1
|
Smith C, Lin X, Parker L, Yeap BB, Hayes A, Levinger I. The role of bone in energy metabolism: A focus on osteocalcin. Bone 2024; 188:117238. [PMID: 39153587 DOI: 10.1016/j.bone.2024.117238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Understanding the mechanisms involved in whole body glucose regulation is key for the discovery of new treatments for type 2 diabetes (T2D). Historically, glucose regulation was largely focused on responses to insulin and glucagon. Impacts of incretin-based therapies, and importance of muscle mass, are also highly relevant. Recently, bone was recognized as an endocrine organ, with several bone proteins, known as osteokines, implicated in glucose metabolism through their effects on the liver, skeletal muscle, and adipose tissue. Research efforts mostly focused on osteocalcin (OC) as a leading example. This review will provide an overview on this role of bone by discussing bone turnover markers (BTMs), the receptor activator of nuclear factor kB ligand (RANKL), osteoprotegerin (OPG), sclerostin (SCL) and lipocalin 2 (LCN2), with a focus on OC. Since 2007, some, but not all, research using mostly OC genetically modified animal models suggested undercarboxylated (uc) OC acts as a hormone involved in energy metabolism. Most data generated from in vivo, ex vivo and in vitro models, indicate that exogenous ucOC administration improves whole-body and skeletal muscle glucose metabolism. Although data in humans are generally supportive, findings are often discordant likely due to methodological differences and observational nature of that research. Overall, evidence supports the concept that bone-derived factors are involved in energy metabolism, some having beneficial effects (ucOC, OPG) others negative (RANKL, SCL), with the role of some (LCN2, other BTMs) remaining unclear. Whether the effect of osteokines on glucose regulation is clinically significant and of therapeutic value for people with insulin resistance and T2D remains to be confirmed.
Collapse
Affiliation(s)
- Cassandra Smith
- Nutrition & Health Innovation Research Institute, School of Health and Medical Sciences, Edith Cowan University, Perth, Western Australia, Australia; Medical School, The University of Western Australia, Perth, Western Australia, Australia; Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St Albans, VIC, Australia
| | - Xuzhu Lin
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| | - Bu B Yeap
- Medical School, The University of Western Australia, Perth, Western Australia, Australia; Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Australia
| | - Alan Hayes
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St Albans, VIC, Australia; Department of Medicine - Western Health, The University of Melbourne, Footscray, VIC, Australia
| | - Itamar Levinger
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St Albans, VIC, Australia; Department of Medicine - Western Health, The University of Melbourne, Footscray, VIC, Australia.
| |
Collapse
|
2
|
Calisir A, Ece I, Yilmaz H, Alptekin H, Acar F, Yormaz S, Colak B, Sahin M. The Mid-Term Effects of Transit Bipartition with Sleeve Gastrectomy on Glycemic Control, Weight Loss, and Nutritional Status in Patients with Type 2 Diabetes Mellitus: a Retrospective Analysis of a 3-Year Follow-up. Obes Surg 2021; 31:4724-4733. [PMID: 34195935 DOI: 10.1007/s11695-021-05536-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Metabolic surgery is an effective treatment method for glycemic control and weight loss in obese patients with type 2 diabetes mellitus (T2DM). This study aimed to present the mid-term metabolic effects and weight loss results of the patients with T2DM who underwent transit bipartition with sleeve gastrectomy (TB-SG). METHODS A total of 32 obese patients with T2DM who underwent TB-SG were included in the study. The T2DM remission status after surgery was evaluated. The postoperative glycemic variables, weight loss, lipid profile, and nutritional profile were also compared with the baseline values. RESULTS At 36 months after surgery, T2DM remission occurred in 27 patients (84.3%) and the mean BMI decreased from 44.70 ± 9.34 to 29.75 ± 2.19 kg/m2. The percentage of total weight loss (TWL) and excess weight loss (EWL) was 33.84% and 77.19%, respectively. The mean LDL values significantly decreased compared to baseline; however, the mean HDL did not significantly differ. No significant difference was observed regarding the mean albumin, vitamin B12, and folic acid levels. CONCLUSION TB-SG procedure seems promising in terms of T2DM remission and weight loss with less malnutrition and vitamin deficiency in treating obese patients with T2DM.
