1
|
Porter A, Fei S, Damme KSF, Nusslock R, Gratton C, Mittal VA. A meta-analysis and systematic review of single vs. multimodal neuroimaging techniques in the classification of psychosis. Mol Psychiatry 2023; 28:3278-3292. [PMID: 37563277 PMCID: PMC10618094 DOI: 10.1038/s41380-023-02195-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Psychotic disorders are characterized by structural and functional abnormalities in brain networks. Neuroimaging techniques map and characterize such abnormalities using unique features (e.g., structural integrity, coactivation). However, it is unclear if a specific method, or a combination of modalities, is particularly effective in identifying differences in brain networks of someone with a psychotic disorder. METHODS A systematic meta-analysis evaluated machine learning classification of schizophrenia spectrum disorders in comparison to healthy control participants using various neuroimaging modalities (i.e., T1-weighted imaging (T1), diffusion tensor imaging (DTI), resting state functional connectivity (rs-FC), or some combination (multimodal)). Criteria for manuscript inclusion included whole-brain analyses and cross-validation to provide a complete picture regarding the predictive ability of large-scale brain systems in psychosis. For this meta-analysis, we searched Ovid MEDLINE, PubMed, PsychInfo, Google Scholar, and Web of Science published between inception and March 13th 2023. Prediction results were averaged for studies using the same dataset, but parallel analyses were run that included studies with pooled sample across many datasets. We assessed bias through funnel plot asymmetry. A bivariate regression model determined whether differences in imaging modality, demographics, and preprocessing methods moderated classification. Separate models were run for studies with internal prediction (via cross-validation) and external prediction. RESULTS 93 studies were identified for quantitative review (30 T1, 9 DTI, 40 rs-FC, and 14 multimodal). As a whole, all modalities reliably differentiated those with schizophrenia spectrum disorders from controls (OR = 2.64 (95%CI = 2.33 to 2.95)). However, classification was relatively similar across modalities: no differences were seen across modalities in the classification of independent internal data, and a small advantage was seen for rs-FC studies relative to T1 studies in classification in external datasets. We found large amounts of heterogeneity across results resulting in significant signs of bias in funnel plots and Egger's tests. Results remained similar, however, when studies were restricted to those with less heterogeneity, with continued small advantages for rs-FC relative to structural measures. Notably, in all cases, no significant differences were seen between multimodal and unimodal approaches, with rs-FC and unimodal studies reporting largely overlapping classification performance. Differences in demographics and analysis or denoising were not associated with changes in classification scores. CONCLUSIONS The results of this study suggest that neuroimaging approaches have promise in the classification of psychosis. Interestingly, at present most modalities perform similarly in the classification of psychosis, with slight advantages for rs-FC relative to structural modalities in some specific cases. Notably, results differed substantially across studies, with suggestions of biased effect sizes, particularly highlighting the need for more studies using external prediction and large sample sizes. Adopting more rigorous and systematized standards will add significant value toward understanding and treating this critical population.
Collapse
Affiliation(s)
- Alexis Porter
- Department of Psychology, Northwestern University, Evanston, IL, USA.
| | - Sihan Fei
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Katherine S F Damme
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston and Chicago, IL, USA
| | - Robin Nusslock
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Caterina Gratton
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston and Chicago, IL, USA
- Department of Psychiatry, Northwestern University, Chicago, IL, USA
- Medical Social Sciences, Northwestern University, Chicago, IL, USA
- Institute for Policy Research, Northwestern University, Chicago, IL, USA
| |
Collapse
|
2
|
Solanes A, Radua J. Advances in Using MRI to Estimate the Risk of Future Outcomes in Mental Health - Are We Getting There? Front Psychiatry 2022; 13:fpsyt-13-826111. [PMID: 35492715 PMCID: PMC9039205 DOI: 10.3389/fpsyt.2022.826111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Aleix Solanes
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Psychiatry and Forensic Medicine, School of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Joaquim Radua
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Early Psychosis: Interventions and Clinical-detection Lab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Clinical Neuroscience, Stockholm Health Care Services, Stockholm County Council, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Zang J, Huang Y, Kong L, Lei B, Ke P, Li H, Zhou J, Xiong D, Li G, Chen J, Li X, Xiang Z, Ning Y, Wu F, Wu K. Effects of Brain Atlases and Machine Learning Methods on the Discrimination of Schizophrenia Patients: A Multimodal MRI Study. Front Neurosci 2021; 15:697168. [PMID: 34385901 PMCID: PMC8353157 DOI: 10.3389/fnins.2021.697168] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/07/2021] [Indexed: 11/24/2022] Open
Abstract
Recently, machine learning techniques have been widely applied in discriminative studies of schizophrenia (SZ) patients with multimodal magnetic resonance imaging (MRI); however, the effects of brain atlases and machine learning methods remain largely unknown. In this study, we collected MRI data for 61 first-episode SZ patients (FESZ), 79 chronic SZ patients (CSZ) and 205 normal controls (NC) and calculated 4 MRI measurements, including regional gray matter volume (GMV), regional homogeneity (ReHo), amplitude of low-frequency fluctuation and degree centrality. We systematically analyzed the performance of two classifications (SZ vs NC; FESZ vs CSZ) based on the combinations of three brain atlases, five classifiers, two cross validation methods and 3 dimensionality reduction algorithms. Our results showed that the groupwise whole-brain atlas with 268 ROIs outperformed the other two brain atlases. In addition, the leave-one-out cross validation was the best cross validation method to select the best hyperparameter set, but the classification performances by different classifiers and dimensionality reduction algorithms were quite similar. Importantly, the contributions of input features to both classifications were higher with the GMV and ReHo features of brain regions in the prefrontal and temporal gyri. Furthermore, an ensemble learning method was performed to establish an integrated model, in which classification performance was improved. Taken together, these findings indicated the effects of these factors in constructing effective classifiers for psychiatric diseases and showed that the integrated model has the potential to improve the clinical diagnosis and treatment evaluation of SZ.
Collapse
Affiliation(s)
- Jinyu Zang
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Yuanyuan Huang
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Lingyin Kong
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Bingye Lei
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Pengfei Ke
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Hehua Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Jing Zhou
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Dongsheng Xiong
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Guixiang Li
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China
- National Engineering Research Center for Healthcare Devices, Guangzhou, China
| | - Jun Chen
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China
- National Engineering Research Center for Healthcare Devices, Guangzhou, China
| | - Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Zhiming Xiang
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China
- Department of Radiology, Panyu Central Hospital of Guangzhou, Guangzhou, China
| | - Yuping Ning
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Fengchun Wu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Kai Wu
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China
- National Engineering Research Center for Healthcare Devices, Guangzhou, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, China
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
4
|
Lai JW, Ang CKE, Acharya UR, Cheong KH. Schizophrenia: A Survey of Artificial Intelligence Techniques Applied to Detection and Classification. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6099. [PMID: 34198829 PMCID: PMC8201065 DOI: 10.3390/ijerph18116099] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Artificial Intelligence in healthcare employs machine learning algorithms to emulate human cognition in the analysis of complicated or large sets of data. Specifically, artificial intelligence taps on the ability of computer algorithms and software with allowable thresholds to make deterministic approximate conclusions. In comparison to traditional technologies in healthcare, artificial intelligence enhances the process of data analysis without the need for human input, producing nearly equally reliable, well defined output. Schizophrenia is a chronic mental health condition that affects millions worldwide, with impairment in thinking and behaviour that may be significantly disabling to daily living. Multiple artificial intelligence and machine learning algorithms have been utilized to analyze the different components of schizophrenia, such as in prediction of disease, and assessment of current prevention methods. These are carried out in hope of assisting with diagnosis and provision of viable options for individuals affected. In this paper, we review the progress of the use of artificial intelligence in schizophrenia.
Collapse
Affiliation(s)
- Joel Weijia Lai
- Science, Mathematics and Technology, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore; (J.W.L.); (C.K.E.A.)
| | - Candice Ke En Ang
- Science, Mathematics and Technology, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore; (J.W.L.); (C.K.E.A.)
- MOH Holdings Pte Ltd, 1 Maritime Square, Singapore 099253, Singapore
| | - U. Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Clementi 599489, Singapore;
- Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Clementi 599491, Singapore
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| | - Kang Hao Cheong
- Science, Mathematics and Technology, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore; (J.W.L.); (C.K.E.A.)
| |
Collapse
|
5
|
Najafpour Z, Fatemi A, Goudarzi Z, Goudarzi R, Shayanfard K, Noorizadeh F. Cost-effectiveness of neuroimaging technologies in management of psychiatric and insomnia disorders: A meta-analysis and prospective cost analysis. J Neuroradiol 2021; 48:348-358. [PMID: 33383065 DOI: 10.1016/j.neurad.2020.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND The optimal diagnostic strategy for patients with psychiatric and insomnia disorders has not been established yet. PURPOSE The purpose of this study was to perform cost-effectiveness analysis of six neuroimaging technologies in diagnosis of patients with psychiatric and insomnia disorders. METHODS An economic evaluation study was conducted in three parts, including a systematic review for determining diagnostic accuracy, a descriptive cross-sectional study with Activity-Based Costing (ABC) technique for tracing resource consumption, and a cost-effectiveness analysis using a short-term decision-analytic model. RESULTS In the first phase, 93 diagnostic accuracy studies were included in the systematic review. The accumulated results (meta-analysis) showed that the highest diagnostic accuracy for psychiatric and insomnia disorders was attributed to PET (sensitivity of 90% and specificity of 80%) and MRI (sensitivity of 76% and specificity of 78%) respectively. In the second phase of the study, we calculated the cost of each technology. The results showed that MRI has the lowest cost. Based on the results in the model of cost-effectiveness sMRI ($ 50.08 per accurate diagnosis) and MRI ($ 58.54 per accurate diagnosis) were more cost-effective neuroimaging technologies. CONCLUSION In psychiatric disorders, no single strategy was characterized by both low cost and high accuracy. However, MRI and PET scan had lower cost and higher accuracy for psychiatric disorders, respectively. MRI was the least costly with the highest diagnostic accuracy in insomnia disorders. Based on our model, sMRI in psychiatric disorders and MRI in insomnia disorders were the most cost-effective technologies.
