1
|
Barnard S, Gattu R, Baragi VM, Alzohaili O, Benson R. Identifying Growth Hormone Deficiency in Brain-Injured Patients: The Quality of Life Scale-99. J Neurotrauma 2025; 42:379-390. [PMID: 39681340 DOI: 10.1089/neu.2024.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Traumatic brain injury (TBI) is frequently associated with hypopituitarism. The hypothalamic-pituitary axis appears to be susceptible to the same forces that cause injury to the parenchyma of the brain. Following even a mild TBI (mTBI), patients may suffer transient or permanent decreases in anterior pituitary hormones, including somatotropin (growth hormone [GH]), gonadotropins (luteinizing hormone and follicle-stimulating hormone), thyrotropin, and adrenocorticotropic hormone, with the most frequent long-term deficiency being GH deficiency (GHD). GHD is common after mTBI and is often the cause of persistent post-concussive symptoms a year or more post-injury. GHD is known to cause physical and cognitive fatigue, cognitive inefficiency, metabolic changes, and a range of psychological symptoms. Confusing the picture is that some symptoms of GHD are also common to brain injury itself. To facilitate the detection of GHD when comorbid with TBI, we utilized a new symptom inventory, the Quality-of-Life Scale-99 (QoLS-99), and administered it to a cohort of chronic TBI subjects with and without GHD, distinguished using the insulin tolerance test (ITT). Between 2018 and 2023, 371 patients completed the QoLS-99, of which 263 underwent GH testing with the ITT. Of these 263 patients, 136 (52%) were diagnosed with GHD. A retrospective comparison of QoLS-99 scores found that loss of libido (p < 0.006), a reliance on sleep aids (p < 0.011), and feeling overweight (p < 0.015) were the strongest univariate predictors of GHD. Most survey items did not elicit a significant difference in response between the GHD groups, and for those that did, effect sizes were mild to moderate. Still, initial findings demonstrate strong predictive value in a subset of survey items (i.e., GHD symptoms) that are most discriminating in the sample of patients with TBI. A multivariate prediction model using this subset of questions was able to differentiate GHD status in patients with TBI, correctly identifying 88% of GHD cases with a 37% false positive rate. Based on these findings, we recommend that clinicians inquire about libido, insomnia, and body image as potential markers for GHD. Furthermore, given the amenability of patients with GHD to growth hormone replacement therapy, we strongly encourage clinicians and basic scientists to develop interventions for the large and underserved population of patients with TBI with comorbid GHD.
Collapse
|
2
|
Stankovics L, Ungvari A, Fekete M, Nyul-Toth A, Mukli P, Patai R, Csik B, Gulej R, Conley S, Csiszar A, Toth P. The vasoprotective role of IGF-1 signaling in the cerebral microcirculation: prevention of cerebral microhemorrhages in aging. GeroScience 2025; 47:445-455. [PMID: 39271571 PMCID: PMC11872839 DOI: 10.1007/s11357-024-01343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Aging is closely associated with various cerebrovascular pathologies that significantly impact brain function, with cerebral small vessel disease (CSVD) being a major contributor to cognitive decline in the elderly. Consequences of CSVD include cerebral microhemorrhages (CMH), which are small intracerebral bleeds resulting from the rupture of microvessels. CMHs are prevalent in aging populations, affecting approximately 50% of individuals over 80, and are linked to increased risks of vascular cognitive impairment and dementia (VCID). Hypertension is a primary risk factor for CMHs. Vascular smooth muscle cells (VSMCs) adapt to hypertension by undergoing hypertrophy and producing extracellular matrix (ECM) components, which reinforce vessel walls. Myogenic autoregulation, which involves pressure-induced constriction, helps prevent excessive pressure from damaging the vulnerable microvasculature. However, aging impairs these adaptive mechanisms, weakening vessel walls and increasing susceptibility to damage. Insulin-like Growth Factor 1 (IGF-1) is crucial for vascular health, promoting VSMC hypertrophy, ECM production, and maintaining normal myogenic protection. IGF-1 also prevents microvascular senescence, reduces reactive oxygen species (ROS) production, and regulates matrix metalloproteinase (MMP) activity, which is vital for ECM remodeling and stabilization. IGF-1 deficiency, common in aging, compromises these protective mechanisms, increasing the risk of CMHs. This review explores the vasoprotective role of IGF-1 signaling in the cerebral microcirculation and its implications for preventing hypertension-induced CMHs in aging. Understanding and addressing the decline in IGF-1 signaling with age are crucial for maintaining cerebrovascular health and preventing hypertension-related vascular injuries in the aging population.
Collapse
Affiliation(s)
- Levente Stankovics
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
| | - Anna Ungvari
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary.
| | - Mónika Fekete
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Nyul-Toth
- International Training Program in Geroscience, Doctoral College-Health Sciences Program/ Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- International Training Program in Geroscience, Doctoral College-Health Sciences Program/ Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Boglarka Csik
- International Training Program in Geroscience, Doctoral College-Health Sciences Program/ Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- International Training Program in Geroscience, Doctoral College-Health Sciences Program/ Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shannon Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Toth
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
3
|
Pertab JL, Merkley TL, Winiarski H, Cramond KMJ, Cramond AJ. Concussion and the Autonomic, Immune, and Endocrine Systems: An Introduction to the Field and a Treatment Framework for Persisting Symptoms. J Pers Med 2025; 15:33. [PMID: 39852225 PMCID: PMC11766534 DOI: 10.3390/jpm15010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
A significant proportion of patients who sustain a concussion/mild traumatic brain injury endorse persisting, lingering symptoms. The symptoms associated with concussion are nonspecific, and many other medical conditions present with similar symptoms. Medical conditions that overlap symptomatically with concussion include anxiety, depression, insomnia, chronic pain, chronic fatigue, fibromyalgia, and cervical strain injuries. One of the factors that may account for these similarities is that these conditions all present with disturbances in the optimal functioning of the autonomic nervous system and its intricate interactions with the endocrine system and immune system-the three primary regulatory systems in the body. When clinicians are working with patients presenting with persisting symptoms after concussion, evidence-based treatment options drawn from the literature are limited. We present a framework for the assessment and treatment of persisting symptoms following concussion based on the available evidence (treatment trials), neuroanatomical principles (research into the physiology of concussion), and clinical judgment. We review the research supporting the premise that behavioral interventions designed to stabilize and optimize regulatory systems in the body following injury have the potential to reduce symptoms and improve functioning in patients. Foundational concussion rehabilitation strategies in the areas of sleep stabilization, fatigue management, physical exercise, nutrition, relaxation protocols, and behavioral activation are outlined along with practical strategies for implementing intervention modules with patients.
Collapse
Affiliation(s)
- Jon L. Pertab
- Neurosciences Institute, Intermountain Healthcare, Murray, UT 84107, USA
| | - Tricia L. Merkley
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Holly Winiarski
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | |
Collapse
|
4
|
Herodes M, Legaspi A, Garcia JM. Mild traumatic brain injury as a cause of adult growth hormone deficiency: Diagnosis and treatment. Best Pract Res Clin Endocrinol Metab 2023; 37:101818. [PMID: 37666680 DOI: 10.1016/j.beem.2023.101818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
In recent years, mild traumatic brain injury (mTBI) has been recognized as a cause of acquired growth hormone deficiency (AGHD) and is likely much more prevalent than previous estimates. There is great overlap between persistent symptoms following mTBI and those of AGHD and it is possible that these persistent symptoms of mTBI are, at least in part, due to or aggravated by AGHD. This article reviews the current literature of AGHD following mTBI, and proposes practice recommendations for the screening, diagnosis, and management of patients with AGHD following mTBI.
