1
|
Schmitt O. Relationships and representations of brain structures, connectivity, dynamics and functions. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111332. [PMID: 40147809 DOI: 10.1016/j.pnpbp.2025.111332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/20/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
The review explores the complex interplay between brain structures and their associated functions, presenting a diversity of hierarchical models that enhances our understanding of these relationships. Central to this approach are structure-function flow diagrams, which offer a visual representation of how specific neuroanatomical structures are linked to their functional roles. These diagrams are instrumental in mapping the intricate connections between different brain regions, providing a clearer understanding of how functions emerge from the underlying neural architecture. The study details innovative attempts to develop new functional hierarchies that integrate structural and functional data. These efforts leverage recent advancements in neuroimaging techniques such as fMRI, EEG, MEG, and PET, as well as computational models that simulate neural dynamics. By combining these approaches, the study seeks to create a more refined and dynamic hierarchy that can accommodate the brain's complexity, including its capacity for plasticity and adaptation. A significant focus is placed on the overlap of structures and functions within the brain. The manuscript acknowledges that many brain regions are multifunctional, contributing to different cognitive and behavioral processes depending on the context. This overlap highlights the need for a flexible, non-linear hierarchy that can capture the brain's intricate functional landscape. Moreover, the study examines the interdependence of these functions, emphasizing how the loss or impairment of one function can impact others. Another crucial aspect discussed is the brain's ability to compensate for functional deficits following neurological diseases or injuries. The investigation explores how the brain reorganizes itself, often through the recruitment of alternative neural pathways or the enhancement of existing ones, to maintain functionality despite structural damage. This compensatory mechanism underscores the brain's remarkable plasticity, demonstrating its ability to adapt and reconfigure itself in response to injury, thereby ensuring the continuation of essential functions. In conclusion, the study presents a system of brain functions that integrates structural, functional, and dynamic perspectives. It offers a robust framework for understanding how the brain's complex network of structures supports a wide range of cognitive and behavioral functions, with significant implications for both basic neuroscience and clinical applications.
Collapse
Affiliation(s)
- Oliver Schmitt
- Medical School Hamburg - University of Applied Sciences and Medical University - Institute for Systems Medicine, Am Kaiserkai 1, Hamburg 20457, Germany; University of Rostock, Department of Anatomy, Gertrudenstr. 9, Rostock, 18055 Rostock, Germany.
| |
Collapse
|
2
|
Vohra SK, Harth P, Isoe Y, Bahl A, Fotowat H, Engert F, Hege HC, Baum D. A Visual Interface for Exploring Hypotheses About Neural Circuits. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:3945-3958. [PMID: 37022819 PMCID: PMC11252567 DOI: 10.1109/tvcg.2023.3243668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
One of the fundamental problems in neurobiological research is to understand how neural circuits generate behaviors in response to sensory stimuli. Elucidating such neural circuits requires anatomical and functional information about the neurons that are active during the processing of the sensory information and generation of the respective response, as well as an identification of the connections between these neurons. With modern imaging techniques, both morphological properties of individual neurons as well as functional information related to sensory processing, information integration and behavior can be obtained. Given the resulting information, neurobiologists are faced with the task of identifying the anatomical structures down to individual neurons that are linked to the studied behavior and the processing of the respective sensory stimuli. Here, we present a novel interactive tool that assists neurobiologists in the aforementioned tasks by allowing them to extract hypothetical neural circuits constrained by anatomical and functional data. Our approach is based on two types of structural data: brain regions that are anatomically or functionally defined, and morphologies of individual neurons. Both types of structural data are interlinked and augmented with additional information. The presented tool allows the expert user to identify neurons using Boolean queries. The interactive formulation of these queries is supported by linked views, using, among other things, two novel 2D abstractions of neural circuits. The approach was validated in two case studies investigating the neural basis of vision-based behavioral responses in zebrafish larvae. Despite this particular application, we believe that the presented tool will be of general interest for exploring hypotheses about neural circuits in other species, genera and taxa.