Collapse
Affiliation(s)
- Zhila Najafpour
- Department of Health Care Management, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Asieh Fatemi
- Dpartment of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Faculty of Paramedical sciences, Rafsanjan University of Medical Sciences, Iran.
| | - Zahra Goudarzi
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Reza Goudarzi
- Health Services Management Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran.
| | | | - Farsad Noorizadeh
- Basir Eye Health Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Rashid B, Calhoun V. Towards a brain-based predictome of mental illness. Hum Brain Mapp 2020; 41:3468-3535. [PMID: 32374075 PMCID: PMC7375108 DOI: 10.1002/hbm.25013] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 01/10/2023] Open
Abstract
Neuroimaging-based approaches have been extensively applied to study mental illness in recent years and have deepened our understanding of both cognitively healthy and disordered brain structure and function. Recent advancements in machine learning techniques have shown promising outcomes for individualized prediction and characterization of patients with psychiatric disorders. Studies have utilized features from a variety of neuroimaging modalities, including structural, functional, and diffusion magnetic resonance imaging data, as well as jointly estimated features from multiple modalities, to assess patients with heterogeneous mental disorders, such as schizophrenia and autism. We use the term "predictome" to describe the use of multivariate brain network features from one or more neuroimaging modalities to predict mental illness. In the predictome, multiple brain network-based features (either from the same modality or multiple modalities) are incorporated into a predictive model to jointly estimate features that are unique to a disorder and predict subjects accordingly. To date, more than 650 studies have been published on subject-level prediction focusing on psychiatric disorders. We have surveyed about 250 studies including schizophrenia, major depression, bipolar disorder, autism spectrum disorder, attention-deficit hyperactivity disorder, obsessive-compulsive disorder, social anxiety disorder, posttraumatic stress disorder, and substance dependence. In this review, we present a comprehensive review of recent neuroimaging-based predictomic approaches, current trends, and common shortcomings and share our vision for future directions.
Collapse
Affiliation(s)
- Barnaly Rashid
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
| | - Vince Calhoun
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
7
|
Clementz BA, Trotti RL, Pearlson GD, Keshavan MS, Gershon ES, Keedy SK, Ivleva EI, McDowell JE, Tamminga CA. Testing Psychosis Phenotypes From Bipolar-Schizophrenia Network for Intermediate Phenotypes for Clinical Application: Biotype Characteristics and Targets. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:808-818. [PMID: 32600898 DOI: 10.1016/j.bpsc.2020.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Psychiatry aspires to the molecular understanding of its disorders and, with that knowledge, to precision medicine. Research supporting such goals in the dimension of psychosis has been compromised, in part, by using phenomenology alone to estimate disease entities. To this end, we are proponents of a deep phenotyping approach in psychosis, using computational strategies to discover the most informative phenotypic fingerprint as a promising strategy to uncover mechanisms in psychosis. METHODS Doing this, the Bipolar-Schizophrenia Network for Intermediate Phenotypes (B-SNIP) has used biomarkers to identify distinct subtypes of psychosis with replicable biomarker characteristics. While we have presented these entities as relevant, their potential utility in clinical practice has not yet been demonstrated. RESULTS Here we carried out an analysis of clinical features that characterize biotypes. We found that biotypes have unique and defining clinical characteristics that could be used as initial screens in the clinical and research settings. Differences in these clinical features appear to be consistent with biotype biomarker profiles, indicating a link between biological features and clinical presentation. Clinical features associated with biotypes differ from those associated with DSM diagnoses, indicating that biotypes and DSM syndromes are not redundant and are likely to yield different treatment predictions. We highlight 3 predictions based on biotype that are derived from individual biomarker features and cannot be obtained from DSM psychosis syndromes. CONCLUSIONS In the future, biotypes may prove to be useful for targeting distinct molecular, circuit, cognitive, and psychosocial therapies for improved functional outcomes.
Collapse
Affiliation(s)
- Brett A Clementz
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, Georgia
| | - Rebekah L Trotti
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, Georgia
| | - Godfrey D Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, Connecticut; Department of Psychiatry, Yale University, New Haven, Connecticut
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess, Harvard Medical School, Boston, Massachusetts
| | - Elliot S Gershon
- Department of Psychiatry, University of Chicago, Chicago, Illinois
| | - Sarah K Keedy
- Department of Psychiatry, University of Chicago, Chicago, Illinois
| | - Elena I Ivleva
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jennifer E McDowell
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, Georgia
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
8
|
Ruan H, Luo Q, Palaniyappan L, Lu W, Huang CC, Zac Lo CY, Yang AC, Liu ME, Tsai SJ, Lin CP, Feng J. Topographic diversity of structural connectivity in schizophrenia. Schizophr Res 2020; 215:181-189. [PMID: 31706787 DOI: 10.1016/j.schres.2019.10.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 09/17/2019] [Accepted: 10/12/2019] [Indexed: 10/25/2022]
Abstract
The neurobiological heterogeneity of schizophrenia is widely accepted, but it is unclear how mechanistic differences converge to produce the observed phenotype. Establishing a pathophysiological model that accounts for both neurobiological heterogeneity and phenotypic similarity is essential to inform stratified treatment approaches. In this cross-sectional diffusion tensor imaging study, we recruited 77 healthy controls, and 70 patients with DSM-IV diagnosis of schizophrenia. We first confirmed the heterogeneity in structural connectivity by showing a reduced between-individual similarity of the structural connectivity in patients compared to healthy controls. Second, at a system level, we found the diversity of the topographic distribution of the strength of structural connectivity was significantly reduced in patients (P = 7.21 × 10-7, T142 = 5.19 [95% CI: 3.37-7.52], Cohen's d = 0.91), and this affected 65 of the 90 brain regions examined (False Discovery Rate <5%). Third, when topographic diversity was used as a discriminant feature to train a model for classifying patients from controls, it significantly improved the accuracy on an independent sample (T99 = 5.54; P < 0.001). These findings suggest a highly individualized pattern of structural dysconnectivity underlies the heterogeneity of schizophrenia, but these disruptions likely converge on an emergent common pathway to generate the clinical phenotype of the disorder.
Collapse
Affiliation(s)
- Hongtao Ruan
- School of Mathematical Sciences, Fudan University, Shanghai, China
| | - Qiang Luo
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China and Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China; Department of Psychology and the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science and Human Phenome Institute, Fudan University, Shanghai, China.
| | - Lena Palaniyappan
- Departments of Psychiatry &Medical Biophysics, University of Western Ontario, London, Canada; Robarts Research Institute & Lawson Health Research Institute, London, Canada
| | - Wenlian Lu
- School of Mathematical Sciences, Fudan University, Shanghai, China
| | - Chu-Chung Huang
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Yi Zac Lo
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China and Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Albert C Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Mu-En Liu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Jianfeng Feng
- School of Mathematical Sciences, Fudan University, Shanghai, China; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China and Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China; Shanghai Center for Mathematical Sciences, Shanghai, China; Department of Computer Science, University of Warwick, Coventry, UK; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Ebdrup BH, Axelsen MC, Bak N, Fagerlund B, Oranje B, Raghava JM, Nielsen MØ, Rostrup E, Hansen LK, Glenthøj BY. Accuracy of diagnostic classification algorithms using cognitive-, electrophysiological-, and neuroanatomical data in antipsychotic-naïve schizophrenia patients. Psychol Med 2019; 49:2754-2763. [PMID: 30560750 PMCID: PMC6877469 DOI: 10.1017/s0033291718003781] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND A wealth of clinical studies have identified objective biomarkers, which separate schizophrenia patients from healthy controls on a group level, but current diagnostic systems solely include clinical symptoms. In this study, we investigate if machine learning algorithms on multimodal data can serve as a framework for clinical translation. METHODS Forty-six antipsychotic-naïve, first-episode schizophrenia patients and 58 controls underwent neurocognitive tests, electrophysiology, and magnetic resonance imaging (MRI). Patients underwent clinical assessments before and after 6 weeks of antipsychotic monotherapy with amisulpride. Nine configurations of different supervised machine learning algorithms were applied to first estimate the unimodal diagnostic accuracy, and next to estimate the multimodal diagnostic accuracy. Finally, we explored the predictability of symptom remission. RESULTS Cognitive data significantly classified patients from controls (accuracies = 60-69%; p values = 0.0001-0.009). Accuracies of electrophysiology, structural MRI, and diffusion tensor imaging did not exceed chance level. Multimodal analyses with cognition plus any combination of one or more of the remaining three modalities did not outperform cognition alone. None of the modalities predicted symptom remission. CONCLUSIONS In this multivariate and multimodal study in antipsychotic-naïve patients, only cognition significantly discriminated patients from controls, and no modality appeared to predict short-term symptom remission. Overall, these findings add to the increasing call for cognition to be included in the definition of schizophrenia. To bring about the full potential of machine learning algorithms in first-episode, antipsychotic-naïve schizophrenia patients, careful a priori variable selection based on independent data as well as inclusion of other modalities may be required.