Collapse
Affiliation(s)
- Megan Herodes
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | - Aviel Legaspi
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.
| | - Jose M Garcia
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
5
|
Khandelwal M, Krishna G, Ying Z, Gomez-Pinilla F. Liver acts as a metabolic gate for the traumatic brain injury pathology: Protective action of thyroid hormone. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166728. [PMID: 37137432 PMCID: PMC10601893 DOI: 10.1016/j.bbadis.2023.166728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
Clinical evidence indicates that injury to the brain elicits systemic metabolic disturbances that contributes to the brain pathology. Since dietary fructose is metabolized in the liver, we explored mechanisms by which traumatic brain injury (TBI) and dietary fructose influence liver function and their possible repercussions to brain. Consumption of fructose contributed to the detrimental effects of TBI on liver operation, in terms of glucose and lipid metabolism, de novo lipogenesis, lipid peroxidation. Thyroid hormone (T4) is metabolized in the liver and found that T4 supply improved lipid metabolism by reducing de novo lipogenesis, lipid accumulation, lipogenic enzymes (ACC, AceCS1, FAS), lipid peroxidation in liver in response to fructose and fructose-TBI. T4 supply also helped to normalize glucose metabolism and improve insulin sensitivity. Furthermore, T4 counteracted elevations of the pro-inflammatory cytokines, Tnfα and Mcp-1 after TBI and/or fructose intake in liver and circulation. T4 also exerted an effect on isolated primary hepatocytes by potentiating phosphorylation of AMPKα and AKT substrate, AS160, leading to increased glucose uptake. In addition, T4 restored the metabolism of DHA in the liver disrupted by TBI and fructose, adding important information to optimize the action of DHA in therapeutics. The overall evidence seems to indicate that the liver works as a gate for the regulation of the effects of brain injury and foods on brain pathologies.
Collapse
Affiliation(s)
- Mayuri Khandelwal
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Gokul Krishna
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Zhe Ying
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Claessen LÓE, Kristjánsdóttir H, Jónsdóttir MK, Lund SH, Kristensen ISU, Sigurjónsdóttir HÁ. Screening for possible hypopituitarism following mild traumatic brain injury: The first all-female study. Who do we need to evaluate further? NeuroRehabilitation 2023; 52:259-271. [PMID: 36641687 DOI: 10.3233/nre-220194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Studies on hypopituitarism (HP) following mild traumatic brain injury (mTBI) have focused on male populations although women may be more susceptible to the sequelae of mTBI. This is, to the best of our knowledge, the first all-female study screening for HP following mTBI. OBJECTIVE Screening for possible HP in female athletes reporting a history of one or more mTBI. METHODS Pituitary hormone screening blood tests (SBT) were performed in 133 of the 151 female athletes included. Repeated results outside the reference value (O-RV) were considered abnormal necessitating further endocrinological evaluation. RESULTS Repeated SBT were O-RV in 88 women (66.2%). Decreased levels of serum insulin growth factor 1 (S-IGF1) were found in 55.6% of participants and elevated levels of serum prolactin (S-prolactin) in 22.6%. Serum cortisol levels were below the RV in 6.0% and thyroid hormonal levels in 11.3%. Lower age and increased number of mTBI symptoms correlated significantly with the risk of hormonal results O-RV. CONCLUSION The majority of the study population had SBT O-RV, warranting further workup of possible HP. Decreased levels of S-IGF1 were most commonly observed followed by elevated S-prolactin possibly indicating hypothalamic-pituitary impairment. Lower age and increased number of symptoms of mTBI may indicate the need to screen for HP.
Collapse
Affiliation(s)
- Lára Ósk Eggertsdóttir Claessen
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Emergency Medicine, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Hafrún Kristjánsdóttir
- Physical Activity, Physical Education, Sport and Health (PAPESH) Research Centre, Sports Science Department, School of Social Sciences, Reykjavik University, Reykjavik, Iceland
| | - María K Jónsdóttir
- Mental Health Services, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland.,Psychology Department, School of Social Sciences, Reykjavik University, Reykjavik, Iceland
| | | | - Ingunn S U Kristensen
- Psychology Department, School of Social Sciences, Reykjavik University, Reykjavik, Iceland
| | - Helga Ágústa Sigurjónsdóttir
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Medicine, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| |
Collapse
|
7
|
The association between blast exposure and transdiagnostic health symptoms on systemic inflammation. Neuropsychopharmacology 2022; 47:1702-1709. [PMID: 34400776 PMCID: PMC9283337 DOI: 10.1038/s41386-021-01138-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/07/2021] [Accepted: 07/25/2021] [Indexed: 11/09/2022]
Abstract
Chronic elevation of systemic inflammation is observed in a wide range of disorders including PTSD, depression, and traumatic brain injury. Although previous work has demonstrated a link between inflammation and various diagnoses separately, few studies have examined transdiagnostic symptoms and inflammation within the same model. The objective of this study was to examine relationships between psychiatric and health variables and systemic inflammation and to determine whether mild traumatic brain injury (mTBI) and/or exposure to blast munitions moderate these relationships. Confirmatory factor analysis in a large sample (N = 357) of post-9/11 Veterans demonstrated a good fit to a four-factor model reflecting traumatic stress, affective, somatic, and metabolic latent variables. Hierarchical regression models revealed that each of the latent variables were associated with higher levels of systemic inflammation. However, the strongest relationship with inflammation emerged among those who had both war-zone blast exposures and metabolic dysregulation, even after adjusting for mental health latent variables. Exploratory analyses showed that blast exposure was associated with metabolic dysregulation in a dose-response manner, with self-reported closer blast proximity associated with the greatest metabolic dysregulation. Together, these results provide a greater understanding of the types of symptoms most strongly associated with inflammation and underscore the importance of maintaining a healthy lifestyle to reduce the impact of obesity and other metabolic symptoms on future chronic disease in younger to middle-aged Veterans.
Collapse
|
8
|
Rao RK, McConnell DD, Litofsky NS. The impact of cigarette smoking and nicotine on traumatic brain injury: a review. Brain Inj 2022; 36:1-20. [PMID: 35138210 DOI: 10.1080/02699052.2022.2034186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/28/2021] [Indexed: 11/02/2022]
Abstract
INTRODUCTION Traumatic Brain Injury (TBI) and tobacco smoking are both serious public health problems. Many people with TBI also smoke. Nicotine, a component of tobacco smoke, has been identified as a premorbid neuroprotectant in other neurological disorders. This study aims to provide better understanding of relationships between tobacco smoking and nicotine use and effect on outcome/recovery from TBI. METHODS PubMed database, SCOPUS, and PTSDpub were searched for relevant English-language papers. RESULTS Twenty-nine human clinical studies and nine animal studies were included. No nicotine-replacement product use in human TBI clinical studies were identified. While smoking tobacco prior to injury can be harmful primarily due to systemic effects that can compromise brain function, animal studies suggest that nicotine as a pharmacological agent may augment recovery of cognitive deficits caused by TBI. CONCLUSIONS While tobacco smoking before or after TBI has been associated with potential harms, many clinical studies downplay correlations for most expected domains. On the other hand, nicotine could provide potential treatment for cognitive deficits following TBI by reversing impaired signaling pathways in the brain including those involving nAChRs, TH, and dopamine. Future studies regarding the impact of cigarette smoking and vaping on patients with TBI are needed .
