1
|
Karaman V, Karakilic-Ozturan E, Poyrazoglu S, Gelmez MY, Bas F, Darendeliler F, Uyguner ZO. Novel variants ensued genomic imprinting in familial central precocious puberty. J Endocrinol Invest 2024; 47:2041-2052. [PMID: 38367171 PMCID: PMC11266277 DOI: 10.1007/s40618-023-02300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/29/2023] [Indexed: 02/19/2024]
Abstract
INTRODUCTION Central precocious puberty (CPP) is characterized by the early onset of puberty and is associated with the critical processes involved in the pubertal switch. The puberty-related gene pool in the human genome is considerably large though few have been described in CPP. Within those genes, the genomic imprinting features of the MKRN3 and DLK1 genes add additional complexity to the understanding of the pathologic pathways. This study aimed to investigate the molecular etiology in the CPP cohort. METHODS Eighteen familial CPP cases were investigated by Sanger sequencing for five CPP-related genes; DLK1, KISS1, KISS1R, MKRN3, and PROKR2. Segregation analysis was performed in all patients with pathogenic variants. Using an ELISA test, the functional pathogenicity of novel variants was also investigated in conjunction with serum delta-like 1 homolog (DLK1) concentrations. RESULTS In three probands, a known variant in the MKRN3 gene (c.982C>T/p.(Arg328Cys)) and two novel variants in the DLK1 gene (c.357C>G/p.(Tyr119Ter) and c.67+78C>T) were identified. All three were inherited from the paternal allele. The individuals carrying the DLK1 variants had low detectable DLK1 levels in their serum. CONCLUSIONS The frequencies were 5.5% (1/18) for MKRN3 11% (2/18) for DLK1, and none for either KISS1, KISS1R, and PROKR2. Low serum DLK1 levels in affected individuals supported the relationship between here described novel DLK1 gene variants with CPP. Nonsense nature of c.357C>G/p.(Tyr119Ter) and an alteration in the evolutionarily conserved nucleotide c.67+78C>T suggested the disruptive nature of the variant's compatibility with CPP.
Collapse
Affiliation(s)
- V Karaman
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Millet Cad. Çapa/Fatih, 34096, Istanbul, Turkey.
| | - E Karakilic-Ozturan
- Department of Pediatric Endocrinology and Diabetes, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - S Poyrazoglu
- Department of Pediatric Endocrinology and Diabetes, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - M Y Gelmez
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - F Bas
- Department of Pediatric Endocrinology and Diabetes, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - F Darendeliler
- Department of Pediatric Endocrinology and Diabetes, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Z O Uyguner
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Millet Cad. Çapa/Fatih, 34096, Istanbul, Turkey
| |
Collapse
|
2
|
Neocleous V, Fanis P, Toumba M, Skordis N, Phylactou LA. Genetic diagnosis of endocrine disorders in Cyprus through the Cyprus Institute of Neurology and Genetics: an ENDO-ERN Reference Center. Orphanet J Rare Dis 2024; 19:167. [PMID: 38637882 PMCID: PMC11027394 DOI: 10.1186/s13023-024-03171-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/30/2024] [Indexed: 04/20/2024] Open
Abstract
The report covers the current and past activities of the department Molecular Genetics-Function and Therapy (MGFT) at the Cyprus Institute of Neurology and Genetics (CING), an affiliated Reference Center for the European Reference Network on Rare Endocrine Conditions (Endo-ERN).The presented data is the outcome of > 15 years long standing collaboration between MGFT and endocrine specialists from the local government hospitals and the private sector. Up-to-date > 2000 genetic tests have been performed for the diagnosis of inherited rare endocrine disorders. The major clinical entities included Congenital Adrenal Hyperplasia (CAH) due to pathogenic variants in CYP21A2 gene and Multiple Endocrine Neoplasia (MEN) type 2 due to pathogenic variants in the RET proto-oncogene. Other rare and novel pathogenic variants in ANOS1, WDR11, FGFR1, RNF216, and CHD7 genes were also found in patients with Congenital Hypogonadotropic Hypogonadism. Interestingly, a few patients with Disorders of Sexual Differentiation (DSD) shared rare pathogenic variants in the SRD5A2, HSD17B3 and HSD3B2 while patients with Glucose and Insulin Homeostasis carried theirs in GCK and HNF1A genes. Lastly, MGFT over the last few years has established an esteemed diagnostic and research program on premature puberty with emphasis on the implication of MKRN3 gene on the onset of the disease and the identification of other prognosis biomarkers.As an Endo-ERN member MGFT department belongs to this large European network and holds the same humanistic ideals which aim toward the improvements of health care for patients with rare endocrine conditions in respect to improved and faster diagnosis.
