1
|
Mueller SG. 7T MP2RAGE for cortical myelin segmentation: Impact of aging. PLoS One 2024; 19:e0299670. [PMID: 38626149 PMCID: PMC11020839 DOI: 10.1371/journal.pone.0299670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/14/2024] [Indexed: 04/18/2024] Open
Abstract
BACKGROUND Myelin and iron are major contributors to the cortical MR signal. The aim of this study was to investigate 1. Can MP2RAGE-derived contrasts at 7T in combination with k-means clustering be used to distinguish between heavily and sparsely myelinated layers in cortical gray matter (GM)? 2. Does this approach provide meaningful biological information? METHODS The following contrasts were generated from the 7T MP2RAGE images from 45 healthy controls (age: 19-75, f/m = 23/22) from the ATAG data repository: 1. T1 weighted image (UNI). 2. T1 relaxation image (T1map). 3. INVC/T1map ratio (RATIO). K-means clustering identified 6 clusters/tissue maps (csf, csf/gm-transition, wm, wm/gm transition, heavily myelinated cortical GM (dGM), sparsely myelinated cortical GM (sGM)). These tissue maps were then processed with SPM/DARTEL (volume-based analyses) and Freesurfer (surface-based analyses) and dGM and sGM volume/thickness of young adults (n = 27, 19-27 years) compared to those of older adults (n = 18, 42-75 years) at p<0.001 uncorrected. RESULTS The resulting maps showed good agreement with histological maps in the literature. Volume- and surface analyses found age-related dGM loss/thinning in the mid-posterior cingulate and parahippocampal/entorhinal gyrus and age-related sGM losses in lateral, mesial and orbitofrontal frontal, insular cortex and superior temporal gyrus. CONCLUSION The MP2RAGE derived UNI, T1map and RATIO contrasts can be used to identify dGM and sGM. Considering the close relationship between cortical myelo- and cytoarchitecture, the findings reported here indicate that this new technique might provide new insights into the nature of cortical GM loss in physiological and pathological conditions.
Collapse
Affiliation(s)
- Susanne G. Mueller
- Dept. of Radiology, University of California, San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
2
|
Bergmann J, Petro LS, Abbatecola C, Li MS, Morgan AT, Muckli L. Cortical depth profiles in primary visual cortex for illusory and imaginary experiences. Nat Commun 2024; 15:1002. [PMID: 38307834 PMCID: PMC10837448 DOI: 10.1038/s41467-024-45065-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/12/2024] [Indexed: 02/04/2024] Open
Abstract
Visual illusions and mental imagery are non-physical sensory experiences that involve cortical feedback processing in the primary visual cortex. Using laminar functional magnetic resonance imaging (fMRI) in two studies, we investigate if information about these internal experiences is visible in the activation patterns of different layers of primary visual cortex (V1). We find that imagery content is decodable mainly from deep layers of V1, whereas seemingly 'real' illusory content is decodable mainly from superficial layers. Furthermore, illusory content shares information with perceptual content, whilst imagery content does not generalise to illusory or perceptual information. Together, our results suggest that illusions and imagery, which differ immensely in their subjective experiences, also involve partially distinct early visual microcircuits. However, overlapping microcircuit recruitment might emerge based on the nuanced nature of subjective conscious experience.
Collapse
Affiliation(s)
- Johanna Bergmann
- Imaging Centre of Excellence (ICE), Queen Elizabeth University Hospital, University of Glasgow, Glasgow, UK.