Collapse
Affiliation(s)
- Rohan K Rao
- Division of Neurological Surgery, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Diane D McConnell
- Division of Neurological Surgery, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - N Scott Litofsky
- Division of Neurological Surgery, University of Missouri School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
9
|
Mercier LJ, Kruger N, Le QB, Fung TS, Kline GA, Debert CT. Growth hormone deficiency testing and treatment following mild traumatic brain injury. Sci Rep 2021; 11:8534. [PMID: 33879807 PMCID: PMC8058058 DOI: 10.1038/s41598-021-87385-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
Pituitary dysfunction, specifically growth hormone (GH) deficiency, can occur following traumatic brain injury. Our objective was to characterize the prevalence of GH deficiency (GHD) testing and response to recombinant human GH (rhGH) treatment in adults with persistent symptoms following mild traumatic brain injury (mTBI) referred for assessment of pituitary dysfunction. A retrospective chart review was conducted of patients seen at an outpatient brain injury clinic with a diagnosis of mTBI and persistent post-concussive symptoms who were referred to endocrinology. Clinical assessments of symptoms were collected. Investigations and results of GHD were collected, including initiation of rhGH treatment and treatment response. Of the 253 patients seen in both brain injury and endocrinology clinics, 97 with mTBI were referred for investigation of pituitary dysfunction and 73 (75%) had dynamic testing for assessment of GHD. Of the 26 individuals diagnosed with GHD, 23 (88%) started rhGH. GH therapy was inconsistently offered based on interpretation of GH dynamic testing results. Of those who started rhGH, 18 (78%) had a useful treatment response. This study suggests that clinical management of these patients is varied, highlighting a need for clear guidelines for the diagnosis and management of GHD following mTBI.
Collapse
Affiliation(s)
- Leah J Mercier
- Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.
| | - Natalia Kruger
- Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Quynk B Le
- Endocrinology and Metabolism Program, Alberta Health Services, Calgary, AB, Canada
| | - Tak S Fung
- Faculty of Nursing, University of Calgary, Calgary, AB, Canada
| | - Gregory A Kline
- Division of Endocrinology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Chantel T Debert
- Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
10
|
Yuen KCJ, Masel BE, Reifschneider KL, Sheffield-Moore M, Urban RJ, Pyles RB. Alterations of the GH/IGF-I Axis and Gut Microbiome after Traumatic Brain Injury: A New Clinical Syndrome? J Clin Endocrinol Metab 2020; 105:5862647. [PMID: 32585029 DOI: 10.1210/clinem/dgaa398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/18/2020] [Indexed: 12/22/2022]
Abstract
CONTEXT Pituitary dysfunction with abnormal growth hormone (GH) secretion and neurocognitive deficits are common consequences of traumatic brain injury (TBI). Recognizing the comorbidity of these symptoms is of clinical importance; however, efficacious treatment is currently lacking. EVIDENCE ACQUISITION A review of studies in PubMed published between January 1980 to March 2020 and ongoing clinical trials was conducted using the search terms "growth hormone," "traumatic brain injury," and "gut microbiome." EVIDENCE SYNTHESIS Increasing evidence has implicated the effects of TBI in promoting an interplay of ischemia, cytotoxicity, and inflammation that renders a subset of patients to develop postinjury hypopituitarism, severe fatigue, and impaired cognition and behavioral processes. Recent data have suggested an association between abnormal GH secretion and altered gut microbiome in TBI patients, thus prompting the description of a hypothesized new clinical syndrome called "brain injury associated fatigue and altered cognition." Notably, these patients demonstrate distinct characteristics from those with GH deficiency from other non-TBI causes in that their symptom complex improves significantly with recombinant human GH treatment, but does not reverse the underlying mechanistic cause as symptoms typically recur upon treatment cessation. CONCLUSION The reviewed data describe the importance of alterations of the GH/insulin-like growth factor I axis and gut microbiome after brain injury and its influence in promoting neurocognitive and behavioral deficits in a bidirectional relationship, and highlight a new clinical syndrome that may exist in a subset of TBI patients in whom recombinant human GH therapy could significantly improve symptomatology. More studies are needed to further characterize this clinical syndrome.
Collapse
Affiliation(s)
- Kevin C J Yuen
- Barrow Pituitary Center, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, University of Arizona College of Medicine and Creighton School of Medicine, Phoenix, Arizona
| | | | - Kent L Reifschneider
- Division of Endocrinology, Children's Specialty Group, Children's Hospital of The King's Daughters, Norfolk, Virginia
| | - Melinda Sheffield-Moore
- Department of Health and Kinesiology, Texas A & M University, College Station, Texas
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555
| | - Randall J Urban
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555
| | - Richard B Pyles
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
11
|
Ntali G, Tsagarakis S. Pituitary dysfunction after traumatic brain injury: prevalence and screening strategies. Expert Rev Endocrinol Metab 2020; 15:341-354. [PMID: 32967470 DOI: 10.1080/17446651.2020.1810561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Pituitary gland is vulnerable to traumatic brain injury (TBI). As a result a series of neuroendocrine changes appear after head injury; in many occasions they reverse with time, while occasionally new late onset changes may develop. AREAS COVERED In this review, we focus on the prevalence of anterior and posterior pituitary hormonal changes in the acute and chronic post-TBI period in both children and adults. Moreover, we present evidence supporting the need for evaluating pituitary function along with the current suggestions for the most appropriate screening strategies. We attempted to identify all published literature and we conducted an online search of PubMed, from January 1970 to June 2020. EXPERT OPINION Adrenal insufficiency and water metabolism disorders are medical emergencies and should be promptly recognized. Awareness for long-term hormonal derangements is necessary, as they may lead to a series of chronic health issues and compromise quality of life. There is a need for well-designed prospective long-term studies that will estimate pituitary function during the acute and chronic phase after head injury.
Collapse
Affiliation(s)
- Georgia Ntali
- Department of Endocrinology, Diabetes and Metabolism, Evangelismos Hospital , Athens, Greece
| | - Stylianos Tsagarakis
- Department of Endocrinology, Diabetes and Metabolism, Evangelismos Hospital , Athens, Greece
| |
Collapse
|
12
|
Krishna G, Bromberg C, Connell EC, Mian E, Hu C, Lifshitz J, Adelson PD, Thomas TC. Traumatic Brain Injury-Induced Sex-Dependent Changes in Late-Onset Sensory Hypersensitivity and Glutamate Neurotransmission. Front Neurol 2020; 11:749. [PMID: 32849211 PMCID: PMC7419702 DOI: 10.3389/fneur.2020.00749] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/17/2020] [Indexed: 01/15/2023] Open
Abstract
Women approximate one-third of the annual 2.8 million people in the United States who sustain traumatic brain injury (TBI). Several clinical reports support or refute that menstrual cycle-dependent fluctuations in sex hormones are associated with severity of persisting post-TBI symptoms. Previously, we reported late-onset sensory hypersensitivity to whisker stimulation that corresponded with changes in glutamate neurotransmission at 1-month following diffuse TBI in male rats. Here, we incorporated intact age-matched naturally cycling females into the experimental design while monitoring daily estrous cycle. We hypothesized that sex would not influence late-onset sensory hypersensitivity and associated in vivo amperometric extracellular recordings of glutamate neurotransmission within the behaviorally relevant thalamocortical circuit. At 28 days following midline fluid percussion injury (FPI) or sham surgery, young adult Sprague-Dawley rats were tested for hypersensitivity to whisker stimulation using the whisker nuisance task (WNT). As predicted, both male and female rats showed significantly increased sensory hypersensitivity to whisker stimulation after FPI, with females having an overall decrease in whisker nuisance scores (sex effect), but no injury and sex interaction. In males, FPI increased potassium chloride (KCl)-evoked glutamate overflow in primary somatosensory barrel cortex (S1BF) and ventral posteromedial nucleus of the thalamus (VPM), while in females the FPI effect was discernible only within the VPM. Similar to our previous report, we found the glutamate clearance parameters were not influenced by FPI, while a sex-specific effect was evident with female rats showing a lower uptake rate constant both in S1BF and VPM and longer clearance time (in S1BF) in comparison to male rats. Fluctuations in estrous cycle were evident among brain-injured females with longer diestrus (low circulating hormone) phase of the cycle over 28 days post-TBI. Together, these findings add to growing evidence indicating both similarities and differences between sexes in a chronic response to TBI. A better understanding of the influence of gonadal hormones on behavior, neurotransmission, secondary injury and repair processes after TBI is needed both clinically and translationally, with potential impact on acute treatment, rehabilitation, and symptom management.