Collapse
Affiliation(s)
- Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Meropi Toumba
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Department of Pediatrics, Pediatric Endocrinology Clinic, Aretaeio Hospital, Nicosia, Cyprus
| | - Nicos Skordis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Division of Paediatric Endocrinology, Paedi Center for Specialized Paediatrics, Nicosia, Cyprus
- School of Medicine, University of Nicosia, Nicosia, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| |
Collapse
|
3
|
Khabibullina DA, Kolodkina AA, Vizerov TV, Zubkova NA, Bezlepkina OB. [Gonadotropin-dependent precocious puberty: genetic and clinical characteristics]. PROBLEMY ENDOKRINOLOGII 2023; 69:58-66. [PMID: 37448272 DOI: 10.14341/probl13215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/12/2023] [Accepted: 01/22/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND In 90% cases of girls and 25-60% cases of boys the cause of gonadotropin-dependent precocious puberty (PP) is unclear. Up to 25-27.5% of gonadotropin-dependent PP cases are monogenic and suggest autosomal-dominant inheritance with incomplete sex-dependent penetrance. To date, mutations in genes KISS1, KISS1R, MKRN3, DLK1 have been described as causal variants leading to precocious hypothalamic-pituitary axis activation in childhood. Genetic testing in patients with hereditary forms of PP can expand our knowledge of underlying molecular mechanisms of the disease and it is also necessary for genetic counselling. AIM To study clinical features and genetic characteristics of patients with idiopathic gonadotropin-dependent precocious puberty. MATERIALS AND METHODS A group of patients with idiopathic gonadotropin-dependent precocious puberty and positive family history (early or precocious puberty) was examined. Laboratory and instrumental diagnostic tests, full-exome sequencing (NGS, next-generation sequencing) were provided for all patients. RESULTS The study included 30 patients (29 girls, 1 boy) with idiopathic gonadotropin-dependent precocious puberty. The median of patients age at the time of the examination was 7,2 years [6,5; 7,7]. Positive family history presented in all cases: in 40% of patients on father's side, in 37% - on mother's side, in 23% of patients PP was diagnosed in siblings. The fullexome sequencing was conducted to 21 patients: in 61,9% of cases (95% CI [40;79]) nucleotide variants were identified in genes, associated with gonadotropin-dependent precocious puberty. MKRN3 gene defect was detected in most cases (77% cases (95% CI [49; 92]), which consistent with international data on its highest prevalence in the monogenic forms of PP. In 23% of cases (95% CI [7; 50]) nucleotide variants were identified in other candidate genes associated with neuroontogenesis and neuroendocrine regulation mechanisms of hypothalamic-pituitary axis. CONCLUSION Our study confirms that detailed family history data in children with PP provides a rational approach to molecular-genetic testing. Data of inheritance pattern and clinical manifestations will simplify the diagnosis of hereditary forms of disease and enhance genetic counselling of families, followed by timely examination and administration of pathogenetic therapy.
Collapse
|
4
|
Brito VN, Canton APM, Seraphim CE, Abreu AP, Macedo DB, Mendonca BB, Kaiser UB, Argente J, Latronico AC. The Congenital and Acquired Mechanisms Implicated in the Etiology of Central Precocious Puberty. Endocr Rev 2023; 44:193-221. [PMID: 35930274 PMCID: PMC9985412 DOI: 10.1210/endrev/bnac020] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 01/20/2023]
Abstract
The etiology of central precocious puberty (CPP) is multiple and heterogeneous, including congenital and acquired causes that can be associated with structural or functional brain alterations. All causes of CPP culminate in the premature pulsatile secretion of hypothalamic GnRH and, consequently, in the premature reactivation of hypothalamic-pituitary-gonadal axis. The activation of excitatory factors or suppression of inhibitory factors during childhood represent the 2 major mechanisms of CPP, revealing a delicate balance of these opposing neuronal pathways. Hypothalamic hamartoma (HH) is the most well-known congenital cause of CPP with central nervous system abnormalities. Several mechanisms by which hamartoma causes CPP have been proposed, including an anatomical connection to the anterior hypothalamus, autonomous neuroendocrine activity in GnRH neurons, trophic factors secreted by HH, and mechanical pressure applied to the hypothalamus. The importance of genetic and/or epigenetic factors in the underlying mechanisms of CPP has grown significantly in the last decade, as demonstrated by the evidence of genetic abnormalities in hypothalamic structural lesions (eg, hamartomas, gliomas), syndromic disorders associated with CPP (Temple, Prader-Willi, Silver-Russell, and Rett syndromes), and isolated CPP from monogenic defects (MKRN3 and DLK1 loss-of-function mutations). Genetic and epigenetic discoveries involving the etiology of CPP have had influence on the diagnosis and familial counseling providing bases for potential prevention of premature sexual development and new treatment targets in the future. Global preventive actions inducing healthy lifestyle habits and less exposure to endocrine-disrupting chemicals during the lifespan are desirable because they are potentially associated with CPP.
