1
|
da Silva DD, Araldi RP, Belizario MR, Rocha WG, Maciel RMDB, Cerutti JM. DLK1 Is Associated with Stemness Phenotype in Medullary Thyroid Carcinoma Cell Lines. Int J Mol Sci 2024; 25:11924. [PMID: 39595993 PMCID: PMC11594232 DOI: 10.3390/ijms252211924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Medullary thyroid carcinoma (MTC) is a rare and aggressive tumor, often requiring systemic treatment in advanced or metastatic stages, where drug resistance presents a significant challenge. Given the role of cancer stem cells (CSCs) in cancer recurrence and drug resistance, we aimed to identify CSC subpopulations within two MTC cell lines harboring pathogenic variants in the two most common MEN2-associated codons. We analyzed 15 stemness-associated markers, along with well-established thyroid stem cell markers (CD133, CD44, and ALDH1), a novel candidate (DLK1), and multidrug resistance proteins (MRP1 and MRP3). The ability to efflux the fluorescent dye Hoechst 3342 and form spheroids, representing CSC behavior, was also assessed. MZ-CRC-1 cells (p.M918T) displayed higher expressions of canonical markers, DLK1, and MRP proteins than TT cells (p.C634W). MZ-CRC-1 cells also formed more spheroids and showed less dye accumulation (p < 0.0001). Finally, we observed that DLK1+ cells (those expressing DLK1) in both cell lines exhibited significantly higher levels of stemness markers compared to DLK1- cells (those lacking DLK1 expression). These findings underscore DLK1's role in enhancing the stemness phenotype, providing valuable insights into MTC progression and resistance and suggesting potential therapeutic implications.
Collapse
Affiliation(s)
- Danilo Dias da Silva
- Genetic Bases of Thyroid Tumour Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil; (D.D.d.S.); (R.P.A.); (M.R.B.); (W.G.R.)
| | - Rodrigo Pinheiro Araldi
- Genetic Bases of Thyroid Tumour Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil; (D.D.d.S.); (R.P.A.); (M.R.B.); (W.G.R.)
| | - Mariana Rocha Belizario
- Genetic Bases of Thyroid Tumour Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil; (D.D.d.S.); (R.P.A.); (M.R.B.); (W.G.R.)
| | - Welbert Gomes Rocha
- Genetic Bases of Thyroid Tumour Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil; (D.D.d.S.); (R.P.A.); (M.R.B.); (W.G.R.)
| | - Rui Monteiro de Barros Maciel
- Laboratório de Endocrinologia Molecular e Translacional, Disciplina de Endocrinologia e Metabologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil;
| | - Janete Maria Cerutti
- Genetic Bases of Thyroid Tumour Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil; (D.D.d.S.); (R.P.A.); (M.R.B.); (W.G.R.)
| |
Collapse
|
2
|
Gor R, Ramachandran I, Ramalingam S. Targeting the Cancer Stem Cells in Endocrine Cancers with Phytochemicals. Curr Top Med Chem 2022; 22:2589-2597. [PMID: 36380414 DOI: 10.2174/1567205020666221114112814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/11/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022]
Abstract
Endocrine cancer is an uncontrolled growth of cells in the hormone-producing glands. Endocrine cancers include the adrenal, thyroid, parathyroid, pancreas, pituitary, and ovary malignancy. Recently, there is an increase in the incidence of the most common endocrine cancer types, namely pancreatic and thyroid cancers. Cancer stem cells (CSCs) of endocrine tumors have received more attention due to their role in cancer progression, therapeutic resistance, and cancer relapse. Phytochemicals provide several health benefits and are effective in the treatment of various diseases including cancer. Therefore, finding the natural phytochemicals that target the CSCs will help to improve cancer patients' prognosis and life expectancy. Phytochemicals have been shown to have anticancer properties and are very effective in treating various cancer types. Curcumin is a common polyphenol found in turmeric, which has been shown to promote cellular drug accumulation and increase the effectiveness of chemotherapy. Moreover, various other phytochemicals such as resveratrol, genistein, and apigenin are effective against different endocrine cancers by regulating the CSCs. Thus, phytochemicals have emerged as chemotherapeutics that may have significance in preventing and treating the endocrine cancers.
Collapse
Affiliation(s)
- Ravi Gor
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - Ilangovan Ramachandran
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600113, Tamil Nadu, India
| | - Satish Ramalingam
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| |
Collapse
|
3
|
Sabatino ME, Grondona E, De Paul AL. Architects of Pituitary Tumour Growth. Front Endocrinol (Lausanne) 2022; 13:924942. [PMID: 35837315 PMCID: PMC9273718 DOI: 10.3389/fendo.2022.924942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
The pituitary is a master gland responsible for the modulation of critical endocrine functions. Pituitary neuroendocrine tumours (PitNETs) display a considerable prevalence of 1/1106, frequently observed as benign solid tumours. PitNETs still represent a cause of important morbidity, due to hormonal systemic deregulation, with surgical, radiological or chronic treatment required for illness management. The apparent scarceness, uncommon behaviour and molecular features of PitNETs have resulted in a relatively slow progress in depicting their pathogenesis. An appropriate interpretation of different phenotypes or cellular outcomes during tumour growth is desirable, since histopathological characterization still remains the main option for prognosis elucidation. Improved knowledge obtained in recent decades about pituitary tumorigenesis has revealed that this process involves several cellular routes in addition to proliferation and death, with its modulation depending on many signalling pathways rather than being the result of abnormalities of a unique proliferation pathway, as sometimes presented. PitNETs can display intrinsic heterogeneity and cell subpopulations with diverse biological, genetic and epigenetic particularities, including tumorigenic potential. Hence, to obtain a better understanding of PitNET growth new approaches are required and the systematization of the available data, with the role of cell death programs, autophagy, stem cells, cellular senescence, mitochondrial function, metabolic reprogramming still being emerging fields in pituitary research. We envisage that through the combination of molecular, genetic and epigenetic data, together with the improved morphological, biochemical, physiological and metabolically knowledge on pituitary neoplastic potential accumulated in recent decades, tumour classification schemes will become more accurate regarding tumour origin, behaviour and plausible clinical results.