Collapse
|
3
|
Prathapan V, Eipert P, Wigger N, Kipp M, Appali R, Schmitt O. Modeling and simulation for prediction of multiple sclerosis progression. Comput Biol Med 2024; 175:108416. [PMID: 38657465 DOI: 10.1016/j.compbiomed.2024.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
In light of extensive work that has created a wide range of techniques for predicting the course of multiple sclerosis (MS) disease, this paper attempts to provide an overview of these approaches and put forth an alternative way to predict the disease progression. For this purpose, the existing methods for estimating and predicting the course of the disease have been categorized into clinical, radiological, biological, and computational or artificial intelligence-based markers. Weighing the weaknesses and strengths of these prognostic groups is a profound method that is yet in need and works directly at the level of diseased connectivity. Therefore, we propose using the computational models in combination with established connectomes as a predictive tool for MS disease trajectories. The fundamental conduction-based Hodgkin-Huxley model emerged as promising from examining these studies. The advantage of the Hodgkin-Huxley model is that certain properties of connectomes, such as neuronal connection weights, spatial distances, and adjustments of signal transmission rates, can be taken into account. It is precisely these properties that are particularly altered in MS and that have strong implications for processing, transmission, and interactions of neuronal signaling patterns. The Hodgkin-Huxley (HH) equations as a point-neuron model are used for signal propagation inside a small network. The objective is to change the conduction parameter of the neuron model, replicate the changes in myelin properties in MS and observe the dynamics of the signal propagation across the network. The model is initially validated for different lengths, conduction values, and connection weights through three nodal connections. Later, these individual factors are incorporated into a small network and simulated to mimic the condition of MS. The signal propagation pattern is observed after inducing changes in conduction parameters at certain nodes in the network and compared against a control model pattern obtained before the changes are applied to the network. The signal propagation pattern varies as expected by adapting to the input conditions. Similarly, when the model is applied to a connectome, the pattern changes could give an insight into disease progression. This approach has opened up a new path to explore the progression of the disease in MS. The work is in its preliminary state, but with a future vision to apply this method in a connectome, providing a better clinical tool.
Collapse
Affiliation(s)
- Vishnu Prathapan
- Medical School Hamburg University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457, Hamburg, Germany.
| | - Peter Eipert
- Medical School Hamburg University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457, Hamburg, Germany.
| | - Nicole Wigger
- Department of Anatomy, University of Rostock Gertrudenstr 9, 18057, Rostock, Germany.
| | - Markus Kipp
- Department of Anatomy, University of Rostock Gertrudenstr 9, 18057, Rostock, Germany.
| | - Revathi Appali
- Institute of General Electrical Engineering, University of Rostock, Albert-Einstein-Straße 2, 18059, Rostock, Germany; Department of Aging of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Universitätsplatz 1, 18055, Rostock, Germany.
| | - Oliver Schmitt
- Medical School Hamburg University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457, Hamburg, Germany; Department of Anatomy, University of Rostock Gertrudenstr 9, 18057, Rostock, Germany.
| |
Collapse
|
4
|
Schmitt O, Eipert P, Wang Y, Kanoke A, Rabiller G, Liu J. Connectome-based prediction of functional impairment in experimental stroke models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539601. [PMID: 37205373 PMCID: PMC10187266 DOI: 10.1101/2023.05.05.539601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Experimental rat models of stroke and hemorrhage are important tools to investigate cerebrovascular disease pathophysiology mechanisms, yet how significant patterns of functional impairment induced in various models of stroke are related to changes in connectivity at the level of neuronal populations and mesoscopic parcellations of rat brains remain unresolved. To address this gap in knowledge, we employed two middle cerebral artery occlusion models and one intracerebral hemorrhage model with variant extent and location of neuronal dysfunction. Motor and spatial memory function was assessed and the level of hippocampal activation via Fos immunohistochemistry. Contribution of connectivity change to functional impairment was analyzed for connection similarities, graph distances and spatial distances as well as the importance of regions in terms of network architecture based on the neuroVIISAS rat connectome. We found that functional impairment correlated with not only the extent but also the locations of the injury among the models. In addition, via coactivation analysis in dynamic rat brain models, we found that lesioned regions led to stronger coactivations with motor function and spatial learning regions than with other unaffected regions of the connectome. Dynamic modeling with the weighted bilateral connectome detected changes in signal propagation in the remote hippocampus in all 3 stroke types, predicting the extent of hippocampal hypoactivation and impairment in spatial learning and memory function. Our study provides a comprehensive analytical framework in predictive identification of remote regions not directly altered by stroke events and their functional implication.