Collapse
Affiliation(s)
- Bjørn H. Ebdrup
- Centre for Neuropsychiatric Schizophrenia Research & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Martin C. Axelsen
- Centre for Neuropsychiatric Schizophrenia Research & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark
- Cognitive Systems, DTU Compute, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nikolaj Bak
- Centre for Neuropsychiatric Schizophrenia Research & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Fagerlund
- Centre for Neuropsychiatric Schizophrenia Research & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Bob Oranje
- Centre for Neuropsychiatric Schizophrenia Research & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jayachandra M. Raghava
- Centre for Neuropsychiatric Schizophrenia Research & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| | - Mette Ø. Nielsen
- Centre for Neuropsychiatric Schizophrenia Research & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Egill Rostrup
- Centre for Neuropsychiatric Schizophrenia Research & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Lars K. Hansen
- Cognitive Systems, DTU Compute, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Birte Y. Glenthøj
- Centre for Neuropsychiatric Schizophrenia Research & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Winterburn JL, Voineskos AN, Devenyi GA, Plitman E, de la Fuente-Sandoval C, Bhagwat N, Graff-Guerrero A, Knight J, Chakravarty MM. Can we accurately classify schizophrenia patients from healthy controls using magnetic resonance imaging and machine learning? A multi-method and multi-dataset study. Schizophr Res 2019; 214:3-10. [PMID: 29274736 DOI: 10.1016/j.schres.2017.11.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 10/18/2022]
Abstract
Machine learning is a powerful tool that has previously been used to classify schizophrenia (SZ) patients from healthy controls (HC) using magnetic resonance images. Each study, however, uses different datasets, classification algorithms, and validation techniques. Here, we perform a critical appraisal of the accuracy of machine learning methodologies used in SZ/HC classifications studies by comparing three machine learning algorithms (logistic regression [LR], support vector machines [SVMs], and linear discriminant analysis [LDA]) on three independent datasets (435 subjects total) using two tissue density estimates and cortical thickness (CT). Performance is assessed using 10-fold cross-validation, as well as a held-out validation set. Classification using CT outperformed tissue densities, but there was no clear effect of dataset. LR, SVMs, and LDA each yielded the highest accuracies for a different feature set and validation paradigm, but most accuracies were between 55 and 70%, well below previously reported values. The highest accuracy achieved was 73.5% using CT data and an SVM. Taken together, these results illustrate some of the obstacles to constructing effective disease classifiers, and suggest that tissue densities and CT may not be sufficiently sensitive for SZ/HC classification given current available methodologies and sample sizes.
Collapse
Affiliation(s)
- Julie L Winterburn
- Computational Brain Anatomy Laboratory, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Kimel Family Translational Imaging-Genetics Research Lab, Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | - Aristotle N Voineskos
- Kimel Family Translational Imaging-Genetics Research Lab, Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Gabriel A Devenyi
- Computational Brain Anatomy Laboratory, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Eric Plitman
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Camilo de la Fuente-Sandoval
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico; Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Nikhil Bhagwat
- Computational Brain Anatomy Laboratory, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Kimel Family Translational Imaging-Genetics Research Lab, Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Ariel Graff-Guerrero
- Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Jo Knight
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Data Science Institute and Medical School, Lancaster University, Bailrigg, United Kingdom
| | - M Mallar Chakravarty
- Computational Brain Anatomy Laboratory, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
11
|
Rozycki M, Satterthwaite TD, Koutsouleris N, Erus G, Doshi J, Wolf DH, Fan Y, Gur RE, Gur RC, Meisenzahl EM, Zhuo C, Yin H, Yan H, Yue W, Zhang D, Davatzikos C. Multisite Machine Learning Analysis Provides a Robust Structural Imaging Signature of Schizophrenia Detectable Across Diverse Patient Populations and Within Individuals. Schizophr Bull 2018; 44:1035-1044. [PMID: 29186619 PMCID: PMC6101559 DOI: 10.1093/schbul/sbx137] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Past work on relatively small, single-site studies using regional volumetry, and more recently machine learning methods, has shown that widespread structural brain abnormalities are prominent in schizophrenia. However, to be clinically useful, structural imaging biomarkers must integrate high-dimensional data and provide reproducible results across clinical populations and on an individual person basis. Using advanced multi-variate analysis tools and pooled data from case-control imaging studies conducted at 5 sites (941 adult participants, including 440 patients with schizophrenia), a neuroanatomical signature of patients with schizophrenia was found, and its robustness and reproducibility across sites, populations, and scanners, was established for single-patient classification. Analyses were conducted at multiple scales, including regional volumes, voxelwise measures, and complex distributed patterns. Single-subject classification was tested for single-site, pooled-site, and leave-site-out generalizability. Regional and voxelwise analyses revealed a pattern of widespread reduced regional gray matter volume, particularly in the medial prefrontal, temporolimbic and peri-Sylvian cortex, along with ventricular and pallidum enlargement. Multivariate classification using pooled data achieved a cross-validated prediction accuracy of 76% (AUC = 0.84). Critically, the leave-site-out validation of the detected schizophrenia signature showed accuracy/AUC range of 72-77%/0.73-0.91, suggesting a robust generalizability across sites and patient cohorts. Finally, individualized patient classifications displayed significant correlations with clinical measures of negative, but not positive, symptoms. Taken together, these results emphasize the potential for structural neuroimaging data to provide a robust and reproducible imaging signature of schizophrenia. A web-accessible portal is offered to allow the community to obtain individualized classifications of magnetic resonance imaging scans using the methods described herein.
Collapse
Affiliation(s)
- Martin Rozycki
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Theodore D Satterthwaite
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Brain Behavior Laboratory, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Guray Erus
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Jimit Doshi
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Daniel H Wolf
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Brain Behavior Laboratory, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Raquel E Gur
- Brain Behavior Laboratory, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Ruben C Gur
- Brain Behavior Laboratory, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Eva M Meisenzahl
- Department of Psychiatry and Psychotherapy, Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | | | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hao Yan
- Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Sixth Hospital, Peking University, Beijing, China
| | - Weihua Yue
- Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Sixth Hospital, Peking University, Beijing, China
| | - Dai Zhang
- Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Sixth Hospital, Peking University, Beijing, China
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,To whom correspondence should be addressed; University of Pennsylvania, Richards Building, 7th Floor, 3700 Hamilton Walk, Philadelphia, PA 19104; tel: 215-746-4067, fax: 215-746-4060, e-mail:
| |
Collapse
|
12
|
Panton KR, Badcock JC, Dickinson JE, Badcock DR. Poorer Search Efficiency in Healthy Young Adults With High Schizotypal Personality Traits. Front Psychiatry 2018; 9:285. [PMID: 30050472 PMCID: PMC6052133 DOI: 10.3389/fpsyt.2018.00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/12/2018] [Indexed: 11/13/2022] Open
Abstract
Perceptual organization (PO) difficulties have repeatedly been reported in people with schizophrenia, and in healthy individuals with high levels of schizotypy traits, who are at increased risk for schizophrenia. In particular, poor performance on the Embedded Figures Test (EFT) has been interpreted as an atypically strong preference for global over local processing, even though these processes cannot be clearly disambiguated on this test. Here we use two separate versions of the Radial Frequency Search Task (RFST), a new index of PO abilities, to selectively investigate global and local processing of shape information in trait schizotypy. Schizotypy traits were assessed using the Wisconsin Schizotypy Scales-Brief. Individuals selected for high and low levels of positive schizotypy [assessed with the Wisconsin Schizotypy Scales-Brief Perceptual Aberration (PAb) scale] completed the EFT, along with the Global RFST and the Local RFST, all of which require participants to find a target shape amongst distractor elements. The High PAb group (n = 83) were less efficient (i.e., reactions times slowed more as the set size increased) than the Low PAb group (n = 146) on the Global RFST (significant group differences for Target Absent conditions only), but not the Local RFST. High and Low PAb groups also differed on other schizotypy traits, so the specificity of the results to positive schizotypy cannot be assured. Unexpectedly, no group differences were observed on the EFT; however, there was a small, but significant, positive correlation between RFST search efficiency and EFT performance, indicating that they shared some common processes. Overall, the pattern of results suggests that global (but not local) processing difficulties may be contributing to the poorer perceptual organization observed in groups with high levels of schizotypy traits. In addition, the confinement of this result to the Target Absent condition suggests that the underlying mechanism involves differences in decisional processes on the RFST between high and low schizotypy groups. The RFST shows promise as a useful tool for measuring specific perceptual organization abilities in non-clinical, and potentially clinical, samples.