Collapse
Affiliation(s)
- Gokul Krishna
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Caitlin Bromberg
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Emily Charlotte Connell
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Erum Mian
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Chengcheng Hu
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, United States
| | - Jonathan Lifshitz
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
- Phoenix VA Health Care System, Phoenix, AZ, United States
| | - P. David Adelson
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Theresa Currier Thomas
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
- Phoenix VA Health Care System, Phoenix, AZ, United States
| |
Collapse
|
13
|
Bensalah M, Donaldson M, Labassen M, Cherfi L, Nebbal M, Haffaf EM, Abdennebi B, Guenane K, Kemali Z, Ould Kablia S. Prevalence of hypopituitarism and quality of life in survivors of post-traumatic brain injury. Endocrinol Diabetes Metab 2020; 3:e00146. [PMID: 32704567 PMCID: PMC7375098 DOI: 10.1002/edm2.146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 04/08/2020] [Accepted: 04/19/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Hypopituitarism is a recognized sequela of traumatic brain injury (TBI) and may worsen the quality of life (QoL) in survivors. AIMS To assess the prevalence of post-traumatic hypopituitarism (PTHP) and growth hormone deficiency (GHD), and determine their correlation with QoL. METHODS Survivors of moderate to severe TBI were recruited from two Algerian centres. At 3 and 12 months, pituitary function was evaluated using insulin tolerance test (ITT), QoL by growth hormone deficiency in adults' questionnaire (QoL-AGHDA), and 36-item short-form (SF-36) health survey. RESULTS Of 133 (M: 128; F: 5) patients aged 18-65 years, PTHP and GHD were present at 3 and 12 months in 59 (44.4%) and 23 (17.29%), 41/116 (35.3%) and 18 (15.5%). Thirteen patients with GHD at 3 months tested normally at 12 months, while 9 had become GHD at 12 months. At 3 and 12 months, peak cortisol was < 500 nmol/L) in 39 (29.3%) and 29 (25%) patients, but <300 nmol/L in only five and seven. Prevalence for gonadotrophin deficiency was 6.8/8.6%, hypo- and hyperprolactinaemia 6.8/3.8% and 5.2/8.6%, and thyrotrophin deficiency 1.5/0.9%. Mean scores for QoL-AGHDA were higher in patients with PTHP at 3 and 12 months: 7.07 vs 3.62 (P = .001) and in patients with GHD at 12 months: 8.72 vs 4.09 (P = .015). Mean SF-36 scores were significantly lower for PTHP at 3 months. CONCLUSION Prevalence of PTHP and GHD changes with time. AGHDA measures QoL in GHD more specifically than SF-36. Full pituitary evaluation and QoL-AGHDA 12 months after TBI are recommended.
Collapse
Affiliation(s)
| | | | - Malek Labassen
- Endocrinology UnitCentral Hospital of ArmyAlgiersAlgeria
| | - Lyes Cherfi
- Critical Care UnitCentral Hospital of ArmyAlgiersAlgeria
| | | | | | | | - Kamel Guenane
- Critical care UnitSalim Zemirli HospitalAlgiersAlgeria
| | - Zahra Kemali
- Endocrinology UnitCentral Hospital of ArmyAlgiersAlgeria
| | | |
Collapse
|
14
|
Wright T, Urban R, Durham W, Dillon EL, Randolph KM, Danesi C, Gilkison C, Karmonik C, Zgaljardic DJ, Masel B, Bishop J, Pyles R, Seidler R, Hierholzer AH, Sheffield-Moore M. Growth Hormone Alters Brain Morphometry, Connectivity, and Behavior in Subjects with Fatigue after Mild Traumatic Brain Injury. J Neurotrauma 2020; 37:1052-1066. [PMID: 31797721 PMCID: PMC7185353 DOI: 10.1089/neu.2019.6690] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Pituitary dysfunction with reduced growth hormone (GH) secretion is common in patients following traumatic brain injury (TBI), and these patients often develop chronic symptoms including fatigue and altered cognition. We examined 18 subjects with a history of mild TBI, fatigue, and insufficient GH secretion. Subjects received GH replacement in a year-long, double-blind, placebo-controlled, crossover study, and were assessed for changes in physical performance, body composition, resting energy expenditure, fatigue, sleep, mood, and neuropsychological status. Additionally, magnetic resonance imaging (MRI) was used to assess changes in brain structure and resting state functional connectivity. GH replacement resulted in decreased fatigue, sleep disturbance, and anxiety, as well as increased resting energy expenditure, improved body composition, and altered perception of submaximal effort when performing exercise testing. Associated brain changes included increased frontal cortical thickness and gray matter volume and resting state connectivity changes in regions associated with somatosensory networks. GH replacement altered brain morphology and connectivity and reduced fatigue and related symptoms in mild TBI patients. Additional studies are needed to understand the mechanisms causing TBI-related fatigue and symptom relief with GH replacement.
Collapse
Affiliation(s)
- Traver Wright
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| | - Randall Urban
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - William Durham
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - E. Lichar Dillon
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Kathleen M. Randolph
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| | - Christopher Danesi
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Charles Gilkison
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Christof Karmonik
- Radiology Department, Houston Methodist Research Institute, Houston, Texas
| | | | - Brent Masel
- Center for Neuro Skills, Bakersfield, California
| | - James Bishop
- Department of Radiology, Stanford University, Stanford, California
| | - Richard Pyles
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas
| | - Rachael Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Ashton H. Hierholzer
- Department of School of Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Melinda Sheffield-Moore
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| |
Collapse
|
15
|
Yuen KCJ, Biller BMK, Radovick S, Carmichael JD, Jasim S, Pantalone KM, Hoffman AR. AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS AND AMERICAN COLLEGE OF ENDOCRINOLOGY GUIDELINES FOR MANAGEMENT OF GROWTH HORMONE DEFICIENCY IN ADULTS AND PATIENTS TRANSITIONING FROM PEDIATRIC TO ADULT CARE. Endocr Pract 2019; 25:1191-1232. [PMID: 31760824 DOI: 10.4158/gl-2019-0405] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: The development of these guidelines is sponsored by the American Association of Clinical Endocrinologists (AACE) Board of Directors and American College of Endocrinology (ACE) Board of Trustees and adheres with published AACE protocols for the standardized production of clinical practice guidelines (CPG). Methods: Recommendations are based on diligent reviews of clinical evidence with transparent incorporation of subjective factors, according to established AACE/ACE guidelines for guidelines protocols. Results: The Executive Summary of this 2019 updated guideline contains 58 numbered recommendations: 12 are Grade A (21%), 19 are Grade B (33%), 21 are Grade C (36%), and 6 are Grade D (10%). These detailed, evidence-based recommendations allow for nuance-based clinical decision-making that addresses multiple aspects of real-world care of patients. The evidence base presented in the subsequent Appendix provides relevant supporting information for the Executive Summary recommendations. This update contains 357 citations of which 51 (14%) are evidence level (EL) 1 (strong), 168 (47%) are EL 2 (intermediate), 61 (17%) are EL 3 (weak), and 77 (22%) are EL 4 (no clinical evidence). Conclusion: This CPG is a practical tool that practicing endocrinologists and regulatory bodies can refer to regarding the identification, diagnosis, and treatment of adults and patients transitioning from pediatric to adult-care services with growth hormone deficiency (GHD). It provides guidelines on assessment, screening, diagnostic testing, and treatment recommendations for a range of individuals with various causes of adult GHD. The recommendations emphasize the importance of considering testing patients with a reasonable level of clinical suspicion of GHD using appropriate growth hormone (GH) cut-points for various GH-stimulation tests to accurately diagnose adult GHD, and to exercise caution interpreting serum GH and insulin-like growth factor-1 (IGF-1) levels, as various GH and IGF-1 assays are used to