Collapse
Affiliation(s)
- Oliver Schmitt
- Medical School Hamburg - University of Applied Sciences, Department of Anatomy; University of Rostock, Institute of Anatomy
- SFVAMC, 1700 Owens Street, San Francisco, CA 94158
| | - Peter Eipert
- Medical School Hamburg - University of Applied Sciences, Department of Anatomy; University of Rostock, Institute of Anatomy
- SFVAMC, 1700 Owens Street, San Francisco, CA 94158
| | - Yonggang Wang
- Department of Neurological Surgery, UCSF
- SFVAMC, 1700 Owens Street, San Francisco, CA 94158
- Department of Neurological Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China, 100050
| | - Atsushi Kanoke
- Department of Neurological Surgery, UCSF
- SFVAMC, 1700 Owens Street, San Francisco, CA 94158
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Gratianne Rabiller
- Department of Neurological Surgery, UCSF
- SFVAMC, 1700 Owens Street, San Francisco, CA 94158
| | - Jialing Liu
- Department of Neurological Surgery, UCSF
- SFVAMC, 1700 Owens Street, San Francisco, CA 94158
| |
Collapse
|
5
|
Reaction-diffusion models in weighted and directed connectomes. PLoS Comput Biol 2022; 18:e1010507. [DOI: 10.1371/journal.pcbi.1010507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 11/23/2022] [Accepted: 08/22/2022] [Indexed: 11/07/2022] Open
Abstract
Connectomes represent comprehensive descriptions of neural connections in a nervous system to better understand and model central brain function and peripheral processing of afferent and efferent neural signals. Connectomes can be considered as a distinctive and necessary structural component alongside glial, vascular, neurochemical, and metabolic networks of the nervous systems of higher organisms that are required for the control of body functions and interaction with the environment. They are carriers of functional epiphenomena such as planning behavior and cognition, which are based on the processing of highly dynamic neural signaling patterns. In this study, we examine more detailed connectomes with edge weighting and orientation properties, in which reciprocal neuronal connections are also considered. Diffusion processes are a further necessary condition for generating dynamic bioelectric patterns in connectomes. Based on our high-precision connectome data, we investigate different diffusion-reaction models to study the propagation of dynamic concentration patterns in control and lesioned connectomes. Therefore, differential equations for modeling diffusion were combined with well-known reaction terms to allow the use of connection weights, connectivity orientation and spatial distances.
Three reaction-diffusion systems Gray-Scott, Gierer-Meinhardt and Mimura-Murray were investigated. For this purpose, implicit solvers were implemented in a numerically stable reaction-diffusion system within the framework of neuroVIISAS. The implemented reaction-diffusion systems were applied to a subconnectome which shapes the mechanosensitive pathway that is strongly affected in the multiple sclerosis demyelination disease. It was found that demyelination modeling by connectivity weight modulation changes the oscillations of the target region, i.e. the primary somatosensory cortex, of the mechanosensitive pathway.
In conclusion, a new application of reaction-diffusion systems to weighted and directed connectomes has been realized. Because the implementation were performed in the neuroVIISAS framework many possibilities for the study of dynamic reaction-diffusion processes in empirical connectomes as well as specific randomized network models are available now.
