1
|
Fernandes Â, Azevedo CM, Silva MC, Faria G, Dantas CS, Vicente MM, Pinho SS. Glycans as shapers of tumour microenvironment: A sweet driver of T-cell-mediated anti-tumour immune response. Immunology 2023; 168:217-232. [PMID: 35574724 DOI: 10.1111/imm.13494] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 01/17/2023] Open
Abstract
Essentially all cells are covered with a dense coat of different glycan structures/sugar chains, giving rise to the so-called glycocalyx. Changes in cellular glycosylation are a hallmark of cancer, affecting most of the pathophysiological processes associated with malignant transformation, including tumour immune responses. Glycans are chief macromolecules that define T-cell development, differentiation, fate, activation and signalling. Thus, the diversity of glycans expressed at the surface of T cells constitutes a fundamental molecular interface with the microenvironment by regulating the bilateral interactions between T-cells and cancer cells, fine-tuning the anti-tumour immune response. In this review, we will introduce the power of glycans as orchestrators of T-cell-mediated immune response in physiological conditions and in cancer. We discuss how glycans modulate the glyco-metabolic landscape in the tumour microenvironment, and whether glycans can synergize with immunotherapy as a way of rewiring T-cell effector functions against cancer cells.
Collapse
Affiliation(s)
- Ângela Fernandes
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Catarina M Azevedo
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Mariana C Silva
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Guilherme Faria
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Carolina S Dantas
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Manuel M Vicente
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Salomé S Pinho
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,School of Medicine and Biological Sciences (ICBAS), University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Chromatin organizer SATB1 controls the cell identity of CD4 + CD8 + double-positive thymocytes by regulating the activity of super-enhancers. Nat Commun 2022; 13:5554. [PMID: 36138028 PMCID: PMC9500044 DOI: 10.1038/s41467-022-33333-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 09/14/2022] [Indexed: 11/19/2022] Open
Abstract
CD4+ and CD8+ double-positive (DP) thymocytes play a crucial role in T cell development in the thymus. DP cells rearrange the T cell receptor gene Tcra to generate T cell receptors with TCRβ. DP cells differentiate into CD4 or CD8 single-positive (SP) thymocytes, regulatory T cells, or invariant nature kill T cells (iNKT) in response to TCR signaling. Chromatin organizer SATB1 is highly expressed in DP cells and is essential in regulating Tcra rearrangement and differentiation of DP cells. Here we explored the mechanism of SATB1 orchestrating gene expression in DP cells. Single-cell RNA sequencing shows that Satb1 deletion changes the cell identity of DP thymocytes and down-regulates genes specifically and highly expressed in DP cells. Super-enhancers regulate the expressions of DP-specific genes, and our Hi-C data show that SATB1 deficiency in thymocytes reduces super-enhancer activity by specifically decreasing interactions among super-enhancers and between super-enhancers and promoters. Our results reveal that SATB1 plays a critical role in thymocyte development to promote the establishment of DP cell identity by globally regulating super-enhancers of DP cells at the chromatin architectural level.
Collapse
|
3
|
The Role of Glycosylation in Inflammatory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:265-283. [PMID: 34495540 DOI: 10.1007/978-3-030-70115-4_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The diversity of glycan presentation in a cell, tissue and organism is enormous, which reflects the huge amount of important biological information encoded by the glycome which has not been fully understood. A compelling body of evidence has been highlighting the fundamental role of glycans in immunity, such as in development, and in major inflammatory processes such as inflammatory bowel disease, systemic lupus erythematosus and other autoimmune disorders. Glycans play an instrumental role in the immune response, integrating the canonical circuits that regulate innate and adaptive immune responses. The relevance of glycosylation in immunity is demonstrated by the role of glycans as important danger-associated molecular patterns and pathogen-associated molecular patterns associated with the discrimination between self and non-self; also as important regulators of the threshold of T cell activation, modulating receptors signalling and the activity of both T and other immune cells. In addition, glycans are important determinants that regulate the dynamic crosstalk between the microbiome and immune response. In this chapter, the essential role of glycans in the immunopathogenesis of inflammatory disorders will be presented and its potential clinical applications (diagnosis, prognosis and therapeutics) will be highlighted.