- Centre for Cognitive Neuroimaging (CCNi), School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Lucy S Petro
- Imaging Centre of Excellence (ICE), Queen Elizabeth University Hospital, University of Glasgow, Glasgow, UK
- Centre for Cognitive Neuroimaging (CCNi), School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Clement Abbatecola
- Imaging Centre of Excellence (ICE), Queen Elizabeth University Hospital, University of Glasgow, Glasgow, UK
- Centre for Cognitive Neuroimaging (CCNi), School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Min S Li
- Centre for Cognitive Neuroimaging (CCNi), School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Centre for Computational Neuroscience and Cognitive Robotics, School of Psychology, University of Birmingham, Birmingham, UK
| | - A Tyler Morgan
- Imaging Centre of Excellence (ICE), Queen Elizabeth University Hospital, University of Glasgow, Glasgow, UK
- Centre for Cognitive Neuroimaging (CCNi), School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Functional MRI Core Facility, National Institute of Mental Health, NIH, Bethesda, MD, 20817, USA
| | - Lars Muckli
- Imaging Centre of Excellence (ICE), Queen Elizabeth University Hospital, University of Glasgow, Glasgow, UK.
- Centre for Cognitive Neuroimaging (CCNi), School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
3
|
Lotan E, Tomer O, Tavor I, Blatt I, Goldberg-Stern H, Hoffmann C, Tsarfaty G, Tanne D, Assaf Y. Widespread cortical dyslamination in epilepsy patients with malformations of cortical development. Neuroradiology 2020; 63:225-234. [PMID: 32975591 DOI: 10.1007/s00234-020-02561-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/16/2020] [Indexed: 01/16/2023]
Abstract
PURPOSE Recent research in epilepsy patients confirms our understanding of epilepsy as a network disorder with widespread cortical compromise. Here, we aimed to investigate the neocortical laminar architecture in patients with focal cortical dysplasia (FCD) and periventricular nodular heterotopia (PNH) using clinically feasible 3 T MRI. METHODS Eighteen epilepsy patients (FCD and PNH groups; n = 9 each) and age-matched healthy controls (n = 9) underwent T1 relaxation 3 T MRI, from which component probability T1 maps were utilized to extract sub-voxel composition of 6 T1 cortical layers. Seventy-eight cortical areas of the automated anatomical labeling atlas were divided into 1000 equal-volume sub-areas for better detection of cortical abnormalities, and logistic regressions were performed to compare FCD/PNH patients with healthy controls with the T1 layers composing each sub-area as regressors. Statistical significance (p < 0.05) was determined by a likelihood-ratio test with correction for false discovery rate using Benjamini-Hochberg method. RESULTS Widespread cortical abnormalities were observed in the patient groups. Out of 1000 sub-areas, 291 and 256 bilateral hemispheric cortical sub-areas were found to predict FCD and PNH, respectively. For each of these sub-areas, we were able to identify the T1 layer, which contributed the most to the prediction. CONCLUSION Our results reveal widespread cortical abnormalities in epilepsy patients with FCD and PNH, which may have a role in epileptogenesis, and likely related to recent studies showing widespread structural (e.g., cortical thinning) and diffusion abnormalities in various human epilepsy populations. Our study provides quantitative information of cortical laminar architecture in epilepsy patients that can be further targeted for study in functional and neuropathological studies.
Collapse
Affiliation(s)
- Eyal Lotan
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
- Department of Radiology, NYU Langone Medical Center, 660 1st Ave, New York, NY, 10016, USA.