support treatment decisions. The intention to treat often requires sound clinical judgment and careful assessment of the benefits and risks specific to each individual patient. Unapproved uses of GH, long-term safety, and the current status of long-acting GH preparations are also discussed in this document. LAY ABSTRACT This updated guideline provides evidence-based recommendations regarding the identification, screening, assessment, diagnosis, and treatment for a range of individuals with various causes of adult growth-hormone deficiency (GHD) and patients with childhood-onset GHD transitioning to adult care. The update summarizes the most current knowledge about the accuracy of available GH-stimulation tests, safety of recombinant human GH (rhGH) replacement, unapproved uses of rhGH related to sports and aging, and new developments such as long-acting GH preparations that use a variety of technologies to prolong GH action. Recommendations offer a framework for physicians to manage patients with GHD effectively during transition to adult care and adulthood. Establishing a correct diagnosis is essential before consideration of replacement therapy with rhGH. Since the diagnosis of GHD in adults can be challenging, GH-stimulation tests are recommended based on individual patient circumstances and use of appropriate GH cut-points. Available GH-stimulation tests are discussed regarding variability, accuracy, reproducibility, safety, and contraindications, among other factors. The regimen for starting and maintaining rhGH treatment now uses individualized dose adjustments, which has improved effectiveness and reduced reported side effects, dependent on age, gender, body mass index, and various other individual characteristics. With careful dosing of rhGH replacement, many features of adult GHD are reversible and side effects of therapy can be minimized. Scientific studies have consistently shown rhGH therapy to be beneficial for adults with GHD, including improvements in body composition and quality of life, and have demonstrated the safety of short- and long-term rhGH replacement. Abbreviations: AACE = American Association of Clinical Endocrinologists; ACE = American College of Endocrinology; AHSG = alpha-2-HS-glycoprotein; AO-GHD = adult-onset growth hormone deficiency; ARG = arginine; BEL = best evidence level; BMD = bone mineral density; BMI = body mass index; CI = confidence interval; CO-GHD = childhood-onset growth hormone deficiency; CPG = clinical practice guideline; CRP = C-reactive protein; DM = diabetes mellitus; DXA = dual-energy X-ray absorptiometry; EL = evidence level; FDA = Food and Drug Administration; FD-GST = fixed-dose glucagon stimulation test; GeNeSIS = Genetics and Neuroendocrinology of Short Stature International Study; GH = growth hormone; GHD = growth hormone deficiency; GHRH = growth hormone-releasing hormone; GST = glucagon stimulation test; HDL = high-density lipoprotein; HypoCCS = Hypopituitary Control and Complications Study; IGF-1 = insulin-like growth factor-1; IGFBP = insulin-like growth factor-binding protein; IGHD = isolated growth hormone deficiency; ITT = insulin tolerance test; KIMS = Kabi International Metabolic Surveillance; LAGH = long-acting growth hormone; LDL = low-density lipoprotein; LIF = leukemia inhibitory factor; MPHD = multiple pituitary hormone deficiencies; MRI = magnetic resonance imaging; P-III-NP = procollagen type-III amino-terminal pro-peptide; PHD = pituitary hormone deficiencies; QoL = quality of life; rhGH = recombinant human growth hormone; ROC = receiver operating characteristic; RR = relative risk; SAH = subarachnoid hemorrhage; SDS = standard deviation score; SIR = standardized incidence ratio; SN = secondary neoplasms; T3 = triiodothyronine; TBI = traumatic brain injury; VDBP = vitamin D-binding protein; WADA = World Anti-Doping Agency; WB-GST = weight-based glucagon stimulation test.
Collapse
|
16
|
Emelifeonwu JA, Flower H, Loan JJ, McGivern K, Andrews PJD. Prevalence of Anterior Pituitary Dysfunction Twelve Months or More following Traumatic Brain Injury in Adults: A Systematic Review and Meta-Analysis. J Neurotrauma 2019; 37:217-226. [PMID: 31111791 DOI: 10.1089/neu.2018.6349] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The objective of this study is to systematically review clinical studies that have reported on the prevalence of chronic post-traumatic brain injury anterior pituitary dysfunction (PTPD) 12 months or more following traumatic brain injury (TBI). We searched Medline, Embase, and PubMed up to April 2017 and consulted bibliographies of narrative reviews. We included cohort, case-control, and cross-sectional studies enrolling at least five adults with primary TBI in whom at least one anterior pituitary axis was assessed at least 12 months following TBI. We excluded studies in which other brain injuries were indistinguishable from TBI. Study quality was assessed using the Newcastle-Ottawa Scale (NOS) score. We also considered studies that determined growth hormone deficiency and adrenocorticotrophic hormone reserve using provocation test to be at low risk of bias. Data were extracted by four independent reviewers and assessed for risk of bias using a data extraction form. We performed meta-analyses using random effect models and assessed heterogeneity using the I2 index. We identified 58 publications, of which 29 (2756 participants) were selected for meta-analysis. Twelve of these were deemed to be at low risk of bias and therefore "high-quality," as they had NOS scores greater than 8 and had used provocation tests. The overall prevalence of at least one anterior pituitary hormone dysfunction for all 29 studies was 32% (95% confidence interval [CI] 25-38%). The overall prevalence in the 12 high-quality studies was 34% (95% CI 27-42%). We observed significant heterogeneity that was not solely explained by the risk of bias. Studies with a higher proportion of participants with mild TBI had a lower prevalence of PTPD. Our results show that approximately one-third of TBI sufferers have persistent anterior pituitary dysfunction 12 months or more following trauma. Future research on PTPD should differentiate between mild and moderate/severe TBI.
Collapse
Affiliation(s)
- John A Emelifeonwu
- Department of Neurosurgery, University of Edinburgh and NHS Lothian Western General Hospital, Edinburgh, United Kingdom.,Center for Clinical Brain Sciences, University of Edinburgh and NHS Lothian Western General Hospital, Edinburgh, United Kingdom
| | - Hannah Flower
- School of Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Jamie J Loan
- Department of Neurosurgery, NHS Lothian Western General Hospital, Edinburgh, United Kingdom
| | - Kieran McGivern
- Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Peter J D Andrews
- Center for Clinical Brain Sciences, University of Edinburgh and NHS Lothian Western General Hospital, Edinburgh, United Kingdom
| |
Collapse
|
17
|
Growth Hormone Deficiency Following Traumatic Brain Injury. Int J Mol Sci 2019; 20:ijms20133323. [PMID: 31284550 PMCID: PMC6651180 DOI: 10.3390/ijms20133323] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/28/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is fairly common and annually affects millions of people worldwide. Post traumatic hypopituitarism (PTHP) has been increasingly recognized as an important and prevalent clinical entity. Growth hormone deficiency (GHD) is the most common pituitary hormone deficit in long-term survivors of TBI. The pathophysiology of GHD post TBI is thought to be multifactorial including primary and secondary mechanisms. An interplay of ischemia, cytotoxicity, and inflammation post TBI have been suggested, resulting in pituitary hormone deficits. Signs and symptoms of GHD can overlap with those of TBI and may delay rehabilitation/recovery if not recognized and treated. Screening for GHD is recommended in the chronic phase, at least six months to a year after TBI as GH may recover in those with GHD in the acute phase; conversely, it may manifest in those with a previously intact GH axis. Dynamic testing is the standard method to diagnose GHD in this population. GHD is associated with long-term poor medical outcomes. Treatment with recombinant human growth hormone (rhGH) seems to ameliorate some of these features. This review will discuss the frequency and pathophysiology of GHD post TBI, its clinical consequences, and the outcomes of treatment with GH replacement.