Collapse
|
4
|
Zhao H, Li Z, Zhu Y, Bian S, Zhang Y, Qin L, Naik AK, He J, Zhang Z, Krangel MS, Hao B. A role of the CTCF binding site at enhancer Eα in the dynamic chromatin organization of the Tcra-Tcrd locus. Nucleic Acids Res 2020; 48:9621-9636. [PMID: 32853367 PMCID: PMC7515734 DOI: 10.1093/nar/gkaa711] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/03/2020] [Accepted: 08/20/2020] [Indexed: 12/25/2022] Open
Abstract
The regulation of T cell receptor Tcra gene rearrangement has been extensively studied. The enhancer Eα plays an essential role in Tcra rearrangement by establishing a recombination centre in the Jα array and a chromatin hub for interactions between Vα and Jα genes. But the mechanism of the Eα and its downstream CTCF binding site (here named EACBE) in dynamic chromatin regulation is unknown. The Hi-C data showed that the EACBE is located at the sub-TAD boundary which separates the Tcra–Tcrd locus and the downstream region including the Dad1 gene. The EACBE is required for long-distance regulation of the Eα on the proximal Vα genes, and its deletion impaired the Tcra rearrangement. We also noticed that the EACBE and Eα regulate the genes in the downstream sub-TAD via asymmetric chromatin extrusion. This study provides a new insight into the role of CTCF binding sites at TAD boundaries in gene regulation.
Collapse
Affiliation(s)
- Hao Zhao
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhaoqiang Li
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yongchang Zhu
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shasha Bian
- Henan Medical Genetics Institute, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| | - Yan Zhang
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Litao Qin
- Henan Medical Genetics Institute, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| | - Abani Kanta Naik
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Jiangtu He
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhenhai Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Center for Biomedical Informatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Bingtao Hao
- Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Henan Medical Genetics Institute, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| |
Collapse
|
5
|
Hedrich CM, Tsokos G. SNPs talk to genes using landlines: long-range chromatin interactions link genetic risk with epigenetic patterns in Takayasu arteritis. Ann Rheum Dis 2019; 78:1293-1295. [PMID: 31391179 DOI: 10.1136/annrheumdis-2019-215957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Christian M Hedrich
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool School of Life Sciences, Liverpool, UK
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| | - George Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Pereira MS, Alves I, Vicente M, Campar A, Silva MC, Padrão NA, Pinto V, Fernandes Â, Dias AM, Pinho SS. Glycans as Key Checkpoints of T Cell Activity and Function. Front Immunol 2018; 9:2754. [PMID: 30538706 PMCID: PMC6277680 DOI: 10.3389/fimmu.2018.02754] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022] Open
Abstract
The immune system is highly controlled and fine-tuned by glycosylation, through the addition of a diversity of carbohydrates structures (glycans) to virtually all immune cell receptors. Despite a relative backlog in understanding the importance of glycans in the immune system, due to its inherent complexity, remarkable findings have been highlighting the essential contributions of glycosylation in the regulation of both innate and adaptive immune responses with important implications in the pathogenesis of major diseases such as autoimmunity and cancer. Glycans are implicated in fundamental cellular and molecular processes that regulate both stimulatory and inhibitory immune pathways. Besides being actively involved in pathogen recognition through interaction with glycan-binding proteins (such as C-type lectins), glycans have been also shown to regulate key pathophysiological steps within T cell biology such as T cell development and thymocyte selection; T cell activity and signaling as well as T cell differentiation and proliferation. These effects of glycans in T cells functions highlight their importance as determinants of either self-tolerance or T cell hyper-responsiveness which ultimately might be implicated in the creation of tolerogenic pathways in cancer or loss of immunological tolerance in autoimmunity. This review discusses how specific glycans (with a focus on N-linked glycans) act as regulators of T cell biology and their implications in disease.
