1
|
Laha D, Grant RRC, Mishra P, Boufraqech M, Shen M, Zhang YQ, Hall MD, Quezado M, De Melo MS, Del Rivero J, Zeiger M, Nilubol N. Preclinical assessment of synergistic efficacy of MELK and CDK inhibitors in adrenocortical cancer. J Exp Clin Cancer Res 2022; 41:282. [PMID: 36151566 PMCID: PMC9502945 DOI: 10.1186/s13046-022-02464-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Adrenocortical cancer (ACC) is a rare and aggressive cancer with dismal 5-year survival due to a lack of effective treatments. We aimed to identify a new effective combination of drugs and investigated their synergistic efficacy in ACC preclinical models. METHODS A quantitative high-throughput drug screening of 4,991 compounds was performed on two ACC cell lines, SW13 and NCI-H295R, based on antiproliferative effect and caspase-3/7 activity. The top candidate drugs were pairwise combined to identify the most potent combinations. The synergistic efficacy of the selected inhibitors was tested on tumorigenic phenotypes, such as cell proliferation, migration, invasion, spheroid formation, and clonogenicity, with appropriate mechanistic validation by cell cycle and apoptotic assays and protein expression of the involved molecules. We tested the efficacy of the drug combination in mice with luciferase-tagged human ACC xenografts. To study the mRNA expression of target molecules in ACC and their clinical correlations, we analyzed the Gene Expression Omnibus and The Cancer Genome Atlas. RESULTS We chose the maternal embryonic leucine zipper kinase (MELK) inhibitor (OTS167) and cyclin-dependent kinase (CDK) inhibitor (RGB-286638) because of their potent synergy from the pairwise drug combination matrices derived from the top 30 single drugs. Multiple publicly available databases demonstrated overexpression of MELK, CDK1/2, and partnering cyclins mRNA in ACC, which were independently associated with mortality and other adverse clinical features. The drug combination demonstrated a synergistic antiproliferative effect on ACC cells. Compared to the single-agent treatment groups, the combination treatment increased G2/M arrest, caspase-dependent apoptosis, reduced cyclins A2, B1, B2, and E2 expression, and decreased cell migration and invasion with reduced vimentin. Moreover, the combination effectively decreased Foxhead Box M1, Axin2, glycogen synthase kinase 3-beta, and β-catenin. A reduction in p-stathmin from the combination treatment destabilized microtubule assembly by tubulin depolymerization. The drug combination treatment in mice with human ACC xenografts resulted in a significantly lower tumor burden than those treated with single-agents and vehicle control groups. CONCLUSIONS Our preclinical study revealed a novel synergistic combination of OTS167 and RGB-286638 in ACC that effectively targets multiple molecules associated with ACC aggressiveness. A phase Ib/II clinical trial in patients with advanced ACC is therefore warranted.
Collapse
Affiliation(s)
- Dipranjan Laha
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Robert R C Grant
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Prachi Mishra
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Myriem Boufraqech
- Department of Molecular Biosciences, College of Natural Sciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Ya-Qin Zhang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Martha Quezado
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michelly Sampaio De Melo
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jaydira Del Rivero
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martha Zeiger
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Naris Nilubol
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Twist1 Influences the Expression of Leading Members of the IL-17 Signaling Pathway in HER2-Positive Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms222212144. [PMID: 34830027 PMCID: PMC8620489 DOI: 10.3390/ijms222212144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 12/16/2022] Open
Abstract
Breast cancer (BC) is a heterogeneous disease composed of multiple subtypes with different molecular characteristics and clinical outcomes. The metastatic process in BC depends on the transcription factors (TFs) related to epithelial-mesenchymal transition (EMT), including the master regulator Twist1. However, its role beyond EMT in BC subtypes remains unclear. Our study aimed to investigate the role of Twist1, beyond EMT, in the molecular subtypes of BC. In patients, we observed the overexpression of TWIST1 in the HER2+ group. The silencing of TWIST1 in HER2+ BC cells resulted in the upregulation of 138 genes and the downregulation of 174 genes compared to control cells in a microarray assay. In silico analysis revealed correlations between Twist1 and important biological processes such as the Th17-mediated immune response, suggesting that Twist1 could be relevant for IL-17 signaling in HER2+ BC. IL-17 signaling was then examined, and it was shown that TWIST1 knockdown caused the downregulation of leading members of IL-17 signaling pathway. Taken together, our findings suggest that Twist1 plays a role on IL-17 signaling in HER2+ BC.