Collapse
Affiliation(s)
- Vinicius N Brito
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ana P M Canton
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Carlos Eduardo Seraphim
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| | - Delanie B Macedo
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
- Núcleo de Atenção Médica Integrada, Centro de Ciências da Saúde,
Universidade de Fortaleza, Fortaleza 60811 905,
Brazil
| | - Berenice B Mendonca
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| | - Jesús Argente
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology and
Department of Pediatrics, Universidad Autónoma de Madrid, Spanish PUBERE Registry,
CIBER of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, IMDEA
Institute, Madrid 28009, Spain
| | - Ana Claudia Latronico
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| |
Collapse
|
5
|
Fanis P, Morrou M, Tomazou M, Michailidou K, Spyrou GM, Toumba M, Skordis N, Neocleous V, Phylactou LA. Methylation status of hypothalamic Mkrn3 promoter across puberty. Front Endocrinol (Lausanne) 2022; 13:1075341. [PMID: 36714607 PMCID: PMC9880154 DOI: 10.3389/fendo.2022.1075341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Makorin RING finger protein 3 (MKRN3) is an important factor located on chromosome 15 in the imprinting region associated with Prader-Willi syndrome. Imprinted MKRN3 is expressed in hypothalamic regions essential for the onset of puberty and mutations in the gene have been found in patients with central precocious puberty. The pubertal process is largely controlled by epigenetic mechanisms that include, among other things, DNA methylation at CpG dinucleotides of puberty-related genes. In the present study, we investigated the methylation status of the Mkrn3 promoter in the hypothalamus of the female mouse before, during and after puberty. Initially, we mapped the 32 CpG dinucleotides in the promoter, the 5'UTR and the first 50 nucleotides of the coding region of the Mkrn3 gene. Moreover, we identified a short CpG island region (CpG islet) located within the promoter. Methylation analysis using bisulfite sequencing revealed that CpG dinucleotides were methylated regardless of developmental stage, with the lowest levels of methylation being found within the CpG islet region. In addition, the CpG islet region showed significantly lower methylation levels at the pre-pubertal stage when compared with the pubertal or post-pubertal stage. Finally, in silico analysis of transcription factor binding sites on the Mkrn3 CpG islet identified the recruitment of 29 transcriptional regulators of which 14 were transcriptional repressors. Our findings demonstrate the characterization and differential methylation of the CpG dinucleotides located in the Mkrn3 promoter that could influence the transcriptional activity in pre-pubertal compared to pubertal or post-pubertal period. Further studies are needed to clarify the possible mechanisms and effects of differential methylation of the Mkrn3 promoter.
Collapse
Affiliation(s)
- Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Maria Morrou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marios Tomazou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George M. Spyrou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Meropi Toumba
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Child Endocrine Care, Department of Pediatrics, Aretaeio Hospital, Nicosia, Cyprus
| | - Nicos Skordis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Division of Pediatric Endocrinology, Paedi Center for Specialized Pediatrics, Nicosia, Cyprus
- Medical School, University of Nicosia, Nicosia, Cyprus
| | - Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leonidas A. Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- *Correspondence: Leonidas A. Phylactou,
| |
Collapse
|
6
|
Tajima T. Genetic causes of central precocious puberty. Clin Pediatr Endocrinol 2022; 31:101-109. [PMID: 35928377 PMCID: PMC9297165 DOI: 10.1297/cpe.2022-0021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/07/2022] [Indexed: 11/12/2022] Open
Abstract
Central precocious puberty (CPP) is a condition in which the
hypothalamus–pituitary–gonadal system is activated earlier than the normal developmental
stage. The etiology includes organic lesions in the brain; however, in the case of
idiopathic diseases, environmental and/or genetic factors are involved in the development
of CPP. A genetic abnormality in KISS1R, that encodes the kisspeptin
receptor, was first reported in 2008 as a cause of idiopathic CPP. Furthermore, genetic
alterations in KISS1, MKRN3, DLK1, and
PROKR2 have been reported in idiopathic and/or familial CPP. Of these,
MKRN3 has the highest frequency of pathological variants associated
with CPP worldwide; but, abnormalities in MKRN3 are rare in patients in
East Asia, including Japan. MKRN3 and DLK1 are maternal
imprinting genes; thus, CPP develops when a pathological variant is inherited from the
father. The mechanism of CPP due to defects in MKRN3 and
DLK1 has not been completely clarified, but it is suggested that both
may negatively control the progression of puberty. CPP due to such a single gene
abnormality is extremely rare, but it is important to understand the mechanisms of puberty
and reproduction. A further development in the genetics of CPP is expected in the
future.
Collapse
Affiliation(s)
- Toshihiro Tajima
- Department of Pediatrics, Jichi Medical University Tochigi Children’ Medical Center, Tochigi, Japan
| |
Collapse
|
7
|
Neocleous V, Fanis P, Toumba M, Gorka B, Kousiappa I, Tanteles GA, Iasonides M, Nicolaides NC, Christou YP, Michailidou K, Nicolaou S, Papacostas SS, Christoforidis A, Kyriakou A, Vlachakis D, Skordis N, Phylactou LA. Pathogenic and Low-Frequency Variants in Children With Central Precocious Puberty. Front Endocrinol (Lausanne) 2021; 12:745048. [PMID: 34630334 PMCID: PMC8498594 DOI: 10.3389/fendo.2021.745048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022] Open
Abstract
Background Central precocious puberty (CPP) due to premature activation of GnRH secretion results in early epiphyseal fusion and to a significant compromise in the achieved final adult height. Currently, few genetic determinants of children with CPP have been described. In this translational study, rare sequence variants in MKRN3, DLK1, KISS1, and KISS1R genes were investigated in patients with CPP. Methods Fifty-four index girls and two index boys with CPP were first tested by Sanger sequencing for the MKRN3 gene. All children found negative (n = 44) for the MKRN3 gene were further investigated by whole exome sequencing (WES). In the latter analysis, the status of variants in genes known to be related with pubertal timing was compared with an in-house Cypriot control cohort (n = 43). The identified rare variants were initially examined by in silico computational algorithms and confirmed by Sanger sequencing. Additionally, a genetic network for the MKRN3 gene, mimicking a holistic regulatory depiction of the crosstalk between MKRN3 and other genes was designed. Results Three previously described pathogenic MKRN3 variants located in the coding region of the gene were identified in 12 index girls with CPP. The most prevalent pathogenic MKRN3 variant p.Gly312Asp was exclusively found among the Cypriot CPP cohort, indicating a founder effect phenomenon. Seven other CPP girls harbored rare likely pathogenic upstream variants in the MKRN3. Among the 44 CPP patients submitted to WES, nine rare DLK1 variants were identified in 11 girls, two rare KISS1 variants in six girls, and two rare MAGEL2 variants in five girls. Interestingly, the frequent variant rs10407968 (p.Gly8Ter) of the KISS1R gene appeared to be less frequent in the cohort of patients with CPP. Conclusion The results of the present study confirm the importance of the MKRN3-imprinted gene in genetics of CPP and its key role in pubertal timing. Overall, the results of the present study have emphasized the importance of an approach that aligns genetics and clinical aspects, which is necessary for the management and treatment of CPP.
