anti-inflammatory activity in response to LPS vs. WT SIRT2. Direct oxidation modulates SIRT2 function during hyper-inflammatory phase of obesity with sepsis via redox sensitive cysteines.
Collapse
Affiliation(s)
- Xianfeng Wang
- Department of Anesthesiology, Section on Critical Care, Department of Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Nancy L Buechler
- Department of Anesthesiology, Section on Critical Care, Department of Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.,Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - David L Long
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Barbara K Yoza
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Charles E McCall
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Vidula Vachharajani
- Department of Anesthesiology, Section on Critical Care, Department of Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA. .,Department of Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
17
|
The effect of haplotypes in the promoter region of SIRT4 gene on the ultrasound traits in Qinchuan cattle. Trop Anim Health Prod 2019; 51:1877-1882. [PMID: 30963403 DOI: 10.1007/s11250-019-01881-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
Sirtuin 4 (SIRT4) belongs to the mitochondrial sirtuin class of NAD+-dependent protein deacylases. This gene plays an important role in the regulation of lipid metabolism, cellular growth, and metabolism in mammals. Here, potential polymorphisms were sought in the bovine SIRT4 gene, and the relationships between the detected polymorphisms and carcass quality in Qinchuan cattle were assessed. Four single nucleotide polymorphisms (SNPs) were identified in the promoter region of the SIRT4 gene from the sequencing results of 452 individual cattle. A total of 8 different haplotypes were identified. Of these, the 3 most frequently observed haplotypes had frequencies of 35.0% (-CTG-), 18.3% (-CTA-), and 12.9% (-CCG-). The frequencies of g.-311C > T, g.-771C > T, and g.-1022G > A conformed to Hardy-Weinberg equilibrium in all the samples (chi-square test, P < 0.05). The association analysis indicated that these 3 polymorphisms were significantly associated with subcutaneous fat depth and intramuscular fat content (at P < 0.01 or P < 0.05). Interestingly, the Hap1/2 (-CAG-CAA-) diplotype was more highly associated with desirable ultrasound than other haplotype combinations.
Collapse
|
18
|
Panina YA, Yakimov AS, Komleva YK, Morgun AV, Lopatina OL, Malinovskaya NA, Shuvaev AN, Salmin VV, Taranushenko TE, Salmina AB. Plasticity of Adipose Tissue-Derived Stem Cells and Regulation of Angiogenesis. Front Physiol 2018; 9:1656. [PMID: 30534080 PMCID: PMC6275221 DOI: 10.3389/fphys.2018.01656] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022] Open
Abstract
Adipose tissue is recognized as an important organ with metabolic, regulatory, and plastic roles. Adipose tissue-derived stem cells (ASCs) with self-renewal properties localize in the stromal vascular fraction (SVF) being present in a vascular niche, thereby, contributing to local regulation of angiogenesis and vessel remodeling. In the past decades, ASCs have attracted much attention from biologists and bioengineers, particularly, because of their multilineage differentiation potential, strong proliferation, and migration abilities in vitro and high resistance to oxidative stress and senescence. Current data suggest that the SVF serves as an important source of endothelial progenitors, endothelial cells, and pericytes, thereby, contributing to vessel remodeling and growth. In addition, ASCs demonstrate intriguing metabolic and interlineage plasticity, which makes them good candidates for creating regenerative therapeutic protocols, in vitro tissue models and microphysiological systems, and tissue-on-chip devices for diagnostic and regeneration-supporting purposes. This review covers recent achievements in understanding the metabolic activity within the SVF niches (lactate and NAD+ metabolism), which is critical for maintaining the pool of ASCs, and discloses their pro-angiogenic potential, particularly, in the complex therapy of cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Yulia A Panina
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Anton S Yakimov
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Yulia K Komleva
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Andrey V Morgun
- Department of Pediatrics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Olga L Lopatina
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Natalia A Malinovskaya
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Anton N Shuvaev
