1
|
Andreasen CM, Wölfel EM, Ejersted C, Andersen TL, Frost M. Type 2 diabetes patients exhibit delayed but coupled bone remodelling, maintaining cortical porosity comparable to healthy controls: A histomorphometric analysis of trans-iliac bone biopsies. Bone 2025; 193:117412. [PMID: 39884487 DOI: 10.1016/j.bone.2025.117412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 01/06/2025] [Accepted: 01/26/2025] [Indexed: 02/01/2025]
Abstract
OBJECTIVE Fracture risk is increased in longstanding type 2 diabetes (T2D). High-resolution peripheral quantitative CT scans have demonstrated higher cortical porosity in T2D complicated by microvascular disease (MVD). We investigated if cortical bone resorption is followed by inadequate bone formation in individuals with T2D complicated by MVD. METHODS Thirty-five adult men and women with T2D were recruited from outpatient clinics and through public advertisement. All participants had at least one previous measure of c-peptide >700, a negative GAD antibody test, and 13 had known microvascular disease status. Trans iliac crest bone biopsies were collected for histomorphometric analysis. Glucose control was assessed using HbA1c. Additionally, trans iliac bone specimens from 10 individuals without T2D were included as controls. RESULTS Following quality assessment, samples from 30 T2D and 10 controls were used for histomorphometric analyses of cortical bone remodelling. The final study population included 23 men and 7 postmenopausal women with a mean age of 65.8 years for the T2D-MVD group (CI95% 61.2-70.3) and 65.2 years in the T2D + MVD group (CI95% 59.6-70.9), and a mean T2D disease duration of 16.9 years. Seventeen had MVD (57 %). The controls included 5 men and 5 women with a mean age of 64.7 years (CI95% 58.5-70.9). The area, diameter, and density of cortical pores were the same in cases with and without MVD, but the pore diameter was lower than controls. While T2D had significantly more eroded-formative pores compared to controls, there were no significant differences in the proportion of eroded and formative pores between the groups. In quiescent pores/osteons, the osteon diameter and wall thickness were larger in T2D groups than controls. CONCLUSION Cortical bone porosity was not increased in individuals with T2D complicated by MVD. However, an enhanced prevalence of eroded-formative pores and increased osteon diameter concur with a slightly prolonged reversal-resorption phase in T2D irrespective of the presence of MVD.
Collapse
Affiliation(s)
- C M Andreasen
- Molecular Bone Histology Laboratory (MBH lab), Research Unit of Pathology, Dept. of Clinical Research, University of Southern Denmark, DK-5000 Odense C, Denmark; Department of Pathology, Odense University Hospital, DK-5000 Odense C, Denmark.
| | - E M Wölfel
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000 Odense C, Denmark
| | - C Ejersted
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000 Odense C, Denmark
| | - T L Andersen
- Molecular Bone Histology Laboratory (MBH lab), Research Unit of Pathology, Dept. of Clinical Research, University of Southern Denmark, DK-5000 Odense C, Denmark; Department of Pathology, Odense University Hospital, DK-5000 Odense C, Denmark
| | - M Frost
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000 Odense C, Denmark; Steno Diabetes Centre Odense, Odense University Hospital, DK-5000 Odense C, Denmark
| |
Collapse
|
2
|
Suárez LJ, Hasturk H, Tubero Euzebio Alves V, Díaz-Baez D, Van Dyke T, Kantarci A. Overexpression of the receptor for resolvin E1 (ERV1) prevents early alveolar bone loss in leptin receptor deficiency-induced diabetes. J Periodontol 2024; 95:1190-1200. [PMID: 39031577 DOI: 10.1002/jper.24-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND This study was designed to test the hypothesis that the leptin receptor (LepR) regulates changes in periodontal tissues and that the overexpression of the receptor for resolvin E1 (ERV1) prevents age- and diabetes-associated alveolar bone loss. METHODS LepR-deficient transgenic (TG) mice were cross-bred with those overexpressing ERV1 (TG) to generate double-TG