Collapse
Affiliation(s)
- Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Meropi Toumba
- Child Endocrine Care, Department of Pediatrics, Aretaeio Hospital, Nicosia, Cyprus
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Barbara Gorka
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Ioanna Kousiappa
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Department of Neurobiology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George A Tanteles
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Department of Clinical Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Michalis Iasonides
- Department of Pediatrics, Iliaktida Paediatric & Adolescent Medical Centre, Limassol, Cyprus
- University of Nicosia Medical School, Nicosia, Cyprus
| | - Nicolas C Nicolaides
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Yiolanda P Christou
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Department of Neurobiology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyriaki Michailidou
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Stella Nicolaou
- Division of Pediatric Endocrinology, Archbishop Makarios III Hospital, Nicosia, Cyprus
| | - Savvas S Papacostas
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Department of Neurobiology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- University of Nicosia Medical School, Nicosia, Cyprus
- Centre for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia, Nicosia, Cyprus
| | - Athanasios Christoforidis
- First Pediatric Department, School of Medicine, Faculty of Medical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Kyriakou
- Division of Pediatric Endocrinology, Archbishop Makarios III Hospital, Nicosia, Cyprus
- Developmental Endocrinology Research Group, School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
- Lab of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - Nicos Skordis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- St George's, University of London Medical School, University of Nicosia, Nicosia, Cyprus
- Division of Pediatric Endocrinology, Paedi Center for specialized Pediatrics, Nicosia, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| |
Collapse
|
8
|
Spaziani M, Tarantino C, Tahani N, Gianfrilli D, Sbardella E, Lenzi A, Radicioni AF. Hypothalamo-Pituitary axis and puberty. Mol Cell Endocrinol 2021; 520:111094. [PMID: 33271219 DOI: 10.1016/j.mce.2020.111094] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/29/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022]
Abstract
Puberty is a complex process that culminates in the acquisition of psychophysical maturity and reproductive capacity. This elaborate and fascinating process marks the end of childhood. Behind it lies a complex, genetically mediated neuroendocrine mechanism through which the gonads are activated thanks to the fine balance between central inhibitory and stimulating neuromodulators and hormones with both central and peripheral action. The onset of puberty involves the reactivation of the hypothalamic-pituitary-gonadal (HPG) axis, supported by the initial "kiss" between kisspeptin and the hypothalamic neurons that secrete GnRH (the GnRH "pulse generator"). This pulsatile production of GnRH is followed by a rise in LH and, consequently, in gonadal steroids. The onset of puberty varies naturally between individuals, and especially between males and females, in the latter of whom it is typically earlier. However, pathological variations, namely precocious and delayed puberty, are also possible. This article reviews the scientific literature on the physiological mechanisms of puberty and the main pathophysiological aspects of its onset.
Collapse
Affiliation(s)
- Matteo Spaziani
- Section of Medical Pathophysiology and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, 00161, Italy; Centre for Rare Diseases, Policlinico Umberto I, Rome, Italy.
| | - Chiara Tarantino
- Section of Medical Pathophysiology and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, 00161, Italy; Centre for Rare Diseases, Policlinico Umberto I, Rome, Italy
| | - Natascia Tahani
- Department of Diabetes, Endocrinology and Metabolism, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, B15 2TH, UK
| | - Daniele Gianfrilli
- Section of Medical Pathophysiology and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Emilia Sbardella
- Section of Medical Pathophysiology and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Andrea Lenzi
- Section of Medical Pathophysiology and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Antonio F Radicioni
- Section of Medical Pathophysiology and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, 00161, Italy; Centre for Rare Diseases, Policlinico Umberto I, Rome, Italy
| |
Collapse
|
9
|
Maione L, Naulé L, Kaiser UB. Makorin RING finger protein 3 and central precocious puberty. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2020; 14:152-159. [PMID: 32984644 PMCID: PMC7518508 DOI: 10.1016/j.coemr.2020.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Makorin RING finger protein 3 (MKRN3) is a key inhibitor of the hypothalamic-pituitary-gonadal axis. Loss-of-function mutations in MKRN3 cause familial and sporadic central precocious puberty (CPP), while polymorphisms are associated with age at menarche. To date, 115 patients with CPP carrying MKRN3 mutations have been described, harboring 48 different genetic variants. The prevalence of MKRN3 mutations in genetically screened populations with CPP is estimated at 9.0%. Girls are more commonly and more seriously affected than boys. MKRN3 is expressed in humans and rodents in the central nervous system. Circulating levels in humans and hypothalamic expression in rodents decrease during pubertal progression. Although some MKRN3 regulators have been identified, the precise mechanism by which MKRN3 inhibits the hypothalamic-pituitary-gonadal axis remains elusive. The role of makorins in developmental physiology and organ differentiation and the role of maternal imprinting are discussed herein.