Collapse
Affiliation(s)
- Márcia S Pereira
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Institute of Biomedical Sciences of Abel Salazar, University of Porto Porto, Portugal
| | - Inês Alves
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Medical Faculty, University of Porto Porto, Portugal
| | - Manuel Vicente
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Institute of Biomedical Sciences of Abel Salazar, University of Porto Porto, Portugal
| | - Ana Campar
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Institute of Biomedical Sciences of Abel Salazar, University of Porto Porto, Portugal.,Centro Hospitalar do Porto Porto, Portugal
| | - Mariana C Silva
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal
| | - Nuno A Padrão
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Medical Faculty, University of Porto Porto, Portugal
| | - Vanda Pinto
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal
| | - Ângela Fernandes
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal
| | - Ana M Dias
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal
| | - Salomé S Pinho
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Porto, Portugal.,Institute for Research and Innovation in Health (I3S) Porto, Portugal.,Medical Faculty, University of Porto Porto, Portugal
| |
Collapse
|
7
|
Marrack P, Krovi SH, Silberman D, White J, Kushnir E, Nakayama M, Crooks J, Danhorn T, Leach S, Anselment R, Scott-Browne J, Gapin L, Kappler J. The somatically generated portion of T cell receptor CDR3α contributes to the MHC allele specificity of the T cell receptor. eLife 2017; 6:30918. [PMID: 29148973 PMCID: PMC5701794 DOI: 10.7554/elife.30918] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/16/2017] [Indexed: 01/24/2023] Open
Abstract
Mature T cells bearing αβ T cell receptors react with foreign antigens bound to alleles of major histocompatibility complex proteins (MHC) that they were exposed to during their development in the thymus, a phenomenon known as positive selection. The structural basis for positive selection has long been debated. Here, using mice expressing one of two different T cell receptor β chains and various MHC alleles, we show that positive selection-induced MHC bias of T cell receptors is affected both by the germline encoded elements of the T cell receptor α and β chain and, surprisingly, dramatically affected by the non germ line encoded portions of CDR3 of the T cell receptor α chain. Thus, in addition to determining specificity for antigen, the non germline encoded elements of T cell receptors may help the proteins cope with the extremely polymorphic nature of major histocompatibility complex products within the species.
Collapse
Affiliation(s)
- Philippa Marrack
- Howard Hughes Medical Institute, Denver, United States.,Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Sai Harsha Krovi
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Daniel Silberman
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Janice White
- Department of Biomedical Research, National Jewish Health, Denver, United States
| | - Eleanor Kushnir
- Department of Biomedical Research, National Jewish Health, Denver, United States
| | - Maki Nakayama
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States.,Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, United States
| | - James Crooks
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | - Thomas Danhorn
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | - Sonia Leach
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | - Randy Anselment
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | | | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - John Kappler
- Howard Hughes Medical Institute, Denver, United States.,Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| |
Collapse
|
8
|
Toor AA, Toor AA, Rahmani M, Manjili MH. On the organization of human T-cell receptor loci: log-periodic distribution of T-cell receptor gene segments. J R Soc Interface 2016; 13:20150911. [PMID: 26763333 DOI: 10.1098/rsif.2015.0911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The human T-cell repertoire is complex and is generated by the rearrangement of variable (V), diversity (D) and joining (J) segments on the T-cell receptor (TCR) loci. The T-cell repertoire demonstrates self-similarity in terms clonal frequencies when defined by V, D and J gene segment usage; therefore to determine whether the structural ordering of these gene segments on the TCR loci contributes to the observed clonal frequencies, the TCR loci were examined for self-similarity and periodicity in terms of gene segment organization. Logarithmic transformation of numeric sequence order demonstrated that the V and J gene segments for both T-cell receptor α (TRA) and β (TRB) loci are arranged in a self-similar manner when the spacing between the adjacent segments was considered as a function of the size of the neighbouring gene segment, with an average fractal dimension of approximately 1.5. Accounting for the gene segments occurring on helical DNA molecules with a logarithmic distribution, sine and cosine functions of the log-transformed angular coordinates of the start and stop nucleotides of successive TCR gene segments showed an ordered progression from the 5' to the 3' end of the locus, supporting a log-periodic organization. T-cell clonal frequency estimates, based on V and J segment usage, from normal stem cell donors were plotted against the V and J segment on TRB locus and demonstrated a periodic distribution. We hypothesize that this quasi-periodic variation in gene-segment representation in the T-cell clonal repertoire may be influenced by the location of the gene segments on the periodic-logarithmically scaled TCR loci. Interactions between the two strands of DNA in the double helix may influence the probability of gene segment usage by means of either constructive or destructive interference resulting from the superposition of the two helices.