Collapse
Affiliation(s)
- Maria Eugenia Sabatino
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), Córdoba, Argentina
| | - Ezequiel Grondona
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Ana Lucía De Paul
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
- *Correspondence: Ana Lucía De Paul,
| |
Collapse
|
4
|
Di Franco S, Pellegata NS, Luconi M, Stassi G. Editorial: Stem Cells in Endocrine Tumors. Front Endocrinol (Lausanne) 2021; 12:722790. [PMID: 34262532 PMCID: PMC8273270 DOI: 10.3389/fendo.2021.722790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Simone Di Franco
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Natalia Simona Pellegata
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HZ), Munich, Germany
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Michaela Luconi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- *Correspondence: Michaela Luconi, ; Giorgio Stassi,
| | - Giorgio Stassi
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
- *Correspondence: Michaela Luconi, ; Giorgio Stassi,
| |
Collapse
|
5
|
Würth R, Thellung S, Corsaro A, Barbieri F, Florio T. Experimental Evidence and Clinical Implications of Pituitary Adenoma Stem Cells. Front Endocrinol (Lausanne) 2020; 11:54. [PMID: 32153500 PMCID: PMC7044184 DOI: 10.3389/fendo.2020.00054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Pituitary adenomas, accounting for 15% of diagnosed intracranial neoplasms, are usually benign and pharmacologically and surgically treatable; however, the critical location, mass effects and hormone hypersecretion sustain their significant morbidity. Approximately 35% of pituitary tumors show a less benign course since they are highly proliferative and invasive, poorly resectable, and likely recurring. The latest WHO classification of pituitary tumors includes pituitary transcription factor assessment to determine adenohypophysis cell lineages and accurate designation of adenomas, nevertheless little is known about molecular and cellular pathways which contribute to pituitary tumorigenesis. In malignant tumors the identification of cancer stem cells radically changed the concepts of both tumorigenesis and pharmacological approaches. Cancer stem cells are defined as a subset of undifferentiated transformed cells from which the bulk of cancer cells populating a tumor mass is generated. These cells are able to self-renew, promoting tumor progression and recurrence of malignant tumors, also conferring cytotoxic drug resistance. On the other hand, the existence of stem cells within benign tumors is still debated. The presence of adult stem cells in human and murine pituitaries where they sustain the high plasticity of hormone-producing cells, allowed the hypothesis that putative tumor stem cells might exist in pituitary adenomas, reinforcing the concept that the cancer stem cell model could also be applied to pituitary tumorigenesis. In the last few years, the isolation and phenotypic characterization of putative pituitary adenoma stem-like cells was performed using a wide and heterogeneous variety of experimental models and techniques, although the role of these cells in adenoma initiation and progression is still not completely definite. The assessment of possible pituitary adenoma-initiating cell population would be of extreme relevance to better understand pituitary tumor biology and to identify novel potential diagnostic markers and pharmacological targets. In this review, we summarize the most updated studies focused on the definition of pituitary adenoma stem cell phenotype and functional features, highlighting the biological processes and intracellular pathways potentially involved in driving tumor growth, relapse, and therapy resistance.
Collapse
Affiliation(s)
- Roberto Würth
- Section of Pharmacology, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genoa, Italy
| | - Stefano Thellung
- Section of Pharmacology, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genoa, Italy
| | - Alessandro Corsaro
- Section of Pharmacology, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genoa, Italy
| | - Federica Barbieri
- Section of Pharmacology, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genoa, Italy
| | - Tullio Florio
- Section of Pharmacology, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
6
|
Cancer Stem Cells and Osteosarcoma: Opportunities and Limitations. Tech Orthop 2019. [DOI: 10.1097/bto.0000000000000408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
7
|
Bhattacharya D, Scimè A. Metabolic Regulation of Epithelial to Mesenchymal Transition: Implications for Endocrine Cancer. Front Endocrinol (Lausanne) 2019; 10:773. [PMID: 31849832 PMCID: PMC6901924 DOI: 10.3389/fendo.2019.00773] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
The last few decades have witnessed an outstanding advancement in our understanding of the hallmarks of endocrine cancers. This includes the epithelial to mesenchymal transition (EMT), a process that alters the morphology and functional characteristics of carcinoma cells. The mesenchymal stem cell like phenotype produced by EMT allows the dislocation of cancer cells from the primary tumor site with inheritance of motility, metastatic and invasive properties. A fundamental driver thought to initiate and propagate EMT is metabolic reprogramming that occur during these transitions. Though there remains a paucity of data regarding the alterations that occur during EMT in endocrine cancers, the contribution of deregulated metabolism is a prominent feature. This mini review focuses on metabolic reprogramming events that occur in cancer cells and in particular those of endocrine origin. It highlights the main metabolic reprogramming outcomes of EMT, encompassing glycolysis, mitochondria oxidative phosphorylation and function, glutamine and lipid metabolism. Comprehending the metabolic changes that occur during EMT will help formulate potential bioenergetic targets as therapies for endocrine cancer metastasis.