Collapse
Affiliation(s)
- Luigi Maione
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lydie Naulé
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
10
|
Roberts SA, Kaiser UB. GENETICS IN ENDOCRINOLOGY: Genetic etiologies of central precocious puberty and the role of imprinted genes. Eur J Endocrinol 2020; 183:R107-R117. [PMID: 32698138 PMCID: PMC7682746 DOI: 10.1530/eje-20-0103] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022]
Abstract
Pubertal timing is regulated by the complex interplay of genetic, environmental, nutritional and epigenetic factors. Criteria for determining normal pubertal timing, and thus the definition of precocious puberty, have evolved based on published population studies. The significance of the genetic influence on pubertal timing is supported by familial pubertal timing and twin studies. In contrast to the many monogenic causes associated with hypogonadotropic hypogonadism, only four monogenic causes of central precocious puberty (CPP) have been described. Loss-of-function mutations in Makorin Ring Finger Protein 3(MKRN3), a maternally imprinted gene on chromosome 15 within the Prader-Willi syndrome locus, are the most common identified genetic cause of CPP. More recently, several mutations in a second maternally imprinted gene, Delta-like noncanonical Notch ligand 1 (DLK1), have also been associated with CPP. Polymorphisms in both genes have also been associated with the age of menarche in genome-wide association studies. Mutations in the genes encoding kisspeptin (KISS1) and its receptor (KISS1R), potent activators of GnRH secretion, have also been described in association with CPP, but remain rare monogenic causes. CPP has both short- and long-term health implications for children, highlighting the importance of understanding the mechanisms contributing to early puberty. Additionally, given the role of mutations in the imprinted genes MKRN3 and DLK1 in pubertal timing, other imprinted candidate genes should be considered for a role in puberty initiation.
Collapse
Affiliation(s)
- Stephanie A. Roberts
- Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
Liu M, Fan L, Gong CX. A novel heterozygous MKRN3 nonsense mutation in a Chinese girl with idiopathic central precocious puberty: A case report. Medicine (Baltimore) 2020; 99:e22295. [PMID: 32957387 PMCID: PMC7505322 DOI: 10.1097/md.0000000000022295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RATIONALE Central precocious puberty (CPP) is caused by the premature activation of the hypothalamic-pituitary-gonadal axis. Recently, the makorin ring finger protein 3 (MKRN3) mutations represent the most common genetic defects associated with CPP. However, the MKRN3 mutation is relatively rare in Asian countries. Here, we identified a novel heterozygous MKRN3 nonsense mutation (p. Gln363) causing CPP in a Chinese girl. PATIENT CONCERNS The index case is a 7-year-old Chinese girl who presented rapidly progressive precocious puberty with the onset of menstrual period 2 months after breast development, the advanced bone age (11 years), and the accelerated growth velocity (10 cm/year). Her basal luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels, as well as the peak LH/FSH values after the gonadotropin-releasing hormone (GnRH) stimulation test were significantly elevated.Pelvic B ultrasound showed the presence of ovarian follicles with diameters ≥0.4 cm. Uterine length also indicated the onset of puberty. Contrast-enhanced magnetic resonance imaging (MRI) did not disclose any abnormality in the pituitary. Additionally, our present case was obese companies with impaired glucose tolerance (IGT) at the baseline assessment. Genetic analysis revealed a novel heterozygous nonsense mutation (c1087C>T; p. Gln363) in the maternally imprinted MKRN3, which inherited from the girl's father. DIAGNOSIS Combined with the symptoms, hormonal data, and the results of the pelvic B ultrasound, the girl was diagnosed as CPP. INTERVENTIONS The girl has been treated with a GnRH analog (3.75 mg every 4 wks) for 1 year and 5 months. OUTCOMES The puberty signs have since not progressed during the follow-up period, which indicates that the GnRH analogs treatment is effective. LESSONS This case was obese companied with IGT at the baseline assessment and exhibited stronger LH/FSH response to GnRH stimulation test. Therefore, clinicians should highlight the importance of weight management and the long-term follow-up to monitor the adverse health outcomes, especially for the polycystic ovary syndrome in later life.
Collapse
|
12
|
Valadares LP, Meireles CG, De Toledo IP, Santarem de Oliveira R, Gonçalves de Castro LC, Abreu AP, Carroll RS, Latronico AC, Kaiser UB, Guerra ENS, Lofrano-Porto A. MKRN3 Mutations in Central Precocious Puberty: A Systematic Review and Meta-Analysis. J Endocr Soc 2019; 3:979-995. [PMID: 31041429 PMCID: PMC6483926 DOI: 10.1210/js.2019-00041] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/19/2019] [Indexed: 01/19/2023] Open
Abstract
MKRN3 mutations represent the most common genetic cause of central precocious puberty (CPP) but associations between genotype and clinical features have not been extensively explored. This systematic review and meta-analysis investigated genotype-phenotype associations and prevalence of MKRN3 mutations in CPP. The search was conducted in seven electronic databases (Cochrane, EMBASE, LILACS, LIVIVO, PubMed, Scopus, and Web of Science) for articles published until 4 September 2018. Studies evaluating MKRN3 mutations in patients with CPP were considered eligible. A total of 22 studies, studying 880 subjects with CPP, fulfilled the inclusion criteria. Eighty-nine subjects (76 girls) were identified as harboring MKRN3 mutations. Girls, compared with boys, exhibited earlier age at pubertal onset (median, 6.0 years; range, 3.0 to 7.0 vs 8.5 years; range, 5.9 to 9.0; P < 0.001), and higher basal FSH levels (median, 4.3 IU/L; range, 0.7 to 13.94 IU/L vs 2.45 IU/L; range, 0.8 to 13.70 IU/L; P = 0.003), and bone age advancement (ΔBA; median, 2.3 years; range, -0.9 to 5.2 vs 1.2 years; range, 0.0 to 2.3; P = 0.01). Additional dysmorphisms were uncommon. A total of 14 studies evaluating 857 patients were included for quantitative analysis, with a pooled overall mutation prevalence of 9.0% (95% CI, 0.04 to 0.15). Subgroup analysis showed that prevalence estimates were higher in males, familial cases, and in non-Asian countries. In conclusion, MKRN3 mutations are associated with nonsyndromic CPP and manifest in a sex-dimorphic manner, with girls being affected earlier. They represent a common cause of CPP in western countries, especially in boys and familial cases.