Collapse
Affiliation(s)
- Kirsten R. Panton
- Human Vision Laboratory, School of Psychological Science, University of Western Australia, Perth, WA, Australia
| | - Johanna C. Badcock
- Division of Psychiatry, Faculty of Health and Medical Sciences, Centre for Clinical Research in Neuropsychiatry, University of Western Australia, Perth, WA, Australia
- Cooperative Research Centre - Mental Health, Carlton, VIC, Australia
| | - J. Edwin Dickinson
- Human Vision Laboratory, School of Psychological Science, University of Western Australia, Perth, WA, Australia
| | - David R. Badcock
- Human Vision Laboratory, School of Psychological Science, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
13
|
Lee J, Chon MW, Kim H, Rathi Y, Bouix S, Shenton ME, Kubicki M. Diagnostic value of structural and diffusion imaging measures in schizophrenia. NEUROIMAGE-CLINICAL 2018; 18:467-474. [PMID: 29876254 PMCID: PMC5987843 DOI: 10.1016/j.nicl.2018.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 12/24/2022]
Abstract
Objectives Many studies have attempted to discriminate patients with schizophrenia from healthy controls by machine learning using structural or functional MRI. We included both structural and diffusion MRI (dMRI) and performed random forest (RF) and support vector machine (SVM) in this study. Methods We evaluated the performance of classifying schizophrenia using RF method and SVM with 504 features (volume and/or fractional anisotropy and trace) from 184 brain regions. We enrolled 47 patients and 23 age- and sex-matched healthy controls and resampled our data into a balanced dataset using a Synthetic Minority Oversampling Technique method. We randomly permuted the classification of all participants as a patient or healthy control 100 times and ran the RF and SVM with leave one out cross validation for each permutation. We then compared the sensitivity and specificity of the original dataset and the permuted dataset. Results Classification using RF with 504 features showed a significantly higher rate of performance compared to classification by chance: sensitivity (87.6% vs. 47.0%) and specificity (95.9 vs. 48.4%) performed by RF, sensitivity (89.5% vs. 48.0%) and specificity (94.5% vs. 47.1%) performed by SVM. Conclusions Machine learning using RF and SVM with both volume and diffusion measures can discriminate patients with schizophrenia with a high degree of performance. Further replications are required.
Collapse
Affiliation(s)
- Jungsun Lee
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Myong-Wuk Chon
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Harin Kim
- Department of psychiatry, Korean Armed Forces Capital Hospital, Bundang-gu, Republic of Korea
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Brockton Division, Brockton, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Guo S, Huang CC, Zhao W, Yang AC, Lin CP, Nichols T, Tsai SJ. Combining multi-modality data for searching biomarkers in schizophrenia. PLoS One 2018; 13:e0191202. [PMID: 29389986 PMCID: PMC5794071 DOI: 10.1371/journal.pone.0191202] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/30/2017] [Indexed: 12/21/2022] Open
Abstract
Identification of imaging biomarkers for schizophrenia is an important but still challenging problem. Even though considerable efforts have been made over the past decades, quantitative alterations between patients and healthy subjects have not yet provided a diagnostic measure with sufficient high sensitivity and specificity. One of the most important reasons is the lack of consistent findings, which is in part due to single-mode study, which only detects single dimensional information by each modality, and thus misses the most crucial differences between groups. Here, we hypothesize that multimodal integration of functional MRI (fMRI), structural MRI (sMRI), and diffusion tensor imaging (DTI) might yield more power for the diagnosis of schizophrenia. A novel multivariate data fusion method for combining these modalities is introduced without reducing the dimension or using the priors from 161 schizophrenia patients and 168 matched healthy controls. The multi-index feature for each ROI is constructed and summarized with Wilk's lambda by performing multivariate analysis of variance to calculate the significant difference between different groups. Our results show that, among these modalities, fMRI has the most significant featureby calculating the Jaccard similarity coefficient (0.7416) and Kappa index (0.4833). Furthermore, fusion of these modalities provides the most plentiful information and the highest predictive accuracy of 86.52%. This work indicates that multimodal integration can improve the ability of distinguishing differences between groups and might be assisting in further diagnosis of schizophrenia.
Collapse
Affiliation(s)
- Shuixia Guo
- College of Mathematics and Computer Science, Key Laboratory of High Performance Computing and Stochastic Information Processing (Ministry of Education of China), Hunan Normal University, Changsha, P. R. China
| | - Chu-Chung Huang
- Aging and Health Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Wei Zhao
- College of Mathematics and Computer Science, Key Laboratory of High Performance Computing and Stochastic Information Processing (Ministry of Education of China), Hunan Normal University, Changsha, P. R. China
| | - Albert C. Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, United States of America
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Po Lin
- Aging and Health Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Thomas Nichols
- Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
15
|
Hunter SA, Lawrie SM. Imaging and Genetic Biomarkers Predicting Transition to Psychosis. Curr Top Behav Neurosci 2018; 40:353-388. [PMID: 29626338 DOI: 10.1007/7854_2018_46] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The search for diagnostic and prognostic biomarkers in schizophrenia care and treatment is the focus of many within the research community. Longitudinal cohorts of patients presenting at elevated genetic and clinical risk have provided a wealth of data that has informed our understanding of the development of schizophrenia and related psychotic disorders.Imaging follow-up of high-risk cohorts has demonstrated changes in cerebral grey matter of those that eventually transition to schizophrenia that predate the onset of symptoms and evolve over the course of illness. Longitudinal follow-up studies demonstrate that observed grey matter changes can be employed to differentiate those who will transition to schizophrenia from those who will not prior to the onset of the disorder.In recent years our understanding of the genetic makeup of schizophrenia has advanced significantly. The development of modern analysis techniques offers researchers the ability to objectively quantify genetic risk; these have been successfully applied within a high-risk paradigm to assist in differentiating between high-risk individuals who will subsequently become unwell and those who will not.This chapter will discuss the application of imaging and genetic biomarkers within high-risk groups to predict future transition to schizophrenia and related psychotic disorders. We aim to provide an overview of current approaches focussing on grey matter changes that are predictive of future transition to illness, the developing field of genetic risk scores and other methods being developed to aid clinicians in diagnosis and prognosis.
Collapse
Affiliation(s)
- Stuart A Hunter
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK.
| | - Stephen M Lawrie
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
16
|
Zarogianni E, Storkey AJ, Johnstone EC, Owens DGC, Lawrie SM. Improved individualized prediction of schizophrenia in subjects at familial high risk, based on neuroanatomical data, schizotypal and neurocognitive features. Schizophr Res 2017; 181:6-12. [PMID: 27613509 DOI: 10.1016/j.schres.2016.08.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/29/2016] [Accepted: 08/29/2016] [Indexed: 01/11/2023]
Abstract
To date, there are no reliable markers for predicting onset of schizophrenia in individuals at high risk (HR). Substantial promise is, however, shown by a variety of pattern classification approaches to neuroimaging data. Here, we examined the predictive accuracy of support vector machine (SVM) in later diagnosing schizophrenia, at a single-subject level, using a cohort of HR individuals drawn from multiply affected families and a combination of neuroanatomical, schizotypal and neurocognitive variables. Baseline structural magnetic resonance imaging (MRI), schizotypal and neurocognitive data from 17 HR subjects, who subsequently developed schizophrenia and a matched group of 17 HR subjects who did not make the transition, yet had psychotic symptoms, were included in the analysis. We employed recursive feature elimination (RFE), in a nested cross-validation scheme to identify the most significant predictors of disease transition and enhance diagnostic performance. Classification accuracy was 94% when a self-completed measure of schizotypy, a declarative memory test and structural MRI data were combined into a single learning algorithm; higher than when either quantitative measure was used alone. The discriminative neuroanatomical pattern involved gray matter volume differences in frontal, orbito-frontal and occipital lobe regions bilaterally as well as parts of the superior, medial temporal lobe and cerebellar regions. Our findings suggest that an early SVM-based prediction of schizophrenia is possible and can be improved by combining schizotypal and neurocognitive features with neuroanatomical variables. However, our predictive model needs to be tested by classifying a new, independent HR cohort in order to estimate its validity.