Collapse
Affiliation(s)
- Akin Calisir
- Department of Surgery, Faculty of Medicine, Selcuk University, 42075, Konya, Turkey.
| | - Ilhan Ece
- Department of Surgery, Faculty of Medicine, Selcuk University, 42075, Konya, Turkey
| | - Huseyin Yilmaz
- Department of Surgery, Faculty of Medicine, Selcuk University, 42075, Konya, Turkey
| | - Husnu Alptekin
- Department of Surgery, Faculty of Medicine, Selcuk University, 42075, Konya, Turkey
| | - Fahrettin Acar
- Department of Surgery, Faculty of Medicine, Selcuk University, 42075, Konya, Turkey
| | - Serdar Yormaz
- Department of Surgery, Faculty of Medicine, Selcuk University, 42075, Konya, Turkey
| | - Bayram Colak
- Department of Surgery, Faculty of Medicine, Selcuk University, 42075, Konya, Turkey
| | - Mustafa Sahin
- Department of Surgery, Faculty of Medicine, Selcuk University, 42075, Konya, Turkey
| |
Collapse
|
3
|
Al Rifai O, Julien C, Lacombe J, Faubert D, Lira-Navarrete E, Narimatsu Y, Clausen H, Ferron M. The half-life of the bone-derived hormone osteocalcin is regulated through O-glycosylation in mice, but not in humans. eLife 2020; 9:61174. [PMID: 33284103 PMCID: PMC7822592 DOI: 10.7554/elife.61174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/06/2020] [Indexed: 12/14/2022] Open
Abstract
Osteocalcin (OCN) is an osteoblast-derived hormone with pleiotropic physiological functions. Like many peptide hormones, OCN is subjected to post-translational modifications (PTMs) which control its activity. Here, we uncover O-glycosylation as a novel PTM present on mouse OCN and occurring on a single serine (S8) independently of its carboxylation and endoproteolysis, two other PTMs regulating this hormone. We also show that O-glycosylation increases OCN half-life in plasma ex vivo and in the circulation in vivo. Remarkably, in human OCN (hOCN), the residue corresponding to S8 is a tyrosine (Y12), which is not O-glycosylated. Yet, the Y12S mutation is sufficient to O-glycosylate hOCN and to increase its half-life in plasma compared to wildtype hOCN. These findings reveal an important species difference in OCN regulation, which may explain why serum concentrations of OCN are higher in mouse than in human. Bones provide support and protection for organs in the body. However, over the last 15 years researchers have discovered that bones also release chemicals known as hormones, which can travel to other parts of the body and cause an effect. The cells responsible for making bone, known as osteoblasts, produce a hormone called osteocalcin which communicates with a number of different organs, including the pancreas and brain. When osteocalcin reaches the pancreas, it promotes the release of another hormone called insulin which helps regulate the levels of sugar in the blood. Osteocalcin also travels to other organs such as muscle, where it helps to degrade fats and sugars that can be converted into energy. It also has beneficial effects on the brain, and has been shown to aid memory and reduce depression. Osteocalcin has largely been studied in mice where levels are five to ten times higher than in humans. But it is unclear why this difference exists or how it alters the role of osteocalcin in humans. To answer this question, Al Rifai et al. used a range of experimental techniques to compare the structure and activity of osteocalcin in mice and humans. The experiments showed that mouse osteocalcin has a group of sugars attached to its protein structure, which prevent the hormone from being degraded by an enzyme in the blood. Human osteocalcin has a slightly different protein sequence and is therefore unable to bind to this sugar group. As a result, the osteocalcin molecules in humans are less stable and cannot last as long in the blood. Al Rifai et al. showed that when human osteocalcin was modified so the sugar group could attach, the hormone was able to stick around for much longer and reach higher levels when added to blood in the laboratory. These findings show how osteocalcin differs between human and mice. Understanding this difference is important as the effects of osteocalcin mean this hormone can be used to treat diabetes and brain disorders. Furthermore, the results reveal how the stability of osteocalcin could be improved in humans, which could potentially enhance its therapeutic effect.