Collapse
Affiliation(s)
- Luciana Pinto Valadares
- Molecular Pharmacology Laboratory, Health Sciences Faculty, University of Brasilia, Brasilia, DF, Brazil
| | - Cinthia Gabriel Meireles
- Molecular Pharmacology Laboratory, Health Sciences Faculty, University of Brasilia, Brasilia, DF, Brazil
| | - Isabela Porto De Toledo
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasilia, Brasilia, DF, Brazil
| | - Renata Santarem de Oliveira
- Gonadal and Adrenal Diseases Clinics, University Hospital of Brasilia, University of Brasilia, Brasilia, DF, Brazil
- Pediatric Endocrinology Unit, Department of Pediatrics, University Hospital of Brasília, Faculty of Medicine, University of Brasilia, DF, Brazil
- Jose Alencar Brasilia Children´s Hospital, State Secretary of Health, Brasilia, DF, Brazil
| | - Luiz Cláudio Gonçalves de Castro
- Pediatric Endocrinology Unit, Department of Pediatrics, University Hospital of Brasília, Faculty of Medicine, University of Brasilia, DF, Brazil
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rona S Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ana Claudia Latronico
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular, LIM42, Hospital das Clínicas, Disciplina Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eliete Neves Silva Guerra
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasilia, Brasilia, DF, Brazil
| | - Adriana Lofrano-Porto
- Molecular Pharmacology Laboratory, Health Sciences Faculty, University of Brasilia, Brasilia, DF, Brazil
- Gonadal and Adrenal Diseases Clinics, University Hospital of Brasilia, University of Brasilia, Brasilia, DF, Brazil
| |
Collapse
|
13
|
Fanis P, Skordis N, Toumba M, Papaioannou N, Makris A, Kyriakou A, Neocleous V, Phylactou LA. Central Precocious Puberty Caused by Novel Mutations in the Promoter and 5'-UTR Region of the Imprinted MKRN3 Gene. Front Endocrinol (Lausanne) 2019; 10:677. [PMID: 31636607 PMCID: PMC6787840 DOI: 10.3389/fendo.2019.00677] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Central Precocious Puberty (CPP) is clinically defined by the development of secondary sexual characteristics before the age of 8 years in girls and 9 years in boys. To date, mutations in the coding region of KISS1, KISS1R, PROKR2, DLK1, and MKRN3 genes have been reported as causative for CPP. This study investigated the presence of causative mutations in both the promoter and the 5'-UTR regions of the MKRN3 gene. Methods: Sanger DNA sequencing was used for screening the proximal promoter and 5'-UTR region of the MKRN3 gene in a group of 73 index girls with CPP. Mutations identified were cloned in luciferase reporter gene vectors and transiently transfected in GN11 cells in order to check for changes in the activity of the MKRN3 promoter. GN11 cells were previously checked for Mkrn3 expression using lentivirus mediated knock-down. In silico analysis was implemented for the detection of changes in the mRNA secondary structure of the mutated MKRN3 5'-UTR. Results: Three novel heterozygous mutations (-166, -865, -886 nt upstream to the transcription start site) located in the proximal promoter region of the MKRN3 gene were identified in six non-related girls with CPP. Four of these girls shared the -865 mutation, one the -166, and another one the -886. A 5'-UTR (+13 nt downstream to the transcription start site) novel mutation was also identified in a girl with similar clinical phenotype. Gene reporter assay evaluated the identified promoter mutations and demonstrated a significant reduction of MKRN3 promoter activity in transfected GN11 cells. In silico analysis for the mutated 5'-UTR predicted a significant change of the mRNA secondary structure. The minimum free energy (MFE) of the mutated 5'-UTR was higher when compared to the corresponding wild-type indicating less stable RNA secondary structure. Conclusion: Our findings demonstrated novel genetic alterations in the promoter and 5'-UTR regulatory regions of the MKRN3 gene. These changes add to another region to check for the etiology of CPP.