Collapse
Affiliation(s)
- Amir A Toor
- Bone Marrow Transplant Program, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Abdullah A Toor
- School of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Mohamed Rahmani
- Hematology and Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Masoud H Manjili
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
9
|
Lu IN, Farinelle S, Sausy A, Muller CP. Identification of a CD4 T-cell epitope in the hemagglutinin stalk domain of pandemic H1N1 influenza virus and its antigen-driven TCR usage signature in BALB/c mice. Cell Mol Immunol 2016; 14:511-520. [PMID: 27157498 PMCID: PMC5518815 DOI: 10.1038/cmi.2016.20] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 02/17/2016] [Accepted: 03/08/2016] [Indexed: 01/31/2023] Open
Abstract
The stalk region of the influenza virus hemagglutinin is relatively well conserved compared with the globular head domain, which makes it a potential target for use as a universal vaccine against influenza. However, the role of CD4 T cells in the hemagglutinin stalk-specific immune response is not clear. Here we identified a mouse CD4 T-cell epitope that encompasses residues HA2113-131 from the hemagglutinin stalk domain after a sub-lethal infection of influenza. In response to stimulation with the identified epitope, splenocytes derived from the infected mice showed significant polyfunctionality as shown by IL-2, TNF-α and IFN-γ production as well as degranulation. Moreover, mice immunized with the peptide corresponding to this CD4 T-cell epitope exhibited interindividual sharing of the CD4 T-cell receptor β sequences, and they had a higher survival rate following a challenge with a lethal dose of pandemic H1N1 influenza virus. Thus, our data demonstrated a crucial role of hemagglutinin stalk-specific CD4 T cells in the host immune response against influenza virus infection.
Collapse
Affiliation(s)
- I-Na Lu
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette L-4354, Luxembourg
| | - Sophie Farinelle
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette L-4354, Luxembourg
| | - Aurélie Sausy
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette L-4354, Luxembourg
| | - Claude P Muller
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette L-4354, Luxembourg
| |
Collapse
|
10
|
The 3'-Jα Region of the TCRα Locus Bears Gene Regulatory Activity in Thymic and Peripheral T Cells. PLoS One 2015; 10:e0132856. [PMID: 26177549 PMCID: PMC4503570 DOI: 10.1371/journal.pone.0132856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 06/18/2015] [Indexed: 11/19/2022] Open
Abstract
Much progress has been made in understanding the important cis-mediated controls on mouse TCRα gene function, including identification of the Eα enhancer and TCRα locus control region (LCR). Nevertheless, previous data have suggested that other cis-regulatory elements may reside in the locus outside of the Eα/LCR. Based on prior findings, we hypothesized the existence of gene regulatory elements in a 3.9-kb region 5’ of the Cα exons. Using DNase hypersensitivity assays and TCRα BAC reporter transgenes in mice, we detected gene regulatory activity within this 3.9-kb region. This region is active in both thymic and peripheral T cells, and selectively affects upstream, but not downstream, gene expression. Together, these data indicate the existence of a novel cis-acting regulatory complex that contributes to TCRα transgene expression in vivo. The active chromatin sites we discovered within this region would remain in the locus after TCRα gene rearrangement, and thus may contribute to endogenous TCRα gene activity, particularly in peripheral T cells, where the Eα element has been found to be inactive.