Collapse
|
6
|
The brainstem connectome database. Sci Data 2022; 9:168. [PMID: 35414055 PMCID: PMC9005652 DOI: 10.1038/s41597-022-01219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/25/2022] [Indexed: 11/29/2022] Open
Abstract
Connectivity data of the nervous system and subdivisions, such as the brainstem, cerebral cortex and subcortical nuclei, are necessary to understand connectional structures, predict effects of connectional disorders and simulate network dynamics. For that purpose, a database was built and analyzed which comprises all known directed and weighted connections within the rat brainstem. A longterm metastudy of original research publications describing tract tracing results form the foundation of the brainstem connectome (BC) database which can be analyzed directly in the framework neuroVIISAS. The BC database can be accessed directly by connectivity tables, a web-based tool and the framework. Analysis of global and local network properties, a motif analysis, and a community analysis of the brainstem connectome provides insight into its network organization. For example, we found that BC is a scale-free network with a small-world connectivity. The Louvain modularity and weighted stochastic block matching resulted in partially matching of functions and connectivity. BC modeling was performed to demonstrate signal propagation through the somatosensory pathway which is affected in Multiple sclerosis. Measurement(s) | brainstem | Technology Type(s) | tract tracing metastudy | Factor Type(s) | brain region | Sample Characteristic - Organism | Rattus rattus | Sample Characteristic - Environment | Experimental setup | Sample Characteristic - Location | Germany |
Collapse
|
7
|
Goubran M, Leuze C, Hsueh B, Aswendt M, Ye L, Tian Q, Cheng MY, Crow A, Steinberg GK, McNab JA, Deisseroth K, Zeineh M. Multimodal image registration and connectivity analysis for integration of connectomic data from microscopy to MRI. Nat Commun 2019; 10:5504. [PMID: 31796741 PMCID: PMC6890789 DOI: 10.1038/s41467-019-13374-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 11/04/2019] [Indexed: 01/21/2023] Open
Abstract
3D histology, slice-based connectivity atlases, and diffusion MRI are common techniques to map brain wiring. While there are many modality-specific tools to process these data, there is a lack of integration across modalities. We develop an automated resource that combines histologically cleared volumes with connectivity atlases and MRI, enabling the analysis of histological features across multiple fiber tracts and networks, and their correlation with in-vivo biomarkers. We apply our pipeline in a murine stroke model, demonstrating not only strong correspondence between MRI abnormalities and CLARITY-tissue staining, but also uncovering acute cellular effects in areas connected to the ischemic core. We provide improved maps of connectivity by quantifying projection terminals from CLARITY viral injections, and integrate diffusion MRI with CLARITY viral tracing to compare connectivity maps across scales. Finally, we demonstrate tract-level histological changes of stroke through this multimodal integration. This resource can propel investigations of network alterations underlying neurological disorders.
Collapse
Affiliation(s)
- Maged Goubran
- Department of Radiology, Stanford University, Stanford, CA, 94035, USA.
| | - Christoph Leuze
- Department of Radiology, Stanford University, Stanford, CA, 94035, USA
| | - Brian Hsueh
- Department of Bioengineering, Stanford University, Stanford, CA, 94035, USA
- CNC Program, Stanford University, Stanford, CA, 94035, USA
| | - Markus Aswendt
- Department of Neurosurgery and Stanford Stroke Center, Stanford University, Stanford, CA, 94035, USA
| | - Li Ye
- Department of Bioengineering, Stanford University, Stanford, CA, 94035, USA
- CNC Program, Stanford University, Stanford, CA, 94035, USA
| | - Qiyuan Tian
- Department of Radiology, Stanford University, Stanford, CA, 94035, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94035, USA
| | - Michelle Y Cheng
- Department of Neurosurgery and Stanford Stroke Center, Stanford University, Stanford, CA, 94035, USA
| | - Ailey Crow
- CNC Program, Stanford University, Stanford, CA, 94035, USA
| | - Gary K Steinberg
- Department of Neurosurgery and Stanford Stroke Center, Stanford University, Stanford, CA, 94035, USA
| | - Jennifer A McNab
- Department of Radiology, Stanford University, Stanford, CA, 94035, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, 94035, USA
- CNC Program, Stanford University, Stanford, CA, 94035, USA
- Department of Psychiatry, Stanford University, Stanford, CA, 94035, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94035, USA
| | - Michael Zeineh
- Department of Radiology, Stanford University, Stanford, CA, 94035, USA.
| |
Collapse
|