mice. In total, 95 mice were divided into four experimental groups: wild type (WT), TG, LepR deficient (db/db), and double transgenic (db/db TG). The groups were followed from 4 weeks up to 16 weeks of age. The natural progression of periodontal disease without any additional method of periodontitis induction was assessed by macroscopic and histomorphometric analyses. Osteoclastic activity was measured by tartrate-resistant acid phosphatase (TRAP) staining. RESULTS At 4 weeks, ERV1 overexpression prevented weight gain. From Week 8 onward, there was a significant increase in the weight of db/db mice with or without ERV1 overexpression compared to the WT mice, accompanied by an increase in glucose levels. By 8 weeks of age, the percentage of bone loss in the LepR deficiency groups was significantly greater compared to WT mice. ERV1 overexpression in the db/db TG mice prevented early alveolar bone loss; however, it did not impact the development of diabetic bone loss in aging mice after the onset of weight gain and diabetes. CONCLUSIONS The findings suggest that the overexpression of ERV1 prevents LepR-associated alveolar bone loss during the early phases of periodontal disease by delaying weight gain, diabetes onset, and associated inflammation; however, LepR deficiency increases susceptibility to naturally occurring inflammatory alveolar bone loss as the animal ages, associated with excess weight gain, onset of diabetes, and excess inflammation.
Collapse
Affiliation(s)
- Lina J Suárez
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Universidad Nacional de Colombia, Bogotá, Colombia
| | - Hatice Hasturk
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Harvard University, Boston, Massachusetts, USA
| | | | | | - Thomas Van Dyke
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Harvard University, Boston, Massachusetts, USA
| | - Alpdogan Kantarci
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Sun W, Xing Y, Zhou F, Ma Y, Wan X, Ma H. Association Analysis of Triglyceride Glucose-Body Mass Index and Bone Turnover Markers in Patients with Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2023; 16:1435-1447. [PMID: 37229351 PMCID: PMC10203808 DOI: 10.2147/dmso.s406849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Objective In view of the high prevalence of osteoporosis in diabetic patients, this study aimed to investigate the correlation between TyG-BMI, which represents insulin resistance, and bone loss markers, which represent bone metabolism, in an attempt to provide new ideas for the early prevention and diagnosis of osteoporosis in patients with T2DM. Patients and Methods A total of 1148 T2DM were enrolled. The clinical data and laboratory indicators of the patients were collected. TyG-BMI was calculated based on fasting blood glucose (FBG), triglycerides (TG), and body mass index (BMI) levels. Patients were divided into Q1-Q4 groups according to TyG-BMI quartiles. According to gender, two groups were divided into men and postmenopausal women. Subgroup analysis was performed according to age, course of disease, BMI, TG level and 25(OH)D3 level. The correlation between TyG-BMI and BTMs was investigated by correlation analysis and multiple linear regression analysis using SPSS25.0 statistical software. Results 1. Compared with Q1 group, the proportion of OC, PINP and β-CTX in Q2, Q3 and Q4 groups decreased significantly. 2. Correlation analysis and multiple linear regression analysis showed that TYG-BMI was negatively correlated with OC, PINP and β-CTX in all patients and male patients. In postmenopausal women, TyG-BMI was negatively correlated with OC and β-CTX, but not with PINP. 3. Subgroup analysis of male patients and postmenopausal female patients according to age, course of disease, BMI, TG and 25(OH)D3 showed that TyG-BMI had a stronger negative correlation with BTMs in male patients with age < 65, disease duration < 10, BMI≥24, TG < 1.7, and 25(OH)D3≥20. Conclusion This study was the first to show an inverse association between TyG-BMI and BTMs in T2DM patients, suggesting that high TyG-BMI may be associated with impaired bone turnover.