Collapse
|
11
|
Boudil A, Matei IR, Shih HY, Bogdanoski G, Yuan JS, Chang SG, Montpellier B, Kowalski PE, Voisin V, Bashir S, Bader GD, Krangel MS, Guidos CJ. IL-7 coordinates proliferation, differentiation and Tcra recombination during thymocyte β-selection. Nat Immunol 2015; 16:397-405. [PMID: 25729925 PMCID: PMC4368453 DOI: 10.1038/ni.3122] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/10/2015] [Indexed: 12/15/2022]
Abstract
Signaling via the pre-T cell antigen receptor (pre-TCR) and the receptor Notch1 induces transient self-renewal (β-selection) of TCRβ(+) CD4(-)CD8(-) double-negative stage 3 (DN3) and DN4 progenitor cells that differentiate into CD4(+)CD8(+) double-positive (DP) thymocytes, which then rearrange the locus encoding the TCR α-chain (Tcra). Interleukin 7 (IL-7) promotes the survival of TCRβ(-) DN thymocytes by inducing expression of the pro-survival molecule Bcl-2, but the functions of IL-7 during β-selection have remained unclear. Here we found that IL-7 signaled TCRβ(+) DN3 and DN4 thymocytes to upregulate genes encoding molecules involved in cell growth and repressed the gene encoding the transcriptional repressor Bcl-6. Accordingly, IL-7-deficient DN4 cells lacked trophic receptors and did not proliferate but rearranged Tcra prematurely and differentiated rapidly. Deletion of Bcl6 partially restored the self-renewal of DN4 cells in the absence of IL-7, but overexpression of BCL2 did not. Thus, IL-7 critically acts cooperatively with signaling via the pre-TCR and Notch1 to coordinate proliferation, differentiation and Tcra recombination during β-selection.
Collapse
Affiliation(s)
- Amine Boudil
- 1] Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Canada. [2] Department of Immunology, University of Toronto, Toronto, Canada
| | - Irina R Matei
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Han-Yu Shih
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Goce Bogdanoski
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Julie S Yuan
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Stephen G Chang
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Bertrand Montpellier
- 1] Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Canada. [2] Department of Immunology, University of Toronto, Toronto, Canada
| | - Paul E Kowalski
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Canada
| | | | | | - Gary D Bader
- 1] The Donnelly Centre, University of Toronto, Toronto, Canada. [2] Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Cynthia J Guidos
- 1] Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Canada. [2] Department of Immunology, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Abstract
CD8αβ plays crucial roles in the thymic selection, differentiation, and activation of some, but not all, CD8(+) T cells, whereas CD8αα does not. To investigate these roles, we produced mice that expressed transgene P14 T-cell receptor β (TCRβ) chain and CD8β or did not (WT and KO mice, respectively). The primary CD8(+) T-cell response to acute lymphocytic choriomeningitis virus (LCMV) infection was predominantly D(b)/GP33 specific and CD8 independent in KO mice and was mostly CD8 dependent in WT mice. Cytotoxic T lymphocytes (CTL) from KO mice failed to mobilize intracellular Ca(2+) and to kill via perforin/granzyme. Their strong Fas/FasL-mediated cytotoxicity and IFN-γ response were signaled via a Ca(2+)-independent, PI3K-dependent pathway. This was also true for 15-20% of CD8-independent CTL found in WT mice. Conversely, the perforin/granzyme-mediated killing and IFN-γ response of CD8-dependent CTL were signaled via a Ca(2+), p56(lck), and nuclear factor of activated T cells-dependent pathway. Deep sequencing of millions of TCRα chain transcripts revealed that the TCR repertoires of preimmune CD8(+) T cells were highly diverse, but those of LCMV D(b)/GP33-specific CTL, especially from KO mice, were narrow. The immune repertoires exhibited biased use of Vα segments that encoded different complementary-determining region 1α (CDR1α) and CDR2α sequences. We suggest that TCR from WT CD8-independent T cells may engage MHC-peptide complexes in a manner unfavorable for efficient CD8 engagement and Ca(2+) signaling but permissive for Ca(2+)-independent, PI3K-dependent signaling. This duality of the CD8 compartment may provide organisms with broader protective immunity.