Collapse
Affiliation(s)
- Eleni Zarogianni
- Division of Psychiatry, School of Clinical Sciences, University of Edinburgh, The Royal Edinburgh Hospital, Morningside Park, UK.
| | - Amos J Storkey
- Institute for Adaptive and Neural Computation, University of Edinburgh, UK
| | - Eve C Johnstone
- Division of Psychiatry, School of Clinical Sciences, University of Edinburgh, The Royal Edinburgh Hospital, Morningside Park, UK
| | - David G C Owens
- Division of Psychiatry, School of Clinical Sciences, University of Edinburgh, The Royal Edinburgh Hospital, Morningside Park, UK
| | - Stephen M Lawrie
- Division of Psychiatry, School of Clinical Sciences, University of Edinburgh, The Royal Edinburgh Hospital, Morningside Park, UK
| |
Collapse
|
17
|
Rikandi E, Pamilo S, Mäntylä T, Suvisaari J, Kieseppä T, Hari R, Seppä M, Raij TT. Precuneus functioning differentiates first-episode psychosis patients during the fantasy movie Alice in Wonderland. Psychol Med 2017; 47:495-506. [PMID: 27776563 DOI: 10.1017/s0033291716002609] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND While group-level functional alterations have been identified in many brain regions of psychotic patients, multivariate machine-learning methods provide a tool to test whether some of such alterations could be used to differentiate an individual patient. Earlier machine-learning studies have focused on data collected from chronic patients during rest or simple tasks. We set out to unravel brain activation patterns during naturalistic stimulation in first-episode psychosis (FEP). METHOD We recorded brain activity from 46 FEP patients and 32 control subjects viewing scenes from the fantasy film Alice in Wonderland. Scenes with varying degrees of fantasy were selected based on the distortion of the 'sense of reality' in psychosis. After cleaning the data with a novel maxCorr method, we used machine learning to classify patients and healthy control subjects on the basis of voxel- and time-point patterns. RESULTS Most (136/194) of the voxels that best classified the groups were clustered in a bilateral region of the precuneus. Classification accuracies were up to 79.5% (p = 5.69 × 10-8), and correct classification was more likely the higher the patient's positive-symptom score. Precuneus functioning was related to the fantasy content of the movie, and the relationship was stronger in control subjects than patients. CONCLUSIONS These findings are the first to show abnormalities in precuneus functioning during naturalistic information processing in FEP patients. Correlational findings suggest that these alterations are associated with positive psychotic symptoms and processing of fantasy. The results may provide new insights into the neuronal basis of reality distortion in psychosis.
Collapse
Affiliation(s)
- E Rikandi
- Mental Health Unit,National Institute for Health and Welfare,Helsinki,Finland
| | - S Pamilo
- Department of Neuroscience and Biomedical Engineering, andAdvanced Magnetic Imaging Centre,Aalto NeuroImaging,Aalto University School of Science,Espoo,Finland
| | - T Mäntylä
- Mental Health Unit,National Institute for Health and Welfare,Helsinki,Finland
| | - J Suvisaari
- Mental Health Unit,National Institute for Health and Welfare,Helsinki,Finland
| | - T Kieseppä
- Mental Health Unit,National Institute for Health and Welfare,Helsinki,Finland
| | - R Hari
- Department of Neuroscience and Biomedical Engineering, andAdvanced Magnetic Imaging Centre,Aalto NeuroImaging,Aalto University School of Science,Espoo,Finland
| | - M Seppä
- Department of Neuroscience and Biomedical Engineering, andAdvanced Magnetic Imaging Centre,Aalto NeuroImaging,Aalto University School of Science,Espoo,Finland
| | - T T Raij
- Department of Neuroscience and Biomedical Engineering, andAdvanced Magnetic Imaging Centre,Aalto NeuroImaging,Aalto University School of Science,Espoo,Finland
| |
Collapse
|
18
|
Pergola G, Trizio S, Di Carlo P, Taurisano P, Mancini M, Amoroso N, Nettis MA, Andriola I, Caforio G, Popolizio T, Rampino A, Di Giorgio A, Bertolino A, Blasi G. Grey matter volume patterns in thalamic nuclei are associated with familial risk for schizophrenia. Schizophr Res 2017; 180:13-20. [PMID: 27449252 DOI: 10.1016/j.schres.2016.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 12/19/2022]
Abstract
Previous evidence suggests reduced thalamic grey matter volume (GMV) in patients with schizophrenia (SCZ). However, it is not considered an intermediate phenotype for schizophrenia, possibly because previous studies did not assess the contribution of individual thalamic nuclei and employed univariate statistics. Here, we hypothesized that multivariate statistics would reveal an association of GMV in different thalamic nuclei with familial risk for schizophrenia. We also hypothesized that accounting for the heterogeneity of thalamic GMV in healthy controls would improve the detection of subjects at familial risk for the disorder. We acquired MRI scans for 96 clinically stable SCZ, 55 non-affected siblings of patients with schizophrenia (SIB), and 249 HC. The thalamus was parceled into seven regions of interest (ROIs). After a canonical univariate analysis, we used GMV estimates of thalamic ROIs, together with total thalamic GMV and premorbid intelligence, as features in Random Forests to classify HC, SIB, and SCZ. Then, we computed a Misclassification Index for each individual and tested the improvement in SIB detection after excluding a subsample of HC misclassified as patients. Random Forests discriminated SCZ from HC (accuracy=81%) and SIB from HC (accuracy=75%). Left anteromedial thalamic volumes were significantly associated with both multivariate classifications (p<0.05). Excluding HC misclassified as SCZ improved greatly HC vs. SIB classification (Cohen's d=1.39). These findings suggest that multivariate statistics identify a familial background associated with thalamic GMV reduction in SCZ. They also suggest the relevance of inter-individual variability of GMV patterns for the discrimination of individuals at familial risk for the disorder.
Collapse
Affiliation(s)
- Giulio Pergola
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Silvestro Trizio
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Pasquale Di Carlo
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Paolo Taurisano
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Marina Mancini
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Nicola Amoroso
- National Institute of Nuclear of Physics-Branch of Bari, Via E. Orabona 4, 70125 Bari, Italy; Interuniversity Department of Physics 'M. Merlin', University of Bari 'Aldo Moro', Via E. Orabona 4, 70125 Bari, Italy
| | - Maria Antonietta Nettis
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Ileana Andriola
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Grazia Caforio
- Psychiatry Unit, Bari University Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Teresa Popolizio
- IRCCS "Casa Sollievo della Sofferenza", Viale Cappuccini, 1, I-71013 San Giovanni Rotondo, Italy
| | - Antonio Rampino
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy; Psychiatry Unit, Bari University Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Annabella Di Giorgio
- IRCCS "Casa Sollievo della Sofferenza", Viale Cappuccini, 1, I-71013 San Giovanni Rotondo, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy; Psychiatry Unit, Bari University Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Giuseppe Blasi
- Psychiatry Unit, Bari University Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy; IRCCS "Casa Sollievo della Sofferenza", Viale Cappuccini, 1, I-71013 San Giovanni Rotondo, Italy.
| |
Collapse
|
19
|
Arbabshirani MR, Plis S, Sui J, Calhoun VD. Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. Neuroimage 2017; 145:137-165. [PMID: 27012503 PMCID: PMC5031516 DOI: 10.1016/j.neuroimage.2016.02.079] [Citation(s) in RCA: 552] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 02/03/2016] [Accepted: 02/25/2016] [Indexed: 01/18/2023] Open
Abstract
Neuroimaging-based single subject prediction of brain disorders has gained increasing attention in recent years. Using a variety of neuroimaging modalities such as structural, functional and diffusion MRI, along with machine learning techniques, hundreds of studies have been carried out for accurate classification of patients with heterogeneous mental and neurodegenerative disorders such as schizophrenia and Alzheimer's disease. More than 500 studies have been published during the past quarter century on single subject prediction focused on a multiple brain disorders. In the first part of this study, we provide a survey of more than 200 reports in this field with a focus on schizophrenia, mild cognitive impairment (MCI), Alzheimer's disease (AD), depressive disorders, autism spectrum disease (ASD) and attention-deficit hyperactivity disorder (ADHD). Detailed information about those studies such as sample size, type and number of extracted features and reported accuracy are summarized and discussed. To our knowledge, this is by far the most comprehensive review of neuroimaging-based single subject prediction of brain disorders. In the second part, we present our opinion on major pitfalls of those studies from a machine learning point of view. Common biases are discussed and suggestions are provided. Moreover, emerging trends such as decentralized data sharing, multimodal brain imaging, differential diagnosis, disease subtype classification and deep learning are also discussed. Based on this survey, there is extensive evidence showing the great potential of neuroimaging data for single subject prediction of various disorders. However, the main bottleneck of this exciting field is still the limited sample size, which could be potentially addressed by modern data sharing models such as the ones discussed in this paper. Emerging big data technologies and advanced data-intensive machine learning methodologies such as deep learning have coincided with an increasing need for accurate, robust and generalizable single subject prediction of brain disorders during an exciting time. In this report, we survey the past and offer some opinions regarding the road ahead.