Collapse
|
8
|
Thyroid cancer stem-like cell exosomes: regulation of EMT via transfer of lncRNAs. J Transl Med 2018; 98:1133-1142. [PMID: 29967342 PMCID: PMC6138523 DOI: 10.1038/s41374-018-0065-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/23/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022] Open
Abstract
Thyroid cancers are the most common endocrine malignancy and approximately 2% of thyroid cancers are anaplastic thyroid carcinoma (ATC), one of the most lethal and treatment resistant human cancers. Cancer stem-like cells (CSCs) may initiate tumorigenesis, induce resistance to chemotherapy and radiation therapy, have multipotent capability and may be responsible for recurrent and metastatic disease. The production of CSCs has been linked to epithelial-mesenchymal transition (EMT) and the acquisition of stemness. Exosomes are small (30-150 nm) membranous vesicles secreted by most cells that play a significant role in cell-to-cell communication. Many non-coding RNAs (ncRNA), such as long-non-coding RNAs (lncRNA), can initiate tumorigenesis and the EMT process. Exosomes carry ncRNAs to local and distant cell populations. This study examines secreted exosomes from two in vitro cell culture models; an EMT model and a CSC model. The EMT was induced in a papillary thyroid carcinoma (PTC) cell line by TGFβ1 treatment. Exosomes from this model were isolated and cultured with naïve PTC cells and examined for EMT induction. In the CSC model, exosomes were isolated from a CSC clonal line, cultured with a normal thyroid cell line and examined for EMT induction. The EMT exosomes transferred the lncRNA MALAT1 and EMT effectors SLUG and SOX2; however, EMT was not induced in this model. The exosomes from the CSC model also transferred the lncRNA MALAT1 and the transcription factors SLUG and SOX2 but additionally transferred linc-ROR and induced EMT in the normal thyroid cells. Preliminary siRNA studies directed towards linc-ROR reduced invasion. We hypothesize that CSC exosomes transfer lncRNAs, importantly linc-ROR, to induce EMT and inculcate the local tumor microenvironment and the distant metastatic niche. Therapies directed towards CSCs, their exosomes and/or the lncRNAs they carry may reduce a tumor's metastatic capacity.
Collapse
|
9
|
Caffarini M, Orciani M, Trementino L, Di Primio R, Arnaldi G. Pituitary adenomas, stem cells, and cancer stem cells: what's new? J Endocrinol Invest 2018; 41:745-753. [PMID: 29222642 DOI: 10.1007/s40618-017-0803-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/29/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE To clarify the existence of pituitary stem cells (SCs) both in the embryonic and the postnatal gland and the role for SCs in pituitary adenomas. METHODS This work, which does not address the pathogenesis of pituitary adenomas, reviews the latest research findings and discoveries on SCs in pituitary and cancer SCs (CSCs) in pituitary adenomas and discusses the involvement of the EMT. RESULTS Several groups using different approaches and techniques have demonstrated the existence of SCs and CSCs and as they are major players in pituitary adenoma onset. CONCLUSIONS As in other benign and malignant tumors, the hypothesis that CSCs play a pivotal role in pituitary adenoma onset has been confirmed as well as the existence of a link between the epithelial-to-mesenchymal transition (EMT) process and CSC formation in epithelial tumors.
Collapse
Affiliation(s)
- M Caffarini
- Department of Clinical and Molecular Sciences-Histology, Università Politecnica delle Marche, via Tronto 10/A, 60126, Ancona, Italy
| | - M Orciani
- Department of Clinical and Molecular Sciences-Histology, Università Politecnica delle Marche, via Tronto 10/A, 60126, Ancona, Italy
| | - L Trementino
- Department of Clinical and Molecular Sciences-Endocrinology, Università Politecnica delle Marche, Via Tronto 10/A, 60126, Ancona, Italy
| | - R Di Primio
- Department of Clinical and Molecular Sciences-Histology, Università Politecnica delle Marche, via Tronto 10/A, 60126, Ancona, Italy.
| | - G Arnaldi
- Department of Clinical and Molecular Sciences-Endocrinology, Università Politecnica delle Marche, Via Tronto 10/A, 60126, Ancona, Italy
| |
Collapse
|
10
|
Aristizabal Prada ET, Auernhammer CJ. Targeted therapy of gastroenteropancreatic neuroendocrine tumours: preclinical strategies and future targets. Endocr Connect 2018; 7:R1-R25. [PMID: 29146887 PMCID: PMC5754510 DOI: 10.1530/ec-17-0286] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022]
Abstract
Molecular targeted therapy of advanced neuroendocrine tumours (NETs) of the gastroenteropancreatic (GEP) system currently encompasses approved therapy with the mammalian target of rapamycin (mTOR) inhibitor everolimus and the multi-tyrosinkinase inhibitor sunitinib. However, clinical efficacy of these treatment strategies is limited by low objective response rates and limited progression-free survival due to tumour resistance. Further novel strategies for molecular targeted therapy of NETs of the GEP system are needed. This paper reviews preclinical research models and signalling pathways in NETs of the GEP system. Preclinical and early clinical data on putative novel targets for molecular targeted therapy of NETs of the GEP system are discussed, including PI3K, Akt, mTORC1/mTORC2, GSK3, c-Met, Ras-Raf-MEK-ERK, embryogenic pathways (Hedgehog, Notch, Wnt/beta-catenin, TGF-beta signalling and SMAD proteins), tumour suppressors and cell cycle regulators (p53, cyclin-dependent kinases (CDKs) CDK4/6, CDK inhibitor p27, retinoblastoma protein (Rb)), heat shock protein HSP90, Aurora kinase, Src kinase family, focal adhesion kinase and epigenetic modulation by histone deacetylase inhibitors.