Collapse
|
13
|
Kondilis-Mangum HD, Wade PA. Epigenetics and the adaptive immune response. Mol Aspects Med 2013; 34:813-25. [PMID: 22789989 PMCID: PMC3508324 DOI: 10.1016/j.mam.2012.06.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 06/27/2012] [Indexed: 01/31/2023]
Abstract
Cells of the adaptive immune response undergo dynamic epigenetic changes as they develop and respond to immune challenge. Plasticity is a necessary prerequisite for the chromosomal dynamics of lineage specification, development, and the immune effector function of the mature cell types. The alterations in DNA methylation and histone modification that characterize activation may be integral to the generation of immunologic memory, thereby providing an advantage on secondary exposure to pathogens. While the immune system benefits from the dynamic nature of the epigenome, such benefit comes at a cost - increased likelihood of disease-causing mutation.
Collapse
Affiliation(s)
- Hrisavgi D Kondilis-Mangum
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
14
|
Tcra gene recombination is supported by a Tcra enhancer- and CTCF-dependent chromatin hub. Proc Natl Acad Sci U S A 2012; 109:E3493-502. [PMID: 23169622 DOI: 10.1073/pnas.1214131109] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Antigen receptor locus V(D)J recombination requires interactions between widely separated variable (V), diversity (D), and joining (J) gene segments, but the mechanisms that generate these interactions are not well understood. Here we assessed mechanisms that direct developmental stage-specific long-distance interactions at the Tcra/Tcrd locus. The Tcra/Tcrd locus recombines Tcrd gene segments in CD4(-)CD8(-) double-negative thymocytes and Tcra gene segments in CD4(+)CD8(+) double-positive thymocytes. Initial V(α)-to-J(α) recombination occurs within a chromosomal domain that displays a contracted conformation in both thymocyte subsets. We used chromosome conformation capture to demonstrate that the Tcra enhancer (E(α)) interacts directly with V(α) and J(α) gene segments distributed across this domain, specifically in double-positive thymocytes. Moreover, E(α) promotes interactions between these V(α) and J(α) segments that should facilitate their synapsis. We found that the CCCTC-binding factor (CTCF) binds to E(α) and to many locus promoters, biases E(α) to interact with these promoters, and is required for efficient V(α)-J(α) recombination. Our data indicate that E(α) and CTCF cooperate to create a developmentally regulated chromatin hub that supports V(α)-J(α) synapsis and recombination.
Collapse
|
15
|
TRIM28 mediates chromatin modifications at the TCRα enhancer and regulates the development of T and natural killer T cells. Proc Natl Acad Sci U S A 2012; 109:20083-8. [PMID: 23169648 DOI: 10.1073/pnas.1214704109] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
T-cell receptor-α (TCRα) rearrangement in CD4(+)CD8(+) double-positive immature thymocytes is a prerequisite for production of αβ T cells and invariant natural killer T cells. This developmental event is regulated by the TCRα enhancer (Eα), which induces chromatin modification and recruitment of the recombination-activating proteins Rag1 and Rag2. However, the molecular mechanism underlying the activation and long-range action of Eα remains incompletely understood. We show here that the chromatin-modifying factor TRIM28 is highly expressed in double-positive thymocytes and persistently phosphorylated at serine 473. TRIM28 binds to Eα and induces histone 3 lysine 4 trimethylation in the Eα and distant regions of the TCRα locus, coupled with recruitment of Rag proteins. T-cell-conditional ablation of TRIM28 impaired TCRα gene rearrangement and compromised the development of αβ T cells and invariant natural killer T cells. These findings establish TRIM28 as a unique regulator of thymocyte development and highlight an epigenetic mechanism involving TRIM28-mediated active chromatin modification in the TCRα locus.
Collapse
|
16
|
Highly diverse TCRα chain repertoire of pre-immune CD8⁺ T cells reveals new insights in gene recombination. EMBO J 2012; 31:1666-78. [PMID: 22373576 DOI: 10.1038/emboj.2012.48] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 02/02/2012] [Indexed: 01/13/2023] Open
Abstract
Although the T-cell receptor αδ (TCRαδ) locus harbours large libraries of variable (TRAV) and junctional (TRAJ) gene segments, according to previous studies the TCRα chain repertoire is of limited diversity due to restrictions imposed by sequential coordinate TRAV-TRAJ recombinations. By sequencing tens of millions of TCRα chain transcripts from naive mouse CD8(+) T cells, we observed a hugely diverse repertoire, comprising nearly all possible TRAV-TRAJ combinations. Our findings are not compatible with sequential coordinate gene recombination, but rather with a model in which contraction and DNA looping in the TCRαδ locus provide equal access to TRAV and TRAJ gene segments, similarly to that demonstrated for IgH gene recombination. Generation of the observed highly diverse TCRα chain repertoire necessitates deletion of failed attempts by thymic-positive selection and is essential for the formation of highly diverse TCRαβ repertoires, capable of providing good protective immunity.