Collapse
|
18
|
Rege SD, Royes L, Tsai B, Zhang G, Yang X, Gomez-Pinilla F. Brain Trauma Disrupts Hepatic Lipid Metabolism: Blame It on Fructose? Mol Nutr Food Res 2019; 63:e1801054. [PMID: 31087499 DOI: 10.1002/mnfr.201801054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/21/2019] [Indexed: 02/06/2023]
Abstract
SCOPE The action of brain disorders on peripheral metabolism is poorly understood. The impact of traumatic brain injury (TBI) on peripheral organ function and how TBI effects can be influenced by the metabolic perturbation elicited by fructose ingestion are studied. METHODS AND RESULTS It is found that TBI affects glucose metabolism and signaling proteins for insulin and growth hormone in the liver; these effects are exacerbated by fructose ingestion. Fructose, principally metabolized in the liver, potentiates the action of TBI on hepatic lipid droplet accumulation. Studies in isolated cultured hepatocytes identify GH and fructose as factors for the synthesis of lipids. The liver has a major role in the synthesis of lipids used for brain function and repair. TBI results in differentially expressed genes in the hypothalamus, primarily associated with lipid metabolism, providing cues to understand central control of peripheral alterations. Fructose-fed TBI animals have elevated levels of markers of inflammation, lipid peroxidation, and cell energy metabolism, suggesting the pro-inflammatory impact of TBI and fructose in the liver. CONCLUSION Results reveal the impact of TBI on systemic metabolism and the aggravating action of fructose. The hypothalamic-pituitary-growth axis seems to play a major role in the regulation of the peripheral TBI pathology.
Collapse
Affiliation(s)
- Shraddha D Rege
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Luiz Royes
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.,Centro De Educacao Fisica e Desportos, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, 97105, Brazil
| | - Brandon Tsai
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Guanglin Zhang
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xia Yang
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.,Department of Neurosurgery, UCLA Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
19
|
Abstract
PURPOSE After traumatic brain injury was accepted as an important etiologic factor of pituitary dysfunction (PD), awareness of risk of developing PD following sports-related traumatic brain injury (SR-TBI) has also increased. However there are not many studies investigating PD following SR-TBIs yet. We aimed to summarize the data reported so far and to discuss screening algorithms and treatment strategies. METHODS Recent data on pituitary dysfunction after SR-TBIs is reviewed on basis of diagnosis, clinical perspectives, therapy, screening and possible prevention strategies. RESULTS Pituitary dysfunction is reported to occur in a range of 15-46.6% following SR-TBIs depending on the study design. Growth hormone is the most commonly reported pituitary hormone deficiency in athletes. Pituitary hormone deficiencies may occur during acute phase after head trauma, may improve with time or new deficiencies may develop during follow-up. Central adrenal insufficiency is the only and most critical impairment that requires urgent detection and replacement during acute phase. Decision on replacement of growth hormone and gonadal deficiencies should be individualized. Moreover these two hormones are abused by many athletes and a therapeutic use exemption from the league's drug policy may be required. CONCLUSIONS Even mild and forgotten SR-TBIs may cause PD that may have distressing consequences in some cases if remain undiagnosed. More studies are needed to elucidate epidemiology and pathophysiology of PD after SR-TBIs. Also studies to establish screening algorithms for PD as well as strategies for prevention of SR-TBIs are urgently required.
Collapse
Affiliation(s)
- Aysa Hacioglu
- Department of Endocrinology and Metabolism, Erciyes University Medical School, Kayseri, Turkey.
| | | | - Fatih Tanriverdi
- Memorial Kayseri Hospital, Endocrinology Clinic, Kayseri, Turkey
| |
Collapse
|
20
|
Abstract
Traumatic brain injury (TBI) is an important public health problem with an increasing incidence in the last years. Relatively few cases are fatal; most individuals will survive and, in the long-term, the sequalae of TBI will include neuroendocrine dysfunctions with a much higher frequency than previously suspected. Patients who develop hypopituitarism after TBI present manifestations due to the number of deficient hormones, severity of hormonal deficiency, and the duration of hypopituitarism without diagnosis and treatment. The clinical spectrum of hypopituitarism is very large and many signs and symptoms of TBI survivors such as fatigue, concentration difficulties, depressive symptoms are nonspecific and overlap with symptoms of post-traumatic stress disorder and variably severe hypopituitarism related to brain damage remaining undiagnosed. This can explain why the diagnosis of hypopituitarism is often missed or delayed after this condition with potentially serious and hazardous consequences for the affected patients. Moreover, clinical experience cumulatively suggests that TBI-associated hypopituitarism is associated with poor recovery and worse outcome, since post-traumatic hypopituitarism is independently associated with cognitive impairment, poor quality of life, abnormal body composition, and adverse metabolic profile. In the present review, the current data related to clinical consequences of pituitary dysfunction after TBI in adult patients and therapeutic approaches are reported.
Collapse
Affiliation(s)
- Marina Caputo
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy.
| | - C Mele
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - F Prodam
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Interdisciplinary Research Center of Autoimmune Diseases, Università del Piemonte Orientale, Novara, Italy
- Department of Health Science, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - P Marzullo
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Division of General Medicine, I.R.C.C.S. Istituto Auxologico Italiano, Ospedale San Giuseppe Verbania, Verbania, Italy
| | - G Aimaretti
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| |
Collapse
|
21
|
Temizkan S, Kelestimur F. A clinical and pathophysiological approach to traumatic brain injury-induced pituitary dysfunction. Pituitary 2019; 22:220-228. [PMID: 30734143 DOI: 10.1007/s11102-019-00941-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE This review aimed to evaluate the data underlying the pathophysiology of TBI-induced hypothalamo-pituitary dysfunction. METHODS Recent literature about the pathophysiology of TBI-induced hypothalamo-pituitary dysfunction reviewed. RESULTS Traumatic brain injury (TBI) is a worldwide epidemic that frequently leads to death; TBI survivors tend to sustain cognitive, behavioral, psychological, social, and physical disabilities in the long term. The most common causes of TBI include road accidents, falls, assaults, sports, work and war injuries. From an endocrinological perspective, TBIs are important, because they can cause pituitary dysfunction. Although TBI-induced pituitary dysfunction was first reported a century ago, most of the studies that evaluate this disorder were published after 2000. TBI due to sports and blast injury-related pituitary dysfunction is generally underreported, due to limited recognition of the cases. CONCLUSION The underlying pathophysiology responsible for post-TBI pituitary dysfunction is not clear. The main proposed mechanisms are vascular injury, direct traumatic injury to the pituitary gland, genetic susceptibility, autoimmunity, and transient medication effects.
Collapse
Affiliation(s)
- Sule Temizkan
- Department of Endocrinology, Yeditepe University, Faculty of Medicine, Kosuyolu Hospital, 34718, Istanbul, Turkey
| | - Fahrettin Kelestimur
- Department of Endocrinology, Yeditepe University, Faculty of Medicine, Kosuyolu Hospital, 34718, Istanbul, Turkey.
| |
Collapse
|
22
|
Abstract
PURPOSE Traumatic brain injury most commonly affects young adults under the age of 35 and frequently results in reduced quality of life, disability, and death. In long-term survivors, hypopituitarism is a common complication. RESULTS Pituitary dysfunction occurs in approximately 20-40% of patients diagnosed with moderate and severe traumatic brain injury giving rise to growth hormone deficiency, hypogonadism, hypothyroidism, hypocortisolism, and central diabetes insipidus. Varying degrees of hypopituitarism have been identified in patients during both the acute and chronic phase. Anterior pituitary hormone deficiency has been shown to cause morbidity and increase mortality in TBI patients, already encumbered by other complications. Hypopituitarism after childhood traumatic brain injury may cause treatable morbidity in those survivors. Prospective studies indicate that the incidence rate of hypopituitarism may be ten-fold higher than assumed; factors altering reports include case definition, geographic location, variable hospital coding, and lost notes. While the precise pathophysiology of post traumatic hypopituitarism has not yet been elucidated, it has been hypothesized that, apart from the primary mechanical event, secondary insults such as hypotension, hypoxia, increased intracranial pressure, as well as changes in cerebral flow and metabolism may contribute to hypothalamic-pituitary damage. A number of mechanisms have been proposed to clarify the causes of primary mechanical events giving rise to ischemic adenohypophysial infarction and the ensuing development of hypopituitarism. CONCLUSION Future research should focus more on experimental and clinical studies to elucidate the exact mechanisms behind post-traumatic pituitary damage. The use of preventive medical measures to limit possible damage in the pituitary gland and hypothalamic pituitary axis in order to maintain or re-establish near normal physiologic functions are crucial to minimize the effects of TBI.