Collapse
Affiliation(s)
- Mohammad R Arbabshirani
- The Mind Research Network, Albuquerque, NM 87106, USA; Geisinger Health System, Danville, PA 17822, USA
| | - Sergey Plis
- The Mind Research Network, Albuquerque, NM 87106, USA
| | - Jing Sui
- The Mind Research Network, Albuquerque, NM 87106, USA; Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM 87106, USA; Department of ECE, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
20
|
Janousova E, Montana G, Kasparek T, Schwarz D. Supervised, Multivariate, Whole-Brain Reduction Did Not Help to Achieve High Classification Performance in Schizophrenia Research. Front Neurosci 2016; 10:392. [PMID: 27610072 PMCID: PMC4997127 DOI: 10.3389/fnins.2016.00392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 08/10/2016] [Indexed: 01/20/2023] Open
Abstract
We examined how penalized linear discriminant analysis with resampling, which is a supervised, multivariate, whole-brain reduction technique, can help schizophrenia diagnostics and research. In an experiment with magnetic resonance brain images of 52 first-episode schizophrenia patients and 52 healthy controls, this method allowed us to select brain areas relevant to schizophrenia, such as the left prefrontal cortex, the anterior cingulum, the right anterior insula, the thalamus, and the hippocampus. Nevertheless, the classification performance based on such reduced data was not significantly better than the classification of data reduced by mass univariate selection using a t-test or unsupervised multivariate reduction using principal component analysis. Moreover, we found no important influence of the type of imaging features, namely local deformations or gray matter volumes, and the classification method, specifically linear discriminant analysis or linear support vector machines, on the classification results. However, we ascertained significant effect of a cross-validation setting on classification performance as classification results were overestimated even though the resampling was performed during the selection of brain imaging features. Therefore, it is critically important to perform cross-validation in all steps of the analysis (not only during classification) in case there is no external validation set to avoid optimistically biasing the results of classification studies.
Collapse
Affiliation(s)
- Eva Janousova
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Giovanni Montana
- Department of Biomedical Engineering, King's College London London, UK
| | - Tomas Kasparek
- Behavioural and Social Neuroscience Group, CEITEC - Central European Institute of Technology, Masaryk UniversityBrno, Czech Republic; Department of Psychiatry, University Hospital Brno and Masaryk UniversityBrno, Czech Republic
| | - Daniel Schwarz
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University Brno, Czech Republic
| |
Collapse
|
21
|
Multi-center MRI prediction models: Predicting sex and illness course in first episode psychosis patients. Neuroimage 2016; 145:246-253. [PMID: 27421184 PMCID: PMC5193177 DOI: 10.1016/j.neuroimage.2016.07.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 07/01/2016] [Accepted: 07/11/2016] [Indexed: 01/15/2023] Open
Abstract
Structural Magnetic Resonance Imaging (MRI) studies have attempted to use brain measures obtained at the first-episode of psychosis to predict subsequent outcome, with inconsistent results. Thus, there is a real need to validate the utility of brain measures in the prediction of outcome using large datasets, from independent samples, obtained with different protocols and from different MRI scanners. This study had three main aims: 1) to investigate whether structural MRI data from multiple centers can be combined to create a machine-learning model able to predict a strong biological variable like sex; 2) to replicate our previous finding that an MRI scan obtained at first episode significantly predicts subsequent illness course in other independent datasets; and finally, 3) to test whether these datasets can be combined to generate multicenter models with better accuracy in the prediction of illness course. The multi-center sample included brain structural MRI scans from 256 males and 133 females patients with first episode psychosis, acquired in five centers: University Medical Center Utrecht (The Netherlands) (n=67); Institute of Psychiatry, Psychology and Neuroscience, London (United Kingdom) (n=97); University of São Paulo (Brazil) (n=64); University of Cantabria, Santander (Spain) (n=107); and University of Melbourne (Australia) (n=54). All images were acquired on 1.5-Tesla scanners and all centers provided information on illness course during a follow-up period ranging 3 to 7years. We only included in the analyses of outcome prediction patients for whom illness course was categorized as either "continuous" (n=94) or "remitting" (n=118). Using structural brain scans from all centers, sex was predicted with significant accuracy (89%; p<0.001). In the single- or multi-center models, illness course could not be predicted with significant accuracy. However, when reducing heterogeneity by restricting the analyses to male patients only, classification accuracy improved in some samples. This study provides proof of concept that combining multi-center MRI data to create a well performing classification model is possible. However, to create complex multi-center models that perform accurately, each center should contribute a sample either large or homogeneous enough to first allow accurate classification within the single-center.
Collapse
|
22
|
Mosiołek A, Gierus J, Koweszko T, Szulc A. Cognitive impairment in schizophrenia across age groups: a case-control study. BMC Psychiatry 2016; 16:37. [PMID: 26908293 PMCID: PMC4765123 DOI: 10.1186/s12888-016-0749-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 02/12/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The potential dynamics of cognitive impairment in schizophrenia is discussed in the literature of the field. Recent publications suggest modest changes in level of cognitive impairment after first psychotic episode. Present article attempts to explore cognitive differences between patients and controls across age groups and differences between age groups in clinical group. METHODS One hundred and twenty-eight hospitalized patients with schizophrenia (64 women and 64 men) and 68 individuals from the control group (32 women and 32 men) aged 18-55 years were examined. The patients were divided into age groups (18-25, 26-35, 36-45, 46-55). Both groups were examined using Wisconsin Card Sorting Test, Rey Auditory Verbal Learning Test, Rey Osterrieth Complex Figure Test, Trail Making Test (A and B), Stroop Test, verbal fluency test and Wechsler digit span. RESULTS Patients with schizophrenia obtained significantly lower scores versus the control group in regard to all the measured cognitive functions (Mann-Whitney U; p < 0.05. Most deficits were present in all age groups, however, statistically important impairment in executive functions (WCST) were present only in "older" groups. CONCLUSIONS Patients with schizophrenia obtained less favourable results than the control group in all age groups. Deficits regarding executive functions do not seem to be at a significant level among the youngest group, whereas they are more noticeable in the group of 46-55-year-olds. Executive functions are significantly lowered in the group aged 36-45 in comparison to the "younger" groups. The level of cognitive functions shows a mild exacerbation in connection with age, whereas cognitive rigidity proved to be related to the number of years spent without hospital treatment.
Collapse
Affiliation(s)
- Anna Mosiołek
- Clinic of Psychiatry, Department of Health Sciences, Medical University of Warsaw, Ul. Partyzantów 2/4, Pruszków, 05-802, Poland.
| | - Jacek Gierus
- Clinic of Psychiatry, Department of Health Sciences, Medical University of Warsaw, Ul. Partyzantów 2/4, Pruszków, 05-802, Poland.
| | - Tytus Koweszko
- Clinic of Psychiatry, Department of Health Sciences, Medical University of Warsaw, Ul. Partyzantów 2/4, Pruszków, 05-802, Poland.
| | - Agata Szulc
- Clinic of Psychiatry, Department of Health Sciences, Medical University of Warsaw, Ul. Partyzantów 2/4, Pruszków, 05-802, Poland.
| |
Collapse
|
23
|
Li Y, Xie S, Liu B, Song M, Chen Y, Li P, Lu L, Lv L, Wang H, Yan H, Yan J, Zhang H, Zhang D, Jiang T. Diffusion magnetic resonance imaging study of schizophrenia in the context of abnormal neurodevelopment using multiple site data in a Chinese Han population. Transl Psychiatry 2016; 6:e715. [PMID: 26784969 PMCID: PMC5068876 DOI: 10.1038/tp.2015.202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 11/05/2015] [Indexed: 12/19/2022] Open
Abstract
Schizophrenia has increasingly been considered a neurodevelopmental disorder, and the advancement of neuroimaging techniques and associated computational methods has enabled quantitative re-examination of this important theory on the pathogenesis of the disease. Inspired by previous findings from neonatal brains, we proposed that an increase in diffusion magnetic resonance imaging (dMRI) mean diffusivity (MD) should be observed in the cerebral cortex of schizophrenia patients compared with healthy controls, corresponding to lower tissue complexity and potentially a failure to reach cortical maturation. We tested this hypothesis using dMRI data from a Chinese Han population comprising patients from four different hospital sites. Utilizing data-driven methods based on the state-of-the-art tensor-based registration algorithm, significantly increased MD measurements were consistently observed in the cortex of schizophrenia patients across all four sites, despite differences in psychopathology, exposure to antipsychotic medication and scanners used for image acquisition. Specifically, we found increased MD in the limbic system of the schizophrenic brain, mainly involving the bilateral insular and prefrontal cortices. In light of the existing literature, we speculate that this may represent a neuroanatomical signature of the disorder, reflecting microstructural deficits due to developmental abnormalities. Our findings not only provide strong support to the abnormal neurodevelopment theory of schizophrenia, but also highlight an important neuroimaging endophenotype for monitoring the developmental trajectory of high-risk subjects of the disease, thereby facilitating early detection and prevention.
Collapse
Affiliation(s)
- Y Li
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - S Xie
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - B Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - M Song
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Y Chen
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - P Li
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - L Lu
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - L Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - H Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - H Yan
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - J Yan
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - H Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Psychology, Xinxiang Medical University, Xinxiang, China
| | - D Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
- Center for Life Sciences/PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - T Jiang
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Wolfers T, Buitelaar JK, Beckmann CF, Franke B, Marquand AF. From estimating activation locality to predicting disorder: A review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neurosci Biobehav Rev 2015; 57:328-49. [PMID: 26254595 DOI: 10.1016/j.neubiorev.2015.08.001] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/29/2015] [Accepted: 08/02/2015] [Indexed: 12/19/2022]
Abstract
Psychiatric disorders are increasingly being recognised as having a biological basis, but their diagnosis is made exclusively behaviourally. A promising approach for 'biomarker' discovery has been based on pattern recognition methods applied to neuroimaging data, which could yield clinical utility in future. In this review we survey the literature on pattern recognition for making diagnostic predictions in psychiatric disorders, and evaluate progress made in translating such findings towards clinical application. We evaluate studies on many criteria, including data modalities used, the types of features extracted and algorithm applied. We identify problems common to many studies, such as a relatively small sample size and a primary focus on estimating generalisability within a single study. Furthermore, we highlight challenges that are not widely acknowledged in the field including the importance of accommodating disease prevalence, the necessity of more extensive validation using large carefully acquired samples, the need for methodological innovations to improve accuracy and to discriminate between multiple disorders simultaneously. Finally, we identify specific clinical contexts in which pattern recognition can add value in the short to medium term.