Collapse
|
17
|
Del Blanco B, García V, García-Mariscal A, Hernández-Munain C. Control of V(D)J Recombination through Transcriptional Elongation and Changes in Locus Chromatin Structure and Nuclear Organization. GENETICS RESEARCH INTERNATIONAL 2011; 2011:970968. [PMID: 22567371 PMCID: PMC3335570 DOI: 10.4061/2011/970968] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 07/29/2011] [Indexed: 01/29/2023]
Abstract
V(D)J recombination is the assembly of gene segments at the antigen receptor loci to
generate antigen receptor diversity in T and B lymphocytes. This process is regulated,
according to defined developmental programs, by the action of a single specific
recombinase complex formed by the recombination antigen gene (RAG-1/2) proteins
that are expressed in immature lymphocytes. V(D)J recombination is strictly controlled
by RAG-1/2 accessibility to specific recombination signal sequences in chromatin at
several levels: cellular lineage, temporal regulation, gene segment order, and allelic
exclusion. DNA cleavage by RAG-1/2 is regulated by the chromatin structure,
transcriptional elongation, and three-dimensional architecture and position of the
antigen receptor loci in the nucleus. Cis-elements specifically direct transcription and
V(D)J recombination at these loci through interactions with transacting factors that form
molecular machines that mediate a sequence of structural events. These events open
chromatin to activate transcriptional elongation and to permit the access of RAG-1/2 to
their recombination signal sequences to drive the juxtaposition of the V, D, and J
segments and the recombination reaction itself. This chapter summarizes the advances
in this area and the important role of the structure and position of antigen receptor loci
within the nucleus to control this process.
Collapse
Affiliation(s)
- Beatriz Del Blanco
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento s/n. 18100 Armilla, Spain
| | | | | | | |
Collapse
|
18
|
Hao B, Krangel MS. Long-distance regulation of fetal V(δ) gene segment TRDV4 by the Tcrd enhancer. THE JOURNAL OF IMMUNOLOGY 2011; 187:2484-91. [PMID: 21784972 DOI: 10.4049/jimmunol.1100468] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Murine Tcra and Tcrd gene segments are organized into a single genetic locus (Tcra/Tcrd locus) that undergoes V(D)J recombination in CD4(-)CD8(-) double-negative (DN) thymocytes to assemble Tcrd genes and in CD4(+)CD8(+) double-positive thymocytes to assemble Tcra genes. Recombination events are regulated by two developmental stage-specific enhancers, E(δ) and E(α). Effects of E(α) on Trca/Tcrd locus chromatin have been well documented, but effects of E(δ) have not. In this regard, E(α) acts over long distances to activate many V(α) and J(α) segments for recombination in double-positive thymocytes. However, in DN thymocytes, it is unclear whether E(δ) functions over long distances to regulate V(δ) gene segments or functions only locally to regulate D(δ) and J(δ) gene segments. In this study, we analyzed germline transcription, histone modifications, and recombination on wild-type and E(δ)-deficient alleles in adult and fetal thymocytes. We found that E(δ) functions as a local enhancer whose influence is limited to no more than ∼10 kb in either direction (including D(δ), J(δ), and TRDV5 gene segments) in adult DN thymocytes. However, we identified a unique long-distance role for E(δ) promoting accessibility and recombination of fetal V(δ) gene segment TRDV4, over a distance of 55 kb, in fetal thymocytes. TRDV4 recombination is specifically repressed in adult thymocytes. We found that this repression is enforced by a developmentally regulated loss of histone acetylation. Constitutively high levels of a suppressive modification, histone H3 lysine 9 dimethylation, may contribute to repression as well.
Collapse
Affiliation(s)
- Bingtao Hao
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|