Collapse
Affiliation(s)
- Wenwen Sun
- Graduate School of North China University of Science and Technology, Tangshan, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Yuling Xing
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Fei Zhou
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
- Graduate School of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Yingao Ma
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
- Graduate School of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Xiaozheng Wan
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
- Graduate School of Hebei North University, Zhangjiakou, People’s Republic of China
| | - Huijuan Ma
- Graduate School of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| |
Collapse
|
4
|
Song F, Lee WD, Marmo T, Ji X, Song C, Liao X, Seeley R, Yao L, Liu H, Long F. Osteoblast-intrinsic defect in glucose metabolism impairs bone formation in type II diabetic male mice. eLife 2023; 12:e85714. [PMID: 37144869 PMCID: PMC10198725 DOI: 10.7554/elife.85714] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/04/2023] [Indexed: 05/06/2023] Open
Abstract
Skeletal fragility is associated with type 2 diabetes mellitus (T2D), but the underlying mechanism is not well understood. Here, in a mouse model for youth-onset T2D, we show that both trabecular and cortical bone mass is reduced due to diminished osteoblast activity. Stable isotope tracing in vivo with 13C-glucose demonstrates that both glycolysis and glucose fueling of the TCA cycle are impaired in diabetic bones. Similarly, Seahorse assays show suppression of both glycolysis and oxidative phosphorylation by diabetes in bone marrow mesenchymal cells as a whole, whereas single-cell RNA sequencing reveals distinct modes of metabolic dysregulation among the subpopulations. Metformin not only promotes glycolysis and osteoblast differentiation in vitro, but also improves bone mass in diabetic mice. Finally, osteoblast-specific overexpression of either Hif1a, a general inducer of glycolysis, or Pfkfb3 which stimulates a specific step in glycolysis, averts bone loss in T2D mice. The study identifies osteoblast-intrinsic defects in glucose metabolism as an underlying cause of diabetic osteopenia, which may be targeted therapeutically.
Collapse
Affiliation(s)
- Fangfang Song
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan UniversityWuhanChina
| | - Won Dong Lee
- Lewis Sigler Institute for Integrative Genomics, Princeton UniversityPrincetonUnited States
| | - Tyler Marmo
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Xing Ji
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Chao Song
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Xueyang Liao
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Rebecca Seeley
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Lutian Yao
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Haoran Liu
- Department of Computer Science, New Jersey Institute of TechnologyNewarkUnited States
| | - Fanxin Long
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Deaprtment of Orthopedic Surgery, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
5
|
Song F, Lee WD, Marmo T, Ji X, Song C, Liao X, Seeley R, Yao L, Liu H, Long F. Osteoblast-intrinsic defect in glucose metabolism impairs bone formation in type II diabetic mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524248. [PMID: 36711657 PMCID: PMC9882117 DOI: 10.1101/2023.01.16.524248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Skeletal fragility is associated with type 2 diabetes mellitus (T2D), but the underlying mechanism is not well understood. Here, in a mouse model for youth-onset T2D, we show that both trabecular and cortical bone mass are reduced due to diminished osteoblast activity. Stable isotope tracing in vivo with 13 C-glucose demonstrates that both glycolysis and glucose fueling of the TCA cycle are impaired in diabetic bones. Similarly, Seahorse assays show suppression of both glycolysis and oxidative phosphorylation by diabetes in bone marrow mesenchymal cells as a whole, whereas single-cell RNA sequencing reveals distinct modes of metabolic dysregulation among the subpopulations. Metformin not only promotes glycolysis and osteoblast differentiation in vitro, but also improves bone mass in diabetic mice. Finally, targeted overexpression of Hif1a or Pfkfb3 in osteoblasts of T2D mice averts bone loss. The study identifies osteoblast-intrinsic defects in glucose metabolism as an underlying cause of diabetic osteopenia, which may be targeted therapeutically.
Collapse
Affiliation(s)
- Fangfang Song
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Won Dong Lee
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Tyler Marmo
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia
| | - Xing Ji
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia
| | - Chao Song
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia
| | - Xueyang Liao
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia
| | - Rebbeca Seeley
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia
| | - Lutian Yao
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia
| | - Haoran Liu
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Fanxin Long
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia
- Deaprtment of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|