Collapse
Affiliation(s)
- E T Aristizabal Prada
- Department of Internal Medicine IVCampus Grosshadern, University-Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - C J Auernhammer
- Department of Internal Medicine IVCampus Grosshadern, University-Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
11
|
Zhang C, Ma Q, Shi Y, Li X, Wang M, Wang J, Ge J, Chen Z, Wang Z, Jiang H. A novel 5-fluorouracil-resistant human esophageal squamous cell carcinoma cell line Eca-109/5-FU with significant drug resistance-related characteristics. Oncol Rep 2017; 37:2942-2954. [DOI: 10.3892/or.2017.5539] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/31/2016] [Indexed: 11/05/2022] Open
|
12
|
Vankelecom H, Roose H. The Stem Cell Connection of Pituitary Tumors. Front Endocrinol (Lausanne) 2017; 8:339. [PMID: 29255445 PMCID: PMC5722833 DOI: 10.3389/fendo.2017.00339] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Tumors in the pituitary gland are typically benign but cause serious morbidity due to compression of neighboring structures and hormonal disruptions. Overall, therapy efficiency remains suboptimal with negative impact on health and comfort of life, including considerable risk of therapy resistance and tumor recurrence. To date, little is known on the pathogenesis of pituitary tumors. Stem cells may represent important forces in this process. The pituitary tumors may contain a driving tumor stem cell population while the resident tissue stem cells may be directly or indirectly linked to tumor development and growth. Here, we will briefly summarize recent studies that afforded a glance behind the scenes of this stem cell connection. A better knowledge of the mechanisms underlying pituitary tumorigenesis is essential to identify more efficacious treatment modalities and improve clinical management.
Collapse
Affiliation(s)
- Hugo Vankelecom
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
- *Correspondence: Hugo Vankelecom,
| | - Heleen Roose
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
13
|
Sarcomatoid adrenocortical carcinoma: a comprehensive pathological, immunohistochemical, and targeted next-generation sequencing analysis. Hum Pathol 2016; 58:113-122. [DOI: 10.1016/j.humpath.2016.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/03/2016] [Accepted: 08/18/2016] [Indexed: 01/05/2023]
|
14
|
Martinez-Barbera JP, Andoniadou CL. Concise Review: Paracrine Role of Stem Cells in Pituitary Tumors: A Focus on Adamantinomatous Craniopharyngioma. Stem Cells 2016; 34:268-76. [PMID: 26763580 PMCID: PMC4864894 DOI: 10.1002/stem.2267] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/30/2015] [Indexed: 12/31/2022]
Abstract
The existence of tissue‐specific progenitor/stem cells in the adult pituitary gland of the mouse has been demonstrated recently using genetic tracing experiments. These cells have the capacity to differentiate into all of the different cell lineages of the anterior pituitary and self‐propagate in vitro and can therefore contribute to normal homeostasis of the gland. In addition, they play a critical role in tumor formation, specifically in the etiology of human adamantinomatous craniopharyngioma, a clinically relevant tumor that is associated with mutations in CTNNB1 (gene encoding β‐catenin). Mouse studies have shown that only pituitary embryonic precursors or adult stem cells are able to generate tumors when targeted with oncogenic β‐catenin, suggesting that the cell context is critical for mutant β‐catenin to exert its oncogenic effect. Surprisingly, the bulk of the tumor cells are not derived from the mutant progenitor/stem cells, suggesting that tumors are induced in a paracrine manner. Therefore, the cell sustaining the mutation in β‐catenin and the cell‐of‐origin of the tumors are different. In this review, we will discuss the in vitro and in vivo evidence demonstrating the presence of stem cells in the adult pituitary and analyze the evidence showing a potential role of these stem cells in pituitary tumors. Stem Cells2016;34:268–276
Collapse
Affiliation(s)
- Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Cynthia L Andoniadou
- Craniofacial Development and Stem Cell Biology, King's College London, Guy's Campus, London, United Kingdom
| |
Collapse
|
15
|
Vankelecom H. Pituitary Stem Cells: Quest for Hidden Functions. STEM CELLS IN NEUROENDOCRINOLOGY 2016. [DOI: 10.1007/978-3-319-41603-8_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Makarenkova HP, Dartt DA. Myoepithelial Cells: Their Origin and Function in Lacrimal Gland Morphogenesis, Homeostasis, and Repair. CURRENT MOLECULAR BIOLOGY REPORTS 2015; 1:115-123. [PMID: 26688786 PMCID: PMC4683023 DOI: 10.1007/s40610-015-0020-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lacrimal gland (LG) is an exocrine tubuloacinar gland that secretes the aqueous layer of the tear film. LG epithelium is composed of ductal, acinar, and myoepithelial cells (MECs) bordering the basal lamina and separating the epithelial layer from the extracellular matrix. Mature MECs have contractile ability and morphologically resemble smooth muscle cells; however, they exhibit features typical for epithelial cells, such as the presence of specific cytokeratin filaments. Increasing evidence supports the assertion that myoepithelial cells (MECs) play key roles in the lacrimal gland development, homeostasis, and stabilizing the normal structure and polarity of LG secretory acini. MECs take part in the formation of extracellular matrix gland and participate in signal exchange between epithelium and stroma. MECs have a high level of plasticity and are able to differentiate into several cell lineages. Here, we provide a review on some of the MEC characteristics and their role in LG morphogenesis, maintenance, and repair.