Collapse
|
3
|
Sbiera I, Kircher S, Altieri B, Fassnacht M, Kroiss M, Sbiera S. Epithelial and Mesenchymal Markers in Adrenocortical Tissues: How Mesenchymal Are Adrenocortical Tissues? Cancers (Basel) 2021; 13:1736. [PMID: 33917436 PMCID: PMC8038668 DOI: 10.3390/cancers13071736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 12/22/2022] Open
Abstract
A clinically relevant proportion of adrenocortical carcinoma (ACC) cases shows a tendency to metastatic spread. The objective was to determine whether the epithelial to mesenchymal transition (EMT), a mechanism associated with metastasizing in several epithelial cancers, might play a crucial role in ACC. 138 ACC, 29 adrenocortical adenomas (ACA), three normal adrenal glands (NAG), and control tissue samples were assessed for the expression of epithelial (E-cadherin and EpCAM) and mesenchymal (N-cadherin, SLUG and SNAIL) markers by immunohistochemistry. Using real-time RT-PCR we quantified the alternative isoform splicing of FGFR 2 and 3, another known indicator of EMT. We also assessed the impact of these markers on clinical outcome. Results show that both normal and neoplastic adrenocortical tissues lacked expression of epithelial markers but strongly expressed mesenchymal markers N-cadherin and SLUG. FGFR isoform splicing confirmed higher similarity of adrenocortical tissues to mesenchymal compared to epithelial tissues. In ACC, higher SLUG expression was associated with clinical markers indicating aggressiveness, while N-cadherin expression inversely associated with these markers. In conclusion, we could not find any indication of EMT as all adrenocortical tissues lacked expression of epithelial markers and exhibited closer similarity to mesenchymal tissues. However, while N-cadherin might play a positive role in tissue structure upkeep, SLUG seems to be associated with a more aggressive phenotype.
Collapse
Affiliation(s)
- Iuliu Sbiera
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, 97080 Würzburg, Germany; (I.S.); (B.A.); (M.F.)
| | - Stefan Kircher
- Institute for Pathology, University of Würzburg, 97080 Würzburg, Germany;
| | - Barbara Altieri
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, 97080 Würzburg, Germany; (I.S.); (B.A.); (M.F.)
| | - Martin Fassnacht
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, 97080 Würzburg, Germany; (I.S.); (B.A.); (M.F.)
- Clinical Chemistry and Laboratory Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, 97080 Würzburg, Germany
| | - Matthias Kroiss
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, 97080 Würzburg, Germany; (I.S.); (B.A.); (M.F.)
- Comprehensive Cancer Center Mainfranken, University of Würzburg, 97080 Würzburg, Germany
- Department of Internal Medicine IV, University Hospital Munich, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Silviu Sbiera
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, 97080 Würzburg, Germany; (I.S.); (B.A.); (M.F.)