Collapse
Affiliation(s)
- Thomas Wolfers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands; Karakter Child and Adolescent Psychiatry University Centre, Radboud University Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Christian F Beckmann
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, PO Box 9101, 6500 HB Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands; Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Oxford, United Kingdom
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andre F Marquand
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, PO Box 9101, 6500 HB Nijmegen, The Netherlands; Department of Neuroimaging, Institute of Psychiatry, King's College London, LondonUnited Kingdom
| |
Collapse
|
25
|
Nucifora PGP. Overdiagnosis in the era of neuropsychiatric imaging. Acad Radiol 2015; 22:995-9. [PMID: 25784322 DOI: 10.1016/j.acra.2015.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/28/2015] [Accepted: 02/05/2015] [Indexed: 12/17/2022]
Abstract
New guidelines proposed by the National Institute of Mental Health are intended to transform the management of patients with psychiatric disorders. It is anticipated that neuroimaging and other biomarkers will play a more prominent role in diagnosis and prognosis, especially in the prodromal phase of illness. Earlier treatment of psychiatric disorders has the potential to improve outcomes significantly. However, diagnosis in the absence of symptoms can lead to overdiagnosis. Overdiagnosis is a problem in many fields of medicine but could pose additional problems in psychiatry because of the stigmatization that often accompanies a diagnosis of mental illness. This review discusses the magnetic resonance imaging methods that hold the most promise for evaluating neuropsychiatric disorders, the likelihood that they could lead to overdiagnosis, and opportunities to minimize the impact of overdiagnosis in psychiatric disorders.
Collapse
Affiliation(s)
- Paolo G P Nucifora
- Department of Radiology, Philadelphia VA Medical Center, 3900 Woodland Ave, Philadelphia, PA 19104; Department of Radiology, University of Pennsylvania, 3400 Spruce St, Philadelphia, Pennsylvania.
| |
Collapse
|
26
|
Janousova E, Schwarz D, Kasparek T. Combining various types of classifiers and features extracted from magnetic resonance imaging data in schizophrenia recognition. Psychiatry Res 2015; 232:237-49. [PMID: 25912090 DOI: 10.1016/j.pscychresns.2015.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 09/30/2014] [Accepted: 03/11/2015] [Indexed: 12/27/2022]
Abstract
We investigated a combination of three classification algorithms, namely the modified maximum uncertainty linear discriminant analysis (mMLDA), the centroid method, and the average linkage, with three types of features extracted from three-dimensional T1-weighted magnetic resonance (MR) brain images, specifically MR intensities, grey matter densities, and local deformations for distinguishing 49 first episode schizophrenia male patients from 49 healthy male subjects. The feature sets were reduced using intersubject principal component analysis before classification. By combining the classifiers, we were able to obtain slightly improved results when compared with single classifiers. The best classification performance (81.6% accuracy, 75.5% sensitivity, and 87.8% specificity) was significantly better than classification by chance. We also showed that classifiers based on features calculated using more computation-intensive image preprocessing perform better; mMLDA with classification boundary calculated as weighted mean discriminative scores of the groups had improved sensitivity but similar accuracy compared to the original MLDA; reducing a number of eigenvectors during data reduction did not always lead to higher classification accuracy, since noise as well as the signal important for classification were removed. Our findings provide important information for schizophrenia research and may improve accuracy of computer-aided diagnostics of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Eva Janousova
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Kamenice 3, Brno 62500, Czech Republic.
| | - Daniel Schwarz
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Kamenice 3, Brno 62500, Czech Republic
| | - Tomas Kasparek
- Behavioural and Social Neuroscience Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Department of Psychiatry, University Hospital Brno and Masaryk University, Brno, Czech Republic
| |
Collapse
|
27
|
[Neuroimaging in psychiatry: multivariate analysis techniques for diagnosis and prognosis]. DER NERVENARZT 2014; 85:714-9. [PMID: 24849118 DOI: 10.1007/s00115-014-4022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Multiple studies successfully applied multivariate analysis to neuroimaging data demonstrating the potential utility of neuroimaging for clinical diagnostic and prognostic purposes. OBJECTIVES Summary of the current state of research regarding the application of neuroimaging in the field of psychiatry. MATERIAL AND METHODS Literature review of current studies. RESULTS Results of current studies indicate the potential application of neuroimaging data across various diagnoses, such as depression, schizophrenia, bipolar disorder and dementia. Potential applications include disease classification, differential diagnosis and prediction of disease course. CONCLUSION The results of the studies are heterogeneous although some studies report promising findings. Further multicentre studies are needed with clearly specified patient populations to systematically investigate the potential utility of neuroimaging for the clinical routine.
Collapse
|
28
|
Gollub RL, Shoemaker JM, King MD, White T, Ehrlich S, Sponheim SR, Clark VP, Turner JA, Mueller BA, Magnotta V, O'Leary D, Ho BC, Brauns S, Manoach DS, Seidman L, Bustillo JR, Lauriello J, Bockholt J, Lim KO, Rosen BR, Schulz SC, Calhoun VD, Andreasen NC. The MCIC collection: a shared repository of multi-modal, multi-site brain image data from a clinical investigation of schizophrenia. Neuroinformatics 2014; 11:367-88. [PMID: 23760817 DOI: 10.1007/s12021-013-9184-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Expertly collected, well-curated data sets consisting of comprehensive clinical characterization and raw structural, functional and diffusion-weighted DICOM images in schizophrenia patients and sex and age-matched controls are now accessible to the scientific community through an on-line data repository (coins.mrn.org). The Mental Illness and Neuroscience Discovery Institute, now the Mind Research Network (MRN, http://www.mrn.org/ ), comprised of investigators at the University of New Mexico, the University of Minnesota, Massachusetts General Hospital, and the University of Iowa, conducted a cross-sectional study to identify quantitative neuroimaging biomarkers of schizophrenia. Data acquisition across multiple sites permitted the integration and cross-validation of clinical, cognitive, morphometric, and functional neuroimaging results gathered from unique samples of schizophrenia patients and controls using a common protocol across sites. Particular effort was made to recruit patients early in the course of their illness, at the onset of their symptoms. There is a relatively even sampling of illness duration in chronic patients. This data repository will be useful to 1) scientists who can study schizophrenia by further analysis of this cohort and/or by pooling with other data; 2) computer scientists and software algorithm developers for testing and validating novel registration, segmentation, and other analysis software; and 3) educators in the fields of neuroimaging, medical image analysis and medical imaging informatics who need exemplar data sets for courses and workshops. Sharing provides the opportunity for independent replication of already published results from this data set and novel exploration. This manuscript describes the inclusion/exclusion criteria, imaging parameters and other information that will assist those wishing to use this data repository.
Collapse
Affiliation(s)
- Randy L Gollub
- Department of Psychiatry, Massachusetts General Hospital, Building 120, Suite 101D, Charlestown, MA 02129-2000, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zarogianni E, Moorhead TW, Lawrie SM. Towards the identification of imaging biomarkers in schizophrenia, using multivariate pattern classification at a single-subject level. Neuroimage Clin 2013; 3:279-89. [PMID: 24273713 PMCID: PMC3814947 DOI: 10.1016/j.nicl.2013.09.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 12/23/2022]
Abstract
Standard univariate analyses of brain imaging data have revealed a host of structural and functional brain alterations in schizophrenia. However, these analyses typically involve examining each voxel separately and making inferences at group-level, thus limiting clinical translation of their findings. Taking into account the fact that brain alterations in schizophrenia expand over a widely distributed network of brain regions, univariate analysis methods may not be the most suited choice for imaging data analysis. To address these limitations, the neuroimaging community has turned to machine learning methods both because of their ability to examine voxels jointly and their potential for making inferences at a single-subject level. This article provides a critical overview of the current and foreseeable applications of machine learning, in identifying imaging-based biomarkers that could be used for the diagnosis, early detection and treatment response of schizophrenia, and could, thus, be of high clinical relevance. We discuss promising future research directions and the main difficulties facing machine learning researchers as far as their potential translation into clinical practice is concerned.