Collapse
Affiliation(s)
- Aydin Sav
- Department of Pathology, Yeditepe University, School of Medicine, Kosuyolu Hospital, Kosuyolu Mahallesi, Koşuyolu Cd. 168, 34718, Kadikoy, Istanbul, Turkey.
| | - Fabio Rotondo
- Department of Laboratory Medicine, Division of Pathology, St Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Luis V Syro
- Department of Neurosurgery, Hospital Pablo Tobon Uribe and Clinica Medellin, Medellin, Colombia
| | - Carlos A Serna
- Laboratorio de Patologia y Citologia Rodrigo Restrepo, Department of Pathology, Clinica Las Américas, Universidad CES, Medellin, Colombia
| | - Kalman Kovacs
- Department of Laboratory Medicine, Division of Pathology, St Michael's Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Royes LFF, Gomez-Pinilla F. Making sense of gut feelings in the traumatic brain injury pathogenesis. Neurosci Biobehav Rev 2019; 102:345-361. [PMID: 31102601 DOI: 10.1016/j.neubiorev.2019.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) is a devastating condition which often initiates a sequel of neurological disorders that can last throughout lifespan. From metabolic perspective, TBI also compromises systemic physiology including the function of body organs with subsequent malfunctions in metabolism. The emerging panorama is that the effects of TBI on the periphery strike back on the brain and exacerbate the overall TBI pathogenesis. An increasing number of clinical reports are alarming to show that metabolic dysfunction is associated with incidence of long-term neurological and psychiatric disorders. The autonomic nervous system, associated hypothalamic-pituitary axis, and the immune system are at the center of the interface between brain and body and are central to the regulation of overall homeostasis and disease. We review the strong association between mechanisms that regulate cell metabolism and inflammation which has important clinical implications for the communication between body and brain. We also discuss the integrative actions of lifestyle interventions such as diet and exercise on promoting brain and body health and cognition after TBI.
Collapse
Affiliation(s)
- Luiz Fernando Freire Royes
- Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - Fernando Gomez-Pinilla
- Departments of Neurosurgery, and Integrative and Biology and Physiology, UCLA Brain Injury Research Center, University of California, Los Angeles, USA.
| |
Collapse
|
24
|
Di Battista AP, Churchill N, Rhind SG, Richards D, Hutchison MG. Evidence of a distinct peripheral inflammatory profile in sport-related concussion. J Neuroinflammation 2019; 16:17. [PMID: 30684956 PMCID: PMC6347801 DOI: 10.1186/s12974-019-1402-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/08/2019] [Indexed: 12/28/2022] Open
Abstract
Background Inflammation is considered a hallmark of concussion pathophysiology in experimental models, yet is understudied in human injury. Despite the growing use of blood biomarkers in concussion, inflammatory biomarkers have not been well characterized. Furthermore, it is unclear if the systemic inflammatory response to concussion differs from that of musculoskeletal injury. The purpose of this paper was to characterize systemic inflammation after injury in athletes with sport-related concussion or musculoskeletal injury. Methods A prospective, observational cohort study was conducted employing 175 interuniversity athletes (sport-related concussion, n = 43; musculoskeletal injury, n = 30; healthy, n = 102) from 12 sports at a sports medicine clinic at an academic institution. High-sensitivity immunoassay was used to evaluate 20 inflammatory biomarkers in the peripheral blood of athletes within 7 days of injury (subacute) and at medical clearance. Healthy athletes were sampled prior to the start of their competitive season. Partial least squares regression analyses were used to identify salient biomarker contributions to class separation between injured and healthy athletes, as well as to evaluate the relationship between biomarkers and days to recovery in injured athletes. Results In the subacute period after injury, compared to healthy athletes, athletes with sport-related concussion had higher levels of the chemokines’ monocyte chemoattractant protein-4 (p < 0.001) and macrophage inflammatory protein-1β (p = 0.001); athletes with musculoskeletal injury had higher levels of thymus and activation-regulated chemokine (p = 0.001). No significant differences in biomarker profiles were observed at medical clearance. Furthermore, concentrations of monocyte chemoattractant protein-1 (p = 0.007) and monocyte chemoattractant protein-4 (p < 0.001) at the subacute time point were positively correlated with days to recovery in athletes with sport-related concussion, while thymus and activation-regulated chemokine was (p = 0.001) positively correlated with days to recovery in athletes with musculoskeletal injury. Conclusion Sport-related concussion is associated with perturbations to systemic inflammatory chemokines that differ from those observed in athletes with a musculoskeletal injury. These results support inflammation as an important facet of secondary injury after sport-related concussion that can be measured systemically in a human model of injury. Electronic supplementary material The online version of this article (10.1186/s12974-019-1402-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alex P Di Battista
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada. .,Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada.
| | - Nathan Churchill
- Neuroscience Program, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada
| | - Shawn G Rhind
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada.,Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Doug Richards
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada.,David L. MacIntosh Sport Medicine Clinic, Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada
| | - Michael G Hutchison
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada.,David L. MacIntosh Sport Medicine Clinic, Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Booij HA, Gaykema WDC, Kuijpers KAJ, Pouwels MJM, den Hertog HM. Pituitary dysfunction and association with fatigue in stroke and other acute brain injury. Endocr Connect 2018; 7:R223-R237. [PMID: 29748174 PMCID: PMC6000755 DOI: 10.1530/ec-18-0147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Poststroke fatigue (PSF) is a highly prevalent and debilitating condition. However, the etiology remains incompletely understood. Literature suggests the co-prevalence of pituitary dysfunction (PD) with stroke, and the question raises whether this could be a contributing factor to the development of PSF. This study reviews the prevalence of PD after stroke and other acquired brain injuries and its association with fatigue. SUMMARY We performed a bibliographic literature search of MEDLINE and EMBASE databases for English language studies on PD in adult patients with stroke, traumatic brain injury (TBI) or aneurysmatic subarachnoid hemorrhage (aSAH). Forty-two articles were selected for review. Up to 82% of patients were found to have any degree of PD after stroke. Growth hormone deficiency was most commonly found. In aSAH and TBI, prevalences up to 49.3% were reported. However, data differed widely between studies, mostly due to methodological differences including the diagnostic methods used to define PD and the focus on the acute or chronic phase. Data on PD and outcome after stroke, aSAH and TBI are conflicting. No studies were found investigating the association between PD and PSF. Data on the association between PD and fatigue after aSAH and TBI were scarce and conflicting, and fatigue is rarely been investigated as a primary end point. KEY MESSAGES Data according to the prevalence of PD after stroke and other acquired brain injury suggest a high prevalence of PD after these conditions. However, the clinical relevance and especially the association with fatigue need to be established.