| |
Collapse
|
4
|
Ménard A, Abou Nader N, Levasseur A, St-Jean G, Le Gad-Le Roy M, Boerboom D, Benoit-Biancamano MO, Boyer A. Targeted Disruption of Lats1 and Lats2 in Mice Impairs Adrenal Cortex Development and Alters Adrenocortical Cell Fate. Endocrinology 2020; 161:5815549. [PMID: 32243503 PMCID: PMC7211035 DOI: 10.1210/endocr/bqaa052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 04/02/2020] [Indexed: 02/08/2023]
Abstract
It has recently been shown that the loss of the Hippo signaling effectors Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) in adrenocortical steroidogenic cells impairs the postnatal maintenance of the adrenal gland. To further explore the role of Hippo signaling in mouse adrenocortical cells, we conditionally deleted the key Hippo kinases large tumor suppressor homolog kinases 1 and -2 (Lats1 and Lats2, two kinases that antagonize YAP and TAZ transcriptional co-regulatory activity) in steroidogenic cells using an Nr5a1-cre strain (Lats1flox/flox;Lats2flox/flox;Nr5a1-cre). We report here that developing adrenocortical cells adopt characteristics of myofibroblasts in both male and female Lats1flox/flox;Lats2flox/flox;Nr5a1-cre mice, resulting in a loss of steroidogenic gene expression, adrenal failure and death by 2 to 3 weeks of age. A marked accumulation of YAP and TAZ in the nuclei of the myofibroblast-like cell population with an accompanying increase in the expression of their transcriptional target genes in the adrenal glands of Lats1flox/flox;Lats2flox/flox;Nr5a1-cre animals suggested that the myofibroblastic differentiation could be attributed in part to YAP and TAZ. Taken together, our results suggest that Hippo signaling is required to maintain proper adrenocortical cell differentiation and suppresses their differentiation into myofibroblast-like cells.
Collapse
Affiliation(s)
- Amélie Ménard
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | - Nour Abou Nader
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | - Adrien Levasseur
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | - Guillaume St-Jean
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | - Marie Le Gad-Le Roy
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | - Derek Boerboom
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | - Marie-Odile Benoit-Biancamano
- Département de Pathologie et Microbiologie Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | - Alexandre Boyer
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
- Correspondence: Alexandre Boyer, Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC, J2S 7C6, Canada. E-mail:
| |
Collapse
|
5
|
Liang J, Liu Z, Wei X, Zhou L, Tang Y, Zhou C, Wu K, Zhang F, Zhang F, Lu Y, Zhu Y. Expression of FSCN1 and FOXM1 are associated with poor prognosis of adrenocortical carcinoma patients. BMC Cancer 2019; 19:1165. [PMID: 31783819 PMCID: PMC6884893 DOI: 10.1186/s12885-019-6389-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 11/21/2019] [Indexed: 02/05/2023] Open
Abstract
Background Adrenocortical carcinoma (ACC) is a rare malignant endocrine tumour. Due to a high tumour recurrence rate, the post-operative overall survival (OS) and disease-free survival (DFS) of ACCs is limited. Our research aims to identify the role of the epithelial-mesenchymal transition (EMT) related genes FSCN1 and FOXM1 in the tumour microenvironment and assess their prognostic value in ACCs. Methods Clinical and specimen data from 130 adrenocortical carcinoma (ACC) patients was acquired from the Cancer Genome Atlas (TCGA) database (n = 79) and a West China Hospital (WCH) cohort (n = 51). In the WCH cohort, archived formalin-fixed paraffin embedded (FFPE) samples were collected for immunohistochemical analysis. The correlation between the EMT genes and the tumour microenvironment status was estimated based on the Tumour Immune Estimation Resource (TIMER) algorithm. Kaplan-Meier analysis, followed by univariate and multivariate regression analyses, were performed to identify the prognostic association of FSCN1 and FOXM1. Results FSCN1 and FOXM1 were over-expressed in ACC tissue when compared with adrenocortical adenoma and normal adrenal tissue. Over-expression of FSCN1 or FOXM1 was associated with the tumour microenvironment and immune signatures in ACCs. Patients with higher expression of FSCN1 or FOXM1 were more likely to have worse prognoses. The prognostic effects were further verified in both early (stage I/II) and advanced (stage III/IV) ACCs. Furthermore, FSCN1 and FOXM1 appeared as independent prognostic factors in ACC. Conclusions These results show that FSCN1 and FOXM1 are independent prognostic factors in ACCs and over-expression of FSCN1 or FOXM1 indicates a worse prognosis.
Collapse
Affiliation(s)
- Jiayu Liang
- Institute of Urology, Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhihong Liu
- Institute of Urology, Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Wei
- Institute of Urology, Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liang Zhou
- Institute of Urology, Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongquan Tang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuan Zhou
- Institute of Urology, Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kan Wu
- Institute of Urology, Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fuxun Zhang
- Institute of Urology, Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fan Zhang
- Institute of Urology, Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yiping Lu
- Institute of Urology, Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yuchun Zhu
- Institute of Urology, Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|