Collapse
Affiliation(s)
- Eleni Zarogianni
- Division of Psychiatry, School of Clinical Sciences, University of Edinburgh, The Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, Scotland, UK
| | | | | |
Collapse
|
30
|
Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects. Neuroimage 2013; 84:299-306. [PMID: 24004694 DOI: 10.1016/j.neuroimage.2013.08.053] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/20/2013] [Accepted: 08/26/2013] [Indexed: 11/21/2022] Open
Abstract
Although structural magnetic resonance imaging (MRI) has revealed partly non-overlapping brain abnormalities in schizophrenia and bipolar disorder, it is unknown whether structural MRI scans can be used to separate individuals with schizophrenia from those with bipolar disorder. An algorithm capable of discriminating between these two disorders could become a diagnostic aid for psychiatrists. Here, we scanned 66 schizophrenia patients, 66 patients with bipolar disorder and 66 healthy subjects on a 1.5T MRI scanner. Three support vector machines were trained to separate patients with schizophrenia from healthy subjects, patients with schizophrenia from those with bipolar disorder, and patients with bipolar disorder from healthy subjects, respectively, based on their gray matter density images. The predictive power of the models was tested using cross-validation and in an independent validation set of 46 schizophrenia patients, 47 patients with bipolar disorder and 43 healthy subjects scanned on a 3T MRI scanner. Schizophrenia patients could be separated from healthy subjects with an average accuracy of 90%. Additionally, schizophrenia patients and patients with bipolar disorder could be distinguished with an average accuracy of 88%.The model delineating bipolar patients from healthy subjects was less accurate, correctly classifying 67% of the healthy subjects and only 53% of the patients with bipolar disorder. In the latter group, lithium and antipsychotics use had no influence on the classification results. Application of the 1.5T models on the 3T validation set yielded average classification accuracies of 76% (healthy vs schizophrenia), 66% (bipolar vs schizophrenia) and 61% (healthy vs bipolar). In conclusion, the accurate separation of schizophrenia from bipolar patients on the basis of structural MRI scans, as demonstrated here, could be of added value in the differential diagnosis of these two disorders. The results also suggest that gray matter pathology in schizophrenia and bipolar disorder differs to such an extent that they can be reliably differentiated using machine learning paradigms.
Collapse
|
31
|
Iwabuchi SJ, Liddle PF, Palaniyappan L. Clinical utility of machine-learning approaches in schizophrenia: improving diagnostic confidence for translational neuroimaging. Front Psychiatry 2013; 4:95. [PMID: 24009589 PMCID: PMC3756305 DOI: 10.3389/fpsyt.2013.00095] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/15/2013] [Indexed: 11/15/2022] Open
Abstract
Machine-learning approaches are becoming commonplace in the neuroimaging literature as potential diagnostic and prognostic tools for the study of clinical populations. However, very few studies provide clinically informative measures to aid in decision-making and resource allocation. Head-to-head comparison of neuroimaging-based multivariate classifiers is an essential first step to promote translation of these tools to clinical practice. We systematically evaluated the classifier performance using back-to-back structural MRI in two field strengths (3- and 7-T) to discriminate patients with schizophrenia (n = 19) from healthy controls (n = 20). Gray matter (GM) and white matter images were used as inputs into a support vector machine to classify patients and control subjects. Seven Tesla classifiers outperformed the 3-T classifiers with accuracy reaching as high as 77% for the 7-T GM classifier compared to 66.6% for the 3-T GM classifier. Furthermore, diagnostic odds ratio (a measure that is not affected by variations in sample characteristics) and number needed to predict (a measure based on Bayesian certainty of a test result) indicated superior performance of the 7-T classifiers, whereby for each correct diagnosis made, the number of patients that need to be examined using the 7-T GM classifier was one less than the number that need to be examined if a different classifier was used. Using a hypothetical example, we highlight how these findings could have significant implications for clinical decision-making. We encourage the reporting of measures proposed here in future studies utilizing machine-learning approaches. This will not only promote the search for an optimum diagnostic tool but also aid in the translation of neuroimaging to clinical use.
Collapse
Affiliation(s)
- Sarina J. Iwabuchi
- Division of Psychiatry, Centre for Translational Neuroimaging in Mental Health, University of Nottingham, Nottingham, UK
| | - Peter F. Liddle
- Division of Psychiatry, Centre for Translational Neuroimaging in Mental Health, University of Nottingham, Nottingham, UK
| | - Lena Palaniyappan
- Division of Psychiatry, Centre for Translational Neuroimaging in Mental Health, University of Nottingham, Nottingham, UK
- Nottinghamshire Healthcare NHS Trust, Nottingham, UK
| |
Collapse
|
32
|
Ota M, Sato N, Ishikawa M, Hori H, Sasayama D, Hattori K, Teraishi T, Obu S, Nakata Y, Nemoto K, Moriguchi Y, Hashimoto R, Kunugi H. Discrimination of female schizophrenia patients from healthy women using multiple structural brain measures obtained with voxel-based morphometry. Psychiatry Clin Neurosci 2012; 66:611-7. [PMID: 23252928 DOI: 10.1111/j.1440-1819.2012.02397.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 03/22/2012] [Accepted: 03/24/2012] [Indexed: 11/29/2022]
Abstract
AIM Although schizophrenia and control subjects differ on a variety of neuroanatomical measures, the specificity and sensitivity of any one measure for differentiating between the two groups are low. To identify the correlative pattern of brain changes that best discriminate schizophrenia patients from healthy subjects, discriminant analysis techniques using voxel-based morphometry were applied. METHODS The first analysis was conducted to obtain a statistical model that classified 105 female healthy subjects and 38 female schizophrenia patients. First, the differences in gray matter and cerebrospinal fluid volume between the patients and healthy subjects were evaluated using optimized voxel-based morphometry. Then, a discriminant analysis reflecting the results of this evaluation was adopted. The second analysis was performed to prospectively validate the statistical model by successfully classifying a new group that consisted of 23 female healthy subjects and 23 female schizophrenia patients. RESULTS The use of these variables resulted in correct classification rates of 0.72 in the control subjects and 0.76 in the schizophrenia patients. In the second validation analysis using these variables, correct classification rates of 0.70 in the control subjects and 0.74 in the schizophrenia patients were achieved. CONCLUSION Schizophrenia patients have structural deviations in multiple brain areas, and a combination of structural brain measures can distinguish between patients and controls.
Collapse
Affiliation(s)
- Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Nieuwenhuis M, van Haren NE, Hulshoff Pol HE, Cahn W, Kahn RS, Schnack HG. Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples. Neuroimage 2012; 61:606-12. [PMID: 22507227 DOI: 10.1016/j.neuroimage.2012.03.079] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/22/2012] [Accepted: 03/25/2012] [Indexed: 10/28/2022] Open
|
34
|
Mourao-Miranda J, Reinders AATS, Rocha-Rego V, Lappin J, Rondina J, Morgan C, Morgan KD, Fearon P, Jones PB, Doody GA, Murray RM, Kapur S, Dazzan P. Individualized prediction of illness course at the first psychotic episode: a support vector machine MRI study. Psychol Med 2012; 42:1037-47. [PMID: 22059690 PMCID: PMC3315786 DOI: 10.1017/s0033291711002005] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/17/2011] [Accepted: 08/22/2011] [Indexed: 01/02/2023]
Abstract
BACKGROUND To date, magnetic resonance imaging (MRI) has made little impact on the diagnosis and monitoring of psychoses in individual patients. In this study, we used a support vector machine (SVM) whole-brain classification approach to predict future illness course at the individual level from MRI data obtained at the first psychotic episode. METHOD One hundred patients at their first psychotic episode and 91 healthy controls had an MRI scan. Patients were re-evaluated 6.2 years (s.d.=2.3) later, and were classified as having a continuous, episodic or intermediate illness course. Twenty-eight subjects with a continuous course were compared with 28 patients with an episodic course and with 28 healthy controls. We trained each SVM classifier independently for the following contrasts: continuous versus episodic, continuous versus healthy controls, and episodic versus healthy controls. RESULTS At baseline, patients with a continuous course were already distinguishable, with significance above chance level, from both patients with an episodic course (p=0.004, sensitivity=71, specificity=68) and healthy individuals (p=0.01, sensitivity=71, specificity=61). Patients with an episodic course could not be distinguished from healthy individuals. When patients with an intermediate outcome were classified according to the discriminating pattern episodic versus continuous, 74% of those who did not develop other episodes were classified as episodic, and 65% of those who did develop further episodes were classified as continuous (p=0.035). CONCLUSIONS We provide preliminary evidence of MRI application in the individualized prediction of future illness course, using a simple and automated SVM pipeline. When replicated and validated in larger groups, this could enable targeted clinical decisions based on imaging data.
Collapse
Affiliation(s)
- J. Mourao-Miranda
- Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, UK
- Centre for Computational Statistics and Machine Learning, UCL, London, UK
| | - A. A. T. S. Reinders
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, UK
- Department of Neuroscience, University Medical Center Groningen, and BCN Neuroimaging Center, University of Groningen, The Netherlands
| | - V. Rocha-Rego
- Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, UK
| | - J. Lappin
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, UK
| | - J. Rondina
- Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, UK
| | - C. Morgan
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, UK
| | - K. D. Morgan
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, UK
| | - P. Fearon
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, UK
| | - P. B. Jones
- Department of Psychiatry, University of Cambridge, UK
| | - G. A. Doody
- Division of Psychiatry, University of Nottingham, UK
| | - R. M. Murray
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, UK
| | - S. Kapur
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, UK
| | - P. Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, UK
- NIHR Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, King's College London, UK
| |
Collapse
|