Collapse
Affiliation(s)
- Helen P. Makarenkova
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Darlene A. Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Oudijk L, Neuhofer CM, Lichtenauer UD, Papathomas TG, Korpershoek E, Stoop H, Oosterhuis JW, Smid M, Restuccia DF, Robledo M, de Cubas AA, Mannelli M, Gimenez-Roqueplo AP, Dinjens WNM, Beuschlein F, de Krijger RR. Immunohistochemical expression of stem cell markers in pheochromocytomas/paragangliomas is associated with SDHx mutations. Eur J Endocrinol 2015; 173:43-52. [PMID: 25916394 DOI: 10.1530/eje-14-1164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/21/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Pheochromocytomas (PCCs) are neuroendocrine tumors that occur in the adrenal medulla, whereas paragangliomas (PGLs) arise from paraganglia in the head, neck, thorax, or abdomen. In a variety of tumors, cancer cells with stem cell-like properties seem to form the basis of tumor initiation because of their ability to self-renew and proliferate. Specifically targeting this small cell population may lay the foundation for more effective therapeutic approaches. In the present study, we intended to identify stem cells in PCCs/PGLs. DESIGN We examined the immunohistochemical expression of 11 stem cell markers (SOX2, LIN28, NGFR, THY1, PREF1, SOX17, NESTIN, CD117, OCT3/4, NANOG, and CD133) on tissue microarrays containing 208 PCCs/PGLs with different genetic backgrounds from five European centers. RESULTS SOX2, LIN28, NGFR, and THY1 were expressed in more than 10% of tumors, and PREF1, SOX17, NESTIN, and CD117 were expressed in <10% of the samples. OCT3/4, NANOG, and CD133 were not detectable at all. Double staining for chromogranin A/SOX2 and S100/SOX2 demonstrated SOX2 immunopositivity in both tumor and adjacent sustentacular cells. The expression of SOX2, SOX17, NGFR, LIN28, PREF1, and THY1 was significantly associated with mutations in one of the succinate dehydrogenase (SDH) genes. In addition, NGFR expression was significantly correlated with metastatic disease. CONCLUSION Immunohistochemical expression of stem cell markers was found in a subset of PCCs/PGLs. Further studies are required to validate whether some stem cell-associated markers, such as SOX2, could serve as targets for therapeutic approaches and whether NGFR expression could be utilized as a predictor of malignancy.
Collapse
Affiliation(s)
- L Oudijk
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands
| | - C M Neuhofer
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands
| | - U D Lichtenauer
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands
| | - T G Papathomas
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands
| | - E Korpershoek
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands
| | - H Stoop
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands
| | - J W Oosterhuis
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands
| | - M Smid
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands
| | - D F Restuccia
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands
| | - M Robledo
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands
| | - A A de Cubas
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands
| | - M Mannelli
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands
| | - A P Gimenez-Roqueplo
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyRein
| | - W N M Dinjens
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands
| | - F Beuschlein
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands
| | - R R de Krijger
- Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands Department of PathologyErasmus MC Cancer Institute, University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The NetherlandsEndocrine Research UnitMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, GermanyDepartment of Medical OncologyErasmus MC Cancer Institute, Cancer Genomics Netherlands, Rotterdam, The NetherlandsHuman Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, SpainDepartment of Experimental and Clinical Biomedical SciencesUniversity of Florence and Istituto Toscano Tumori, Florence, ItalyAssistance Publique-Hôpitaux de ParisHôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, FranceINSERMUMR970, Paris-Cardiovascular Research Center at HEGP, F-75015 Paris, FranceUniversité Paris DescartesFaculté de Médecine, F-75005 Paris, FranceDepartment of PathologyRein
| |
Collapse
|
18
|
Isolation and characterization of progenitor mesenchymal cells in human pituitary tumors. Cancer Gene Ther 2014; 22:9-16. [PMID: 25525036 DOI: 10.1038/cgt.2014.63] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 01/06/2023]
Abstract
The Cancer Stem Cells (CSCs) theory suggests that genetic alterations in stem cells are the direct cause for cancer. The evidence for a CSC population that results in pituitary tumors is poor. Some studies report the isolation of CSCs, but a deep characterization of the stemness of these cells is lacking. Here, we report the isolation and detailed characterization of progenitor mesenchymal cells (PMCs) from both growth hormone-secreting (GH(+)) and non-secreting (NS) pituitary adenomas, determining the immunophenotype, the expression of genes related to stemness or to pituitary hormone cell types, and the differentiative potential towards osteo-, chondro- and adipogenic lineages. Finally, the expression of CD133, known as a marker for CSCs in other tumors, was analyzed. Isolated cells, both from GH(+) and NS tumors, satisfy all the criteria for the identification of PMCs and express known stem cell markers (OCT4, SOX2, KLF4, NANOG), but do not express markers of pituitary hormone cell types (PITX2, PROP1, PIT1). Finally, PMCs express CD133. We demonstrated that pituitary tumors contain a stem cell population that can generate cell types characteristic of mesenchymal stem cells, and express CD133, which is associated with CSCs in other tumors.