| | - Omri Tomer
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Ido Tavor
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Ilan Blatt
- Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
- Department of Neurology, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel
| | - Hadassah Goldberg-Stern
- Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
- Department of Neurology, Schneider Children's Medical Center of Israel, 49202, Petah Tikva, Israel
| | - Chen Hoffmann
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Galia Tsarfaty
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - David Tanne
- Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
- Stroke Center, Department of Neurology and Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel
| | - Yaniv Assaf
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| |
Collapse
|
4
|
Rowley CD, Bock NA, Deichmann R, Engeroff T, Hattingen E, Hellweg R, Pilatus U, Füzéki E, Gerten S, Vogt L, Banzer W, Pantel J, Fleckenstein J, Matura S. Exercise and microstructural changes in the motor cortex of older adults. Eur J Neurosci 2019; 51:1711-1722. [DOI: 10.1111/ejn.14585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/03/2019] [Accepted: 09/25/2019] [Indexed: 12/17/2022]
Affiliation(s)
| | - Nicholas A. Bock
- Department of Psychology, Neuroscience and Behaviour McMaster University Hamilton ON Canada
| | | | - Tobias Engeroff
- Department of Sports Medicine Institute of Sports Sciences Goethe University Frankfurt am Main Germany
| | - Elke Hattingen
- Institute of Neuroradiology Goethe University Hospital Frankfurt Frankfurt am Main Germany
| | - Rainer Hellweg
- Neurobiology and Neurotrophins Laboratory Department of Psychiatry and Psychotherapy Charité University Medicine Berlin Berlin Germany
| | - Ulrich Pilatus
- Institute of Neuroradiology Goethe University Hospital Frankfurt Frankfurt am Main Germany
| | - Eszter Füzéki
- Division of Preventive and Sports Medicine Institute of Occupational, Social and Environmental Medicine Goethe-University Frankfurt Germany
| | - Sina Gerten
- Department of Sports Medicine Institute of Sports Sciences Goethe University Frankfurt am Main Germany
| | - Lutz Vogt
- Department of Sports Medicine Institute of Sports Sciences Goethe University Frankfurt am Main Germany
| | - Winfried Banzer
- Division of Preventive and Sports Medicine Institute of Occupational, Social and Environmental Medicine Goethe-University Frankfurt Germany
| | - Johannes Pantel
- Institute of General Practice Goethe University Frankfurt am Main Germany
| | - Johannes Fleckenstein
- Department of Sports Medicine Institute of Sports Sciences Goethe University Frankfurt am Main Germany
| | - Silke Matura
- Institute of General Practice Goethe University Frankfurt am Main Germany
| |
Collapse
|
5
|
Schnack H. Assessing reproducibility in association studies. eLife 2019; 8:46757. [PMID: 31021315 PMCID: PMC6483593 DOI: 10.7554/elife.46757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 01/03/2023] Open
Abstract
Research that links brain structure with behavior needs more data, better analyses, and more intelligent approaches.
Collapse
Affiliation(s)
- Hugo Schnack
- Department of Psychiatry, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Wagstyl K, Lepage C, Bludau S, Zilles K, Fletcher PC, Amunts K, Evans AC. Mapping Cortical Laminar Structure in the 3D BigBrain. Cereb Cortex 2018; 28:2551-2562. [PMID: 29901791 PMCID: PMC5998962 DOI: 10.1093/cercor/bhy074] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 11/30/2022] Open
Abstract
Histological sections offer high spatial resolution to examine laminar architecture of the human cerebral cortex; however, they are restricted by being 2D, hence only regions with sufficiently optimal cutting planes can be analyzed. Conversely, noninvasive neuroimaging approaches are whole brain but have relatively low resolution. Consequently, correct 3D cross-cortical patterns of laminar architecture have never been mapped in histological sections. We developed an automated technique to identify and analyze laminar structure within the high-resolution 3D histological BigBrain. We extracted white matter and pial surfaces, from which we derived histologically verified surfaces at the layer I/II boundary and within layer IV. Layer IV depth was strongly predicted by cortical curvature but varied between areas. This fully automated 3D laminar analysis is an important requirement for bridging high-resolution 2D cytoarchitecture and in vivo 3D neuroimaging. It lays the foundation for in-depth, whole-brain analyses of cortical layering.
Collapse
Affiliation(s)
- Konrad Wagstyl
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), McGill University, Montreal, Canada
| | - Claude Lepage
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), McGill University, Montreal, Canada
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen, Germany
- JARA—Translational Brain Medicine, Aachen, Aachen, Germany
| | - Paul C Fletcher
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- C. and O. Vogt-Institute for Brain Research, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Alan C Evans
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), McGill University, Montreal, Canada
| |
Collapse
|