Collapse
Affiliation(s)
- Omar Al Rifai
- Molecular Physiology Research unit, Institut de Recherches Cliniques de Montréal, Montréal, Canada.,Programme de biologie moléculaire, Université de Montréal, Montréal, Canada
| | - Catherine Julien
- Molecular Physiology Research unit, Institut de Recherches Cliniques de Montréal, Montréal, Canada
| | - Julie Lacombe
- Molecular Physiology Research unit, Institut de Recherches Cliniques de Montréal, Montréal, Canada
| | - Denis Faubert
- Proteomics Discovery Platform, Institut de Recherches Cliniques de Montréal, Montréal, Canada
| | - Erandi Lira-Navarrete
- University of Copenhagen, Faculty of Health Sciences, Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Copenhagen, Denmark
| | - Yoshiki Narimatsu
- University of Copenhagen, Faculty of Health Sciences, Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Copenhagen, Denmark
| | - Henrik Clausen
- University of Copenhagen, Faculty of Health Sciences, Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Copenhagen, Denmark
| | - Mathieu Ferron
- Molecular Physiology Research unit, Institut de Recherches Cliniques de Montréal, Montréal, Canada.,Programme de biologie moléculaire, Université de Montréal, Montréal, Canada.,Département de Médecine, Université de Montréal, Montréal, Canada.,Division of Experimental Medicine, McGill University, Montréal, Canada
| |
Collapse
|
4
|
Serum osteocalcin is associated with subjective stress in people with depression and type 2 diabetes. Psychoneuroendocrinology 2020; 122:104878. [PMID: 33038647 DOI: 10.1016/j.psyneuen.2020.104878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/15/2020] [Accepted: 09/15/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Low serum osteocalcin is a risk factor for type 2 diabetes mellitus (T2DM), and osteocalcin release from bone is associated with an acute stress response in mice. Both diabetes and stress are associated with depression. Here, we assess relationships between serum osteocalcin, depression and subjective stress in people with T2DM. METHODS Participants with T2DM (HbA1c above 6.4 %, impaired fasting glucose or impaired glucose tolerance) were assessed for a major depressive episode using the research version of the Structured Clinical Interview for DSM-5 depression criteria (SCID-5RV). Subjective stress over the past month was assessed using the Perceived Stress Scale (PSS). Serum carboxylated (cOCN) and fully decarboxylated (dcOCN) osteocalcin were assayed from fasting morning blood by commercial enzyme-linked immunosorbent assay. RESULTS Among 95 participants (mean age 62.4 ± 9.9, 51 % women), 22 % were experiencing a depressive episode (9 men, 12 women). The presence of a depressive episode was not associated with dcOCN or cOCN concentrations; however, higher concentrations of cOCN were associated with higher PSS scores in participants with depression (r = 0.585, p = 0.005). In an analysis of covariance model controlling for age, sex, body mass index, glycemic control (glycosylated hemoglobin), insulin resistance (homeostatic model), depression, and antidepressant use, cOCN was associated with PSS scores (F=10.302, p = 0.002), and this relationship was stronger in those with depression (depression × cOCN interaction F=4.978, p = 0.028). Although associations between dcOCN concentrations and PSS scores did not reach significance, the same trend seen with cOCN concentrations was observed in participants with depression for dcOCN (r=0.365, p=0.10), and for a depression × dcOCN interaction associated with PSS scores in the whole group (F=2.165, p = 0.15). CONCLUSIONS Osteocalcin is a neuroendocrine marker associated with perceived chronic stress among people with T2DM experiencing a depressive episode.
Collapse
|