Collapse
Affiliation(s)
- Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Nicos Skordis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Pediatric Endocrine Clinic, Paedi Center for Specialized Pediatrics, Nicosia, Cyprus
| | - Meropi Toumba
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Department of Pediatrics, Iasis Hospital, Paphos, Cyprus
| | - Nikoletta Papaioannou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Anestis Makris
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Andreas Kyriakou
- Developmental Endocrinology Research Group, School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Leonidas A. Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- *Correspondence: Leonidas A. Phylactou
| |
Collapse
|
14
|
Aylwin CF, Vigh-Conrad K, Lomniczi A. The Emerging Role of Chromatin Remodeling Factors in Female Pubertal Development. Neuroendocrinology 2019; 109:208-217. [PMID: 30731454 PMCID: PMC6794153 DOI: 10.1159/000497745] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/06/2019] [Indexed: 12/21/2022]
Abstract
To attain sexual competence, all mammalian species go through puberty, a maturational period during which body growth and development of secondary sexual characteristics occur. Puberty begins when the diurnal pulsatile gonadotropin-releasing hormone (GnRH) release from the hypothalamus increases for a prolonged period of time, driving the adenohypophysis to increase the pulsatile release of luteinizing hormone with diurnal periodicity. Increased pubertal GnRH secretion does not appear to be driven by inherent changes in GnRH neuronal activity; rather, it is induced by changes in transsynaptic and glial inputs to GnRH neurons. We now know that these changes involve a reduction in inhibitory transsynaptic inputs combined with increased transsynaptic and glial excitatory inputs to the GnRH neuronal network. Although the pubertal process is known to have a strong genetic component, during the last several years, epigenetics has been implicated as a significant regulatory mechanism through which GnRH release is first repressed before puberty and is involved later on during the increase in GnRH secretion that brings about the pubertal process. According to this concept, a central target of epigenetic regulation is the transcriptional machinery of neurons implicated in stimulating GnRH release. Here, we will briefly review the hormonal changes associated with the advent of female puberty and the role that excitatory transsynaptic inputs have in this process. In addition, we will examine the 3 major groups of epigenetic modifying enzymes expressed in the neuroendocrine hypothalamus, which was recently shown to be involved in pubertal development and progression.
Collapse
Affiliation(s)
- Carlos Francisco Aylwin
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University (OHSU), Beaverton, Oregon, USA
| | - Katinka Vigh-Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University (OHSU), Beaverton, Oregon, USA
| | - Alejandro Lomniczi
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University (OHSU), Beaverton, Oregon, USA,
| |
Collapse
|
15
|
Tran HT, Cho E, Jeong S, Jeong EB, Lee HS, Jeong SY, Hwang JS, Kim EY. Makorin 1 Regulates Developmental Timing in Drosophila. Mol Cells 2018; 41:1024-1032. [PMID: 30396233 PMCID: PMC6315317 DOI: 10.14348/molcells.2018.0367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/15/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
The central mechanisms coordinating growth and sexual maturation are well conserved across invertebrates and vertebrates. Although mutations in the gene encoding makorin RING finger protein 3 (mkrn3 ) are associated with central precocious puberty in humans, a causal relationship has not been elucidated. Here, we examined the role of mkrn1, a Drosophila ortholog of mammalian makorin genes, in the regulation of developmental timing. Loss of MKRN1 in mkrn1 exS prolonged the 3rd instar stage and delayed the onset of pupariation, resulting in bigger size pupae. MKRN1 was expressed in the prothoracic gland, where the steroid hormone ecdysone is produced. Furthermore, mkrn1 exS larvae exhibited reduced mRNA levels of phantom, which encodes ecdysone-synthesizing enzyme and E74, which is a downstream target of ecdysone. Collectively, these results indicate that MKRN1 fine-tunes developmental timing and sexual maturation by affecting ecdysone synthesis in Drosophila. Moreover, our study supports the notion that malfunction of makorin gene family member, mkrn3 dysregulates the timing of puberty in mammals.
Collapse
Affiliation(s)
- Hong Thuan Tran
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Kyunggi-do 16499,
Korea
- Department of Brain Science, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| | - Eunjoo Cho
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Kyunggi-do 16499,
Korea
- Department of Brain Science, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| | - Seongsu Jeong
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Kyunggi-do 16499,
Korea
- Department of Brain Science, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| | - Eui Beom Jeong
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Kyunggi-do 16499,
Korea
- Department of Brain Science, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| | - Hae Sang Lee
- Department of Pediatrics, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| | - Seon Yong Jeong
- Department of Medical Genetics, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| | - Jin Soon Hwang
- Department of Pediatrics, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| | - Eun Young Kim
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Kyunggi-do 16499,
Korea
- Department of Brain Science, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| |
Collapse
|
16
|
Lu W, Wang J, Li C, Sun M, Hu R, Wang W. A novel mutation in 5'-UTR of Makorin ring finger 3 gene associated with the familial precocious puberty. Acta Biochim Biophys Sin (Shanghai) 2018; 50:1291-1293. [PMID: 30462148 DOI: 10.1093/abbs/gmy124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Wenli Lu
- Department of Pediatrics, Ruijin Hospital Affiliated with Shanghai Jiao Tong University, Shanghai, China
| | - Junqi Wang
- Department of Pediatrics, Ruijin Hospital Affiliated with Shanghai Jiao Tong University, Shanghai, China
| | - Chuanyin Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Manqing Sun
- Department of Pediatrics, Ruijin Hospital Affiliated with Shanghai Jiao Tong University, Shanghai, China
| | - Ronggui Hu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Department of Pediatrics, Ruijin Hospital Affiliated with Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW To summarize advances in the genetics underlying variation in normal pubertal timing, precocious puberty, and delayed puberty, and to discuss mechanisms by which genes may regulate pubertal timing. RECENT FINDINGS Genome-wide association studies have identified hundreds of loci that affect pubertal timing in the general population in both sexes and across ethnic groups. Single genes have been implicated in both precocious and delayed puberty. Potential mechanisms for how these genetic loci influence pubertal timing may include effects on the development and function of the GnRH neuronal network and the responsiveness of end-organs. SUMMARY There has been significant progress in identifying genetic loci that affect normal pubertal timing, and the first single-gene causes of precocious and delayed puberty are being described. How these genes influence pubertal timing remains to be determined.