Collapse
|
19
|
Hsu KT, Yu XM, Audhya AW, Jaume JC, Lloyd RV, Miyamoto S, Prolla TA, Chen H. Novel approaches in anaplastic thyroid cancer therapy. Oncologist 2014; 19:1148-55. [PMID: 25260367 PMCID: PMC4221369 DOI: 10.1634/theoncologist.2014-0182] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/18/2014] [Indexed: 11/17/2022] Open
Abstract
Anaplastic thyroid cancer (ATC), accounting for less than 2% of all thyroid cancer, is responsible for the majority of death from all thyroid malignancies and has a median survival of 6 months. The resistance of ATC to conventional thyroid cancer therapies, including radioiodine and thyroid-stimulating hormone suppression, contributes to the very poor prognosis of this malignancy. This review will cover several cellular signaling pathways and mechanisms, including RET/PTC, RAS, BRAF, Notch, p53, and histone deacetylase, which are identified to play roles in the transformation and dedifferentiation process, and therapies that target these pathways. Lastly, novel approaches and agents involving the Notch1 pathway, nuclear factor κB, Trk-fused gene, cancer stem-like cells, mitochondrial mutation, and tumor immune microenvironment are discussed. With a better understanding of the biological process and treatment modality, the hope is to improve ATC outcome in the future.
Collapse
Affiliation(s)
- Kun-Tai Hsu
- Endocrine Surgery Research Laboratories, Department of Surgery, Department of Biomolecular Chemistry, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Department of Pathology and Laboratory Medicine, Department of Oncology, Department of Genetics and Medical Genetics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Xiao-Min Yu
- Endocrine Surgery Research Laboratories, Department of Surgery, Department of Biomolecular Chemistry, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Department of Pathology and Laboratory Medicine, Department of Oncology, Department of Genetics and Medical Genetics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Anjon W Audhya
- Endocrine Surgery Research Laboratories, Department of Surgery, Department of Biomolecular Chemistry, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Department of Pathology and Laboratory Medicine, Department of Oncology, Department of Genetics and Medical Genetics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Juan C Jaume
- Endocrine Surgery Research Laboratories, Department of Surgery, Department of Biomolecular Chemistry, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Department of Pathology and Laboratory Medicine, Department of Oncology, Department of Genetics and Medical Genetics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ricardo V Lloyd
- Endocrine Surgery Research Laboratories, Department of Surgery, Department of Biomolecular Chemistry, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Department of Pathology and Laboratory Medicine, Department of Oncology, Department of Genetics and Medical Genetics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Shigeki Miyamoto
- Endocrine Surgery Research Laboratories, Department of Surgery, Department of Biomolecular Chemistry, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Department of Pathology and Laboratory Medicine, Department of Oncology, Department of Genetics and Medical Genetics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Tomas A Prolla
- Endocrine Surgery Research Laboratories, Department of Surgery, Department of Biomolecular Chemistry, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Department of Pathology and Laboratory Medicine, Department of Oncology, Department of Genetics and Medical Genetics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Herbert Chen
- Endocrine Surgery Research Laboratories, Department of Surgery, Department of Biomolecular Chemistry, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Department of Pathology and Laboratory Medicine, Department of Oncology, Department of Genetics and Medical Genetics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
20
|
Abstract
Thyroid cancer is one of the most rapidly increasing malignancies. The reasons for this increase is not completely known, but increases in the diagnosis of papillary thyroid microcarcinomas and follicular variant of papillary thyroid carcinomas along with the enhanced detection of well-differentiated thyroid carcinomas are probably all contributing factors. Although most cases of well-differentiated thyroid carcinomas are associated with an excellent prognosis, a small percentage of patients with well-differentiated thyroid carcinomas as well as most patients with poorly differentiated and anaplastic thyroid carcinomas have recurrent and/or metastatic disease that is often fatal. The cancer stem-like cell (CSC) model suggests that a small number of cells within a cancer, known as CSCs, are responsible for resistance to chemotherapy and radiation therapy, as well as for recurrent and metastatic disease. This review discusses current studies about thyroid CSCs, the processes of epithelial-to-mesenchymal transition (EMT), and mesenchymal-to-epithelial transition that provide plasticity to CSC growth, in addition to the role of microRNAs in CSC development and regulation. Understanding the biology of CSCs, EMT and the metastatic cascade should lead to the design of more rational targeted therapies for highly aggressive and fatal thyroid cancers.
Collapse
Affiliation(s)
- Zhenying Guo
- Department of Pathology and Laboratory MedicineUniversity of Wisconsin School of Medicine and Public Health, Zhejiang, China
| | - Heather Hardin
- Department of Pathology and Laboratory MedicineUniversity of Wisconsin School of Medicine and Public Health, Zhejiang, China
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory MedicineUniversity of Wisconsin School of Medicine and Public Health, Zhejiang, China
| |
Collapse
|
21
|
Vankelecom H, Chen J. Pituitary stem cells: where do we stand? Mol Cell Endocrinol 2014; 385:2-17. [PMID: 23994027 DOI: 10.1016/j.mce.2013.08.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/12/2013] [Accepted: 08/20/2013] [Indexed: 01/21/2023]
Abstract
Some 5 years ago, the stem cells of the adult pituitary gland were discovered. Subsequent in-depth characterization revealed expression of several stemness markers and embryo-typical factors. Now, the quest is open to decipher their role in the gland. When and how pituitary stem cells differentiate to contribute to the mature hormone-producing cell populations is not known. New research models support their involvement in cell regeneration after injury in the gland, and suggest a possible role in pituitary tumor formation. From their expression phenotype, pituitary stem cells seem to re-use embryonic developmental programs during the creation of new hormonal cells. Here, we will review the latest progression in the domain of pituitary stem cells, including the uncovering of some new molecular flavors and of the first potential functions. Eventually, we will speculate on their differentiation programs towards hormonal cells, with a particular focus on gonadotropes.