Collapse
Affiliation(s)
- H A Booij
- Department of NeurologyMedisch Spectrum Twente, Enschede, the Netherlands
| | - W D C Gaykema
- Roessingh Rehabilitation CenterEnschede, the Netherlands
| | - K A J Kuijpers
- Roessingh Rehabilitation CenterEnschede, the Netherlands
| | - M J M Pouwels
- Department of EndocrinologyMedisch Spectrum Twente, Enschede, the Netherlands
| | - H M den Hertog
- Department of NeurologyMedisch Spectrum Twente, Enschede, the Netherlands
| |
Collapse
|
26
|
Molaie AM, Maguire J. Neuroendocrine Abnormalities Following Traumatic Brain Injury: An Important Contributor to Neuropsychiatric Sequelae. Front Endocrinol (Lausanne) 2018; 9:176. [PMID: 29922224 PMCID: PMC5996920 DOI: 10.3389/fendo.2018.00176] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/03/2018] [Indexed: 12/19/2022] Open
Abstract
Neuropsychiatric symptoms following traumatic brain injury (TBI) are common and contribute negatively to TBI outcomes by reducing overall quality of life. The development of neurobehavioral sequelae, such as concentration deficits, depression, anxiety, fatigue, and loss of emotional well-being has historically been attributed to an ambiguous "post-concussive syndrome," considered secondary to frank structural injury and axonal damage. However, recent research suggests that neuroendocrine dysfunction, specifically hypopituitarism, plays an important role in the etiology of these symptoms. This post-head trauma hypopituitarism (PHTH) has been shown in the past two decades to be a clinically prevalent phenomenon, and given the parallels between neuropsychiatric symptoms associated with non-TBI-induced hypopituitarism and those following TBI, it is now acknowledged that PHTH is likely a substantial contributor to these impairments. The current paper seeks to provide an overview of hypothesized pathophysiological mechanisms underlying neuroendocrine abnormalities after TBI, and to emphasize the significance of this phenomenon in the development of the neurobehavioral problems frequently seen after head trauma.
Collapse
Affiliation(s)
- Amir M. Molaie
- Tufts University School of Medicine, Boston, MA, United States
| | - Jamie Maguire
- Department of Neuroscience, Sackler School of Graduate Biomedical Sciences, Boston, MA, United States
| |
Collapse
|
27
|
Khan K, Saeed S, Ramcharan A, Gray S. A case series of closed head trauma with pituitary stalk disruption resulting in hypopituitarism. Int J Surg Case Rep 2018; 43:69-71. [PMID: 29477026 PMCID: PMC5842363 DOI: 10.1016/j.ijscr.2018.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Traumatic brain injury (TBI) is one of the main causes of morbidity and mortality in young trauma patients with resultant multi-organ effects. Hypopituitarism following TBI can be debilitating and life threatening. TBI which causes hypopituitarism may be characterized by a single head injury, such as from a motor vehicle accident, or by chronic repetitive head trauma, as seen in combative supports including boxing, kick-boxing, and football. In the majority of cases, a diagnosis of hypopituitarism can be entirely missed resulting in severe neuro-endocrine dysfunction. We present a case series of two patients diagnosed with hypopituitarism after TBI and treated appropriately with favorable outcome. CASE PRESENTATIONS The first case is a 34 year-old male, who presented to the emergency department with blunt head trauma after a motor vehicle accident while riding his bicycle. He suffered from severe cranio-facial injuries, resulting in multifocal hemorrhagic contusions, epidural hematoma, and extensive cranio-facial fractures involving the sinuses. The patient developed persistent hypotension with a blood pressure as low as 60/40 mmHg on hospital day three. The second case is a 56 year-old male with a history of schizophrenia, who suffered traumatic brain injury after he was hit by a train. The patient sustained multiple facial fractures, pneumocephalus and C2/7 transverse processes fractures. He also had persistent hypotension, unresponsive to standard treatment. Investigation revealed a deficiency of anterior pituitary hormones resulting from pituitary axis disruption. DISCUSSION Hypopituitarism is becoming an increasingly recognized complication following TBI, ranging from total to isolated deficiencies. Traumatic Brain Injury is a major public health problem and is one of the leading causes of disability. Understanding and recognizing pituitary dysfunction after TBI can lead to better outcomes and improved quality of life. CONCLUSION Patients with major head injury and, in particular, those with fractures of the base of the skull, must be closely monitored for signs and symptoms of endocrine dysfunction. Appropriate dynamic pituitary-function screening should be performed.
Collapse
Affiliation(s)
- Khuram Khan
- Department of Surgery, Harlem Hospital Columbia University Medical Center, New York, NY, USA.
| | - Saqib Saeed
- Department of Surgery, Harlem Hospital Columbia University Medical Center, New York, NY, USA
| | - Alexius Ramcharan
- Department of Surgery, Harlem Hospital Columbia University Medical Center, New York, NY, USA
| | - Sanjiv Gray
- Department of Surgery, Harlem Hospital Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
28
|
Experimental repetitive mild traumatic brain injury induces deficits in trabecular bone microarchitecture and strength in mice. Bone Res 2017; 5:17042. [PMID: 29263937 PMCID: PMC5735530 DOI: 10.1038/boneres.2017.42] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/30/2017] [Accepted: 07/04/2017] [Indexed: 01/21/2023] Open
Abstract
To evaluate the long-term consequence of repetitive mild traumatic brain injury (mTBI) on bone, mTBI was induced in 10-week-old female C57BL/6J mice using a weight drop model, once per day for 4 consecutive days at different drop heights (0.5, 1 and 1.5 m) and the skeletal phenotype was evaluated at different time points after the impact. In vivo micro-CT (μ-CT) analysis of the tibial metaphysis at 2, 8 and 12 weeks after the impact revealed a 5%-32% reduction in trabecular bone mass. Histomorphometric analyses showed a reduced bone formation rate in the secondary spongiosa of 1.5 m impacted mice at 12 weeks post impact. Apparent modulus (bone strength), was reduced by 30% (P<0.05) at the proximal tibial metaphysis in the 1.5 m drop height group at 2 and 8 weeks post impact. Ex vivo μ-CT analysis of the fifth lumbar vertebra revealed a significant reduction in trabecular bone mass at 12 weeks of age in all three drop height groups. Serum levels of osteocalcin were decreased by 22%, 15%, and 19% in the 0.5, 1.0 and 1.5 m drop height groups, respectively, at 2 weeks post impact. Serum IGF-I levels were reduced by 18%-32% in mTBI mice compared to contro1 mice at 2 weeks post impact. Serum osteocalcin and IGF-I levels correlated with trabecular BV/TV (r2 =0.14 and 0.16, P<0.05). In conclusion, repetitive mTBI exerts significant negative effects on the trabecular bone microarchitecture and bone mechanical properties by influencing osteoblast function via reduced endocrine IGF-I actions.
Collapse
|
29
|
Frendl I, Katko M, Galgoczi E, Boda J, Zsiros N, Nemeti Z, Bereczky Z, Hudak R, Kappelmayer J, Erdei A, Turchanyi B, Nagy EV. Plasminogen Activator Inhibitor Type 1: A Possible Novel Biomarker of Late Pituitary Dysfunction after Mild Traumatic Brain Injury. J Neurotrauma 2017; 34:3238-3244. [DOI: 10.1089/neu.2017.5198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Istvan Frendl
- Department of Trauma and Hand Surgery, Faculty of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Monika Katko
- Division of Endocrinology, Department of Medicine, Faculty of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Erika Galgoczi
- Division of Endocrinology, Department of Medicine, Faculty of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Boda
- Division of Endocrinology, Department of Medicine, Faculty of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Noemi Zsiros
- Division of Endocrinology, Department of Medicine, Faculty of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Nemeti
- Department of Trauma and Hand Surgery, Faculty of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsuzsanna Bereczky
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Renata Hudak
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Janos Kappelmayer
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Annamaria Erdei
- Division of Endocrinology, Department of Medicine, Faculty of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bela Turchanyi
- Department of Trauma and Hand Surgery, Faculty of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Endre V. Nagy
- Division of Endocrinology, Department of Medicine, Faculty of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
30
|
Sivolap YP, Damulin IV, Voskresenskaya ON. Traumatic brain injury: neurologic and psychiatric aspects. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:94-98. [DOI: 10.17116/jnevro20171179194-98] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|