Collapse
Affiliation(s)
- Jia Zhu
- Division of Endocrinology, Department of Medicine, Boston Children's Hospital
| | - Temitope O Kusa
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yee-Ming Chan
- Division of Endocrinology, Department of Medicine, Boston Children's Hospital.,Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Abstract
Puberty involves a series of morphological, physiological and behavioural changes during the last part of the juvenile period that culminates in the attainment of fertility. The activation of the pituitary-gonadal axis by increased hypothalamic secretion of gonadotrophin-releasing hormone (GnRH) is an essential step in the process. The current hypothesis postulates that a loss of transsynaptic inhibition and a rise in excitatory inputs are responsible for the activation of GnRH release. Similarly, a shift in the balance in the expression of puberty activating and puberty inhibitory genes exists during the pubertal transition. In addition, recent evidence suggests that the epigenetic machinery controls this genetic balance, giving rise to the tantalising possibility that epigenetics serves as a relay of environmental signals known for many years to modulate pubertal development. Here, we review the contribution of epigenetics as a regulatory mechanism in the hypothalamic control of female puberty.
Collapse
Affiliation(s)
- C A Toro
- Primate Genetics Section/Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, OR, USA
| | - C F Aylwin
- Primate Genetics Section/Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, OR, USA
| | - A Lomniczi
- Primate Genetics Section/Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, OR, USA
| |
Collapse
|
19
|
Grandone A, Cirillo G, Sasso M, Capristo C, Tornese G, Marzuillo P, Luongo C, Rosaria Umano G, Festa A, Coppola R, Miraglia Del Giudice E, Perrone L. MKRN3 levels in girls with central precocious puberty and correlation with sexual hormone levels: a pilot study. Endocrine 2018; 59:203-208. [PMID: 28299573 DOI: 10.1007/s12020-017-1281-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/06/2017] [Indexed: 01/23/2023]
Abstract
PURPOSE Recently, mutations of makorin RING-finger protein 3 (MKRN3) have been described in familial central precocious puberty. Serum levels of this protein decline before the pubertal onset in healthy girls and boys. The aim of the study is to investigate MKRN3 circulating levels in patients with central precocious puberty. METHODS We performed an observational cross-sectional study. We enrolled 17 patients with central precocious puberty aged 7 years (range: 2-8 years) and breast development onset <8 years; 17 prepubertal control age-matched patients aged 6.3 years (2-8.2); and 10 pubertal stage-matched control patients aged 11.4 years (9-14). Serum values of MKRN3, gonadotropins, (17)estradiol and Anti-Müllerian Hormone were evaluated and the MKRN3 genotyped in central precocious puberty patients. RESULTS No MKRN3 mutation was found among central precocious puberty patients. MKRN3 levels were lower in patients with central precocious puberty compared to prepubertal age-matched ones (p: 0.0004) and comparable to those matched for pubertal stage. MKRN3 levels were inversely correlated to Body Mass Index Standard Deviations (r:-0.35; p:0.02), Luteinizing Hormone (r:-0.35; p:0.03), FSH (r:-0.37; p:0.02), and (17)estradiol (r: -0.36; p:0.02). CONCLUSIONS We showed that girls with central precocious puberty had lower peripheral levels of MKRN3 compared to age-matched pairs and that they negatively correlated to gonadotropins, estrogen, and BMI. Our findings support the MKRN3 involvement in central precocious puberty also in absence of deleterious mutations, although our sample size is small. In addition our data suggest the role of MKRN3 in the complex mechanism controlling puberty onset and its interaction with other factors affecting puberty such as nutrition.
Collapse
Affiliation(s)
- Anna Grandone
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Grazia Cirillo
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Marcella Sasso
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Carlo Capristo
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Gianluca Tornese
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Pierluigi Marzuillo
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy.
| | - Caterina Luongo
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppina Rosaria Umano
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Adalgisa Festa
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Ruggero Coppola
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Emanuele Miraglia Del Giudice
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Laura Perrone
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
20
|
Fukami M, Miyado M. Next generation sequencing and array-based comparative genomic hybridization for molecular diagnosis of pediatric endocrine disorders. Ann Pediatr Endocrinol Metab 2017; 22:90-94. [PMID: 28690986 PMCID: PMC5495984 DOI: 10.6065/apem.2017.22.2.90] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/17/2017] [Indexed: 11/20/2022] Open
Abstract
Next-generation sequencing (NGS) and array-based comparative genomic hybridization (array CGH) have enabled us to perform high-throughput mutation screening and genome-wide copy number analysis, respectively. These methods can be used for molecular diagnosis of pediatric endocrine disorders. NGS has determined the frequency and phenotypic variation of mutations in several disease-associated genes. Furthermore, whole exome analysis using NGS has successfully identified several novel causative genes for endocrine disorders. Array CGH is currently used as the standard procedure for molecular cytogenetic analysis. Array CGH can detect various submicroscopic genomic rearrangements involving exons or enhancers of disease-associated genes. This review introduces some examples of the use of NGS and array CGH for the molecular diagnosis of pediatric endocrine disorders.
Collapse
Affiliation(s)
- Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|