Collapse
Affiliation(s)
- Hugo Vankelecom
- Department of Development and Regeneration, Cluster Stem Cell Biology and Embryology, Research Unit of Stem Cell Research, University of Leuven (KU Leuven), B-3000 Leuven, Belgium.
| | - Jianghai Chen
- Department of Hand Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science & Technology (HUST), Wuhan, Hubei 430022, PR China.
| |
Collapse
|
22
|
Kucerova L, Feketeova L, Kozovska Z, Poturnajova M, Matuskova M, Nencka R, Babal P. In vivo 5FU-exposed human medullary thyroid carcinoma cells contain a chemoresistant CD133+ tumor-initiating cell subset. Thyroid 2014; 24:520-32. [PMID: 24073856 PMCID: PMC3949502 DOI: 10.1089/thy.2013.0277] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The hierarchical model of solid tumor proposes the existence of rare tumor cell subpopulations with stem-cell properties. The glycoprotein prominin-1 (CD133) represents one of the cancer stem-cell markers in several tumor types. The CD133+ cell subpopulation was shown to be enriched for tumor-initiating and highly chemoresistant cells in human cancer(s). METHODS We investigated whether CD133+ cells derived from human medullary thyroid carcinoma (MTC) possess tumor-initiating properties in vivo and exhibit differential responses to chemotherapeutic agents. We demonstrated that separated CD133+ cells from the human MTC cell line TT are enriched for tumor-initiating cells as demonstrated by tumor formation in vivo. Nevertheless, TT CD133+ cells do not exhibit increased chemoresistance in comparison to parental cells. However, when MTC xenotransplants were treated with the chemotherapeutic drug 5-fluorouracil (5FU) in vivo, CD133 expression increased in MTC cells. RESULTS This cell line, designated FTTiv isolated from the drug-exposed xenotransplants, exhibits a significantly different response to 5FU associated with the substantial change in the expression profile of genes involved in 5FU metabolism and drug resistance. Moreover, the CD133+ tumor-initiating subpopulation derived from these drug-exposed FTTiv cells is significantly more resistant to 5FU and retains the chemoresistant properties upon FTTiv culture propagation. CONCLUSIONS These data suggest that the chemoresistant phenotype and the CD133+ MTC subpopulation emerged in response to chemotherapy in vivo.
Collapse
MESH Headings
- AC133 Antigen
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antineoplastic Agents/pharmacology
- Apoptosis/genetics
- Carcinoma, Medullary/genetics
- Carcinoma, Medullary/metabolism
- Carcinoma, Medullary/pathology
- Carcinoma, Neuroendocrine
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Drug Resistance, Neoplasm/genetics
- Fluorouracil/pharmacology
- Glycoproteins/genetics
- Glycoproteins/metabolism
- Humans
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Peptides/genetics
- Peptides/metabolism
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
Collapse
Affiliation(s)
- Lucia Kucerova
- Laboratory of Molecular Oncology, Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Feketeova
- Department of Pathology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Zuzana Kozovska
- Laboratory of Molecular Oncology, Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martina Poturnajova
- Laboratory of Molecular Oncology, Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslava Matuskova
- Laboratory of Molecular Oncology, Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Pavel Babal
- Department of Pathology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
23
|
Zhou X, Gao Q, Wang J, Zhang X, Liu K, Duan Z. Linc-RNA-RoR acts as a "sponge" against mediation of the differentiation of endometrial cancer stem cells by microRNA-145. Gynecol Oncol 2014; 133:333-9. [PMID: 24589415 DOI: 10.1016/j.ygyno.2014.02.033] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/08/2014] [Accepted: 02/23/2014] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Recently, large intergenic non-coding ribonucleic acids-RoR (linc-RoR) was reported to regulate expression of core stem cell transcription factors (TFs), but its role in endometrial tumorsphere is still unknown. METHODS Fluorescence in situ hybridization (FISH) was used to characterize linc-RoR expression in ETs. After construction of adenovirus vectors carrying green fluorescent protein (GFP), these vectors were transfected into ETs to estimate the effects of overexpression or knocked down expression of miR-145, linc-RoR or Dicer. Flow cytometry was employed to ascertain transfection efficiency, and real-time polymerase chain reaction (RT-PCR) was employed to compare their levels. Colony formation was analyzed using cultured gelatin-coated tissue cultures. miR-145 potential targeting sites in linc-RoR were mutated using a site-directed mutagenesis kit to verify its competing endogenous RNA (ceRNA) effects. RESULTS Expression of linc-RoR and core stem cell TFs was associated with the pluripotent state of ETs, whereas miR-145 expression increased after ET differentiation. Greater expression of miR-145 could lead to down-regulation of linc-RoR and core TFs, and decreased colony formation. Converse effects could be achieved after knocked-down miR-145 expression. The effects of miR-145 could be eliminated after increasing the expression of linc-RoR in ETs or mutated targeted sequences in linc-RoR. Knocked-down Dicer expression could improve the expression of linc-RoR and core TFs. CONCLUSIONS Linc-RoR is a ceRNA and acts as a miR-145 "sponge" to inhibit mediation of the differentiation of ETs by miR-145. These results suggest that linc-RoR has an important role during endometrial carcinogenesis.