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Vladimir V Salmin
- Department of Medical and Biological Physics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Tatiana E Taranushenko
- Department of Pediatrics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Alla B Salmina
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| |
Collapse
|
19
|
Louwen F, Ritter A, Kreis NN, Yuan J. Insight into the development of obesity: functional alterations of adipose-derived mesenchymal stem cells. Obes Rev 2018. [PMID: 29521029 DOI: 10.1111/obr.12679] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is associated with a variety of disorders including cardiovascular diseases, diabetes mellitus and cancer. Obesity changes the composition and structure of adipose tissue, linked to pro-inflammatory environment, endocrine/metabolic dysfunction, insulin resistance and oxidative stress. Adipose-derived mesenchymal stem cells (ASCs) have multiple functions like cell renewal, spontaneous repair and homeostasis in adipose tissue. In this review article, we have summarized the recent data highlighting that ASCs in obesity are defective in various functionalities and properties including differentiation, angiogenesis, motility, multipotent state, metabolism and immunomodulation. Inflammatory milieu, hypoxia and abnormal metabolites in obese tissue are crucial for impairing the functions of ASCs. Further work is required to explore the precise molecular mechanisms underlying its alterations and impairments. Based on these data, we suggest that deregulated ASCs, possibly also other mesenchymal stem cells, are important in promoting the development of obesity. Restoration of ASCs/mesenchymal stem cells might be an additional strategy to combat obesity and its associated diseases.
Collapse
Affiliation(s)
- F Louwen
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - A Ritter
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - N N Kreis
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - J Yuan
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
20
|
Stefanowicz M, Nikołajuk A, Matulewicz N, Karczewska-Kupczewska M. Adipose tissue, but not skeletal muscle, sirtuin 1 expression is decreased in obesity and related to insulin sensitivity. Endocrine 2018; 60:263-271. [PMID: 29417372 PMCID: PMC5893655 DOI: 10.1007/s12020-018-1544-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/19/2018] [Indexed: 12/30/2022]
Abstract
PURPOSE Sirtuin 1 may regulate glucose and lipid metabolism. We aimed to assess adipose tissue and skeletal muscle sirtuin 1 expression in relation to insulin sensitivity, the expression of proinflammatory and metabolic genes, and to study the regulation of sirtuin 1 expression by hyperinsulinemia and circulating free fatty acids elevation. METHODS We examined 60 normal-weight, 42 overweight and 15 obese young subjects. The hyperinsulinemic-euglycemic clamp technique was applied throughout to measure insulin sensitivity. In 20 subjects, two 6 h clamps were performed, one of them with concurrent Intralipid/heparin infusion. Biopsies of subcutaneous adipose tissue and skeletal muscle were collected for the measurement of gene and protein expression. RESULTS Obese subjects had lower adipose sirtuin 1 in comparison with normal-weight and overweight participants. Muscle sirtuin 1 did not differ between the groups. Adipose tissue sirtuin 1 was related to insulin sensitivity, adipose tissue SLC2A4. The relationship between adipose tissue sirtuin 1 and insulin sensitivity was still present after controlling for BMI, however, it disappeared after controlling for adipose tissue SLC2A4. Muscle sirtuin 1 was not related to insulin sensitivity. Hyperisulinemia decreased adipose tissue and increased muscle sirtuin 1 expression. Intralipid/heparin infusion negated these effects. CONCLUSIONS Adipose tissue, but not muscle, sirtuin 1 is associated with insulin sensitivity in humans, possibly because of its correlation with adipose tissue SLC2A4 expression. Insulin differentially regulates adipose tissue and skeletal muscle sirtuin 1 expression in the short-term and circulating free fatty acids elevation negates these effects, which may be associated with lipid-induced insulin resistance.
Collapse
Affiliation(s)
- Magdalena Stefanowicz
- Department of Metabolic Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Nikołajuk
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Natalia Matulewicz
- Department of Metabolic Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Monika Karczewska-Kupczewska
- Department of Metabolic Diseases, Medical University of Bialystok, Bialystok, Poland.
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| |
Collapse
|