Collapse
Affiliation(s)
- Xi Zhou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China; Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, PR China
| | - Qin Gao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China
| | - Jianzhong Wang
- Department of Orthopaedics, The Second Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010030, PR China
| | - Xin Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China
| | - Kaige Liu
- The First Affiliated Hospital of Xi'an Medical University, Shaanxi 710077, PR China
| | - Zhao Duan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China.
| |
Collapse
|
24
|
Romano G. The role of the dysfunctional akt-related pathway in cancer: establishment and maintenance of a malignant cell phenotype, resistance to therapy, and future strategies for drug development. SCIENTIFICA 2013; 2013:317186. [PMID: 24381788 PMCID: PMC3870877 DOI: 10.1155/2013/317186] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/14/2013] [Indexed: 06/01/2023]
Abstract
Akt serine/threonine kinases, or PKB, are key players in the regulation of a wide variety of cellular activities, such as growth, proliferation, protection from apoptotic injuries, control of DNA damage responses and genome stability, metabolism, migration, and angiogenesis. The Akt-related pathway responds to the stimulation mediated by growth factors, cytokines, hormones, and several nutrients. Akt is present in three isoforms: Akt1, Akt2, and Akt3, which may be alternatively named PKB α , PKB β , and PKB γ , respectively. The Akt isoforms are encoded on three diverse chromosomes and their biological functions are predominantly distinct. Deregulations in the Akt-related pathway were observed in many human maladies, including cancer, cardiopathies, neurological diseases, and type-2 diabetes. This review discusses the significance of the abnormal activities of the Akt axis in promoting and sustaining malignancies, along with the development of tumor cell populations that exhibit enhanced resistance to chemo- and/or radiotherapy. This occurrence may be responsible for the relapse of the disease, which is unfortunately very often related to fatal consequences in patients.
Collapse
Affiliation(s)
- Gaetano Romano
- Department of Biology, College of Science and Technology, Temple University, Bio Life Science Building, Suite 456, 1900 N. 12th Street, Philadelphia, PA 19122, USA
| |
Collapse
|
25
|
Abstract
Thyroid cancer incidence is rising annually largely related to enhanced detection and early stage well-differentiated primary tumors. The prognosis for patients with early stage thyroid cancer is outstanding with most patients being cured with surgery. In selected cases, I-131 is administered to treat known or suspected residual or metastatic disease. Even patients with loco-regional metastases typically have an outstanding long-term prognosis, albeit with monitoring and occasional intervention for residual or recurrent disease. By contrast, individuals with distant metastases from thyroid cancer, particularly older patients with larger metastatic burdens and those with poorly differentiated tumors, have a poor prognosis. Patients with metastatic anaplastic thyroid cancer have a particularly poor prognosis. Published clinical trials indicate that transient disease control and partial remissions can be achieved with kinase inhibitor therapy directed toward angiogenic targets and that in some cases I-131 uptake can be enhanced. However, the direct targets of activity in metastatic lesions are incompletely defined and clear evidence that these treatments increase the duration or quality of life of patients is lacking, underscoring the need for improved knowledge regarding the metastatic process to inform the development of new therapies. In this review, we will focus on current data and hypotheses regarding key regulators of metastatic dormancy, metastatic progression, and the role of putative cancer stem cells.
Collapse
Affiliation(s)
- John E. Phay
- Division of Surgical Oncology, Department of Surgery, The Ohio State University College of Medicine; Arthur G. James Comprehensive Cancer Center and Richard G. Solove Research Institute, Columbus, OH 43210
| | - Matthew D. Ringel
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, The Ohio State University College of Medicine; Arthur G. James Comprehensive Cancer Center and Richard G. Solove Research Institute, Columbus, OH 43210
| |
Collapse
|
26
|
Hepatocyte growth factor signaling in intrapancreatic ductal cells drives pancreatic morphogenesis. PLoS Genet 2013; 9:e1003650. [PMID: 23935514 PMCID: PMC3723531 DOI: 10.1371/journal.pgen.1003650] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 06/04/2013] [Indexed: 12/17/2022] Open
Abstract
In a forward genetic screen for regulators of pancreas development in zebrafish, we identified donut(s908) , a mutant which exhibits failed outgrowth of the exocrine pancreas. The s908 mutation leads to a leucine to arginine substitution in the ectodomain of the hepatocyte growth factor (HGF) tyrosine kinase receptor, Met. This missense mutation impedes the proteolytic maturation of the receptor, its trafficking to the plasma membrane, and diminishes the phospho-activation of its kinase domain. Interestingly, during pancreatogenesis, met and its hgf ligands are expressed in pancreatic epithelia and mesenchyme, respectively. Although Met signaling elicits mitogenic and migratory responses in varied contexts, normal proliferation rates in donut mutant pancreata together with dysmorphic, mislocalized ductal cells suggest that met primarily functions motogenically in pancreatic tail formation. Treatment with PI3K and STAT3 inhibitors, but not with MAPK inhibitors, phenocopies the donut pancreatic defect, further indicating that Met signals through migratory pathways during pancreas development. Chimera analyses showed that Met-deficient cells were excluded from the duct, but not acinar, compartment in the pancreatic tail. Conversely, wild-type intrapancreatic duct and "tip cells" at the leading edge of the growing pancreas rescued the donut phenotype. Altogether, these results reveal a novel and essential role for HGF signaling in the intrapancreatic ducts during exocrine morphogenesis.
Collapse
|