1
|
Ghanbari Sevari F, Mehdizadeh A, Abbasi K, Hejazian SS, Raisii M. Cytokine-induced killer cells: new insights for therapy of hematologic malignancies. Stem Cell Res Ther 2024; 15:254. [PMID: 39135188 PMCID: PMC11321231 DOI: 10.1186/s13287-024-03869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Cytokine-induced killer (CIK) cells are a novel subgroup of immune effectors, classified as one of the modified T cell-mediated arms for immunotherapy. These cells exert MHC-unrestricted cytotoxicity against both hematological and solid malignancies with low incidence of treatment-related severe complications. This study reviews the application of CIK cells in treating cases with hematologic malignancies. MAIN BODY CIK cells consist of CD3+/CD56+ natural killer (NK) T cells, CD3-/CD56+ NK cells, and CD3+/CD56- cytotoxic T cells. In this regard, the CD3+/CD56+ NK T cells are the primary effectors. Compared with the previously reported antitumor immune cells, CIK cells are characterized by improved in vitro proliferation and amplification, enhanced migration and invasive capacity to tumor region, more significant antitumor activity, and a broader antitumor spectrum. CIK cells can also induce death in tumor cells via numerous pathways and mechanisms. Hence, CIKs-based therapy has been used in various clinical trials and has shown efficacy with a very low graft versus host disease (GVHD) against several cancers, such as hematologic malignancies, even in relapsing cases, or cases not responding to other therapies. Despite the high content of T cells, CIK cells induce low alloreactivity and, thus, pose a restricted threat of GVHD induction even in MHC-mismatched transplantation cases. Phase 1 and 2 clinical trials of CIK cell therapy have also highlighted satisfactory therapeutic advantages against hematologic cancers, indicating the safety of CIK cells even in haploidentical transplantation settings. CONCLUSION CIK cells have shown promising results in the treatment of hematologic malignancies, especially in combination with other antitumor strategies. However, the existing controversies in achieving desired clinical responses underscore the importance of future studies.
Collapse
Affiliation(s)
- Faezeh Ghanbari Sevari
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Abbasi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Sina Hejazian
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mortaza Raisii
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Wang Y, Suarez ER, Kastrunes G, de Campos NSP, Abbas R, Pivetta RS, Murugan N, Chalbatani GM, D'Andrea V, Marasco WA. Evolution of cell therapy for renal cell carcinoma. Mol Cancer 2024; 23:8. [PMID: 38195534 PMCID: PMC10775455 DOI: 10.1186/s12943-023-01911-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/05/2023] [Indexed: 01/11/2024] Open
Abstract
Treatment for renal cell carcinoma (RCC) has improved dramatically over the last decade, shifting from high-dose cytokine therapy in combination with surgical resection of tumors to targeted therapy, immunotherapy, and combination therapies. However, curative treatment, particularly for advanced-stage disease, remains rare. Cell therapy as a "living drug" has achieved hematological malignancy cures with a high response rate, and significant research efforts have been made to facilitate its translation to solid tumors. Herein, we overview the cellular therapies for RCC focusing on allogeneic hematopoietic stem cell transplantation, T cell receptor gene-modified T cells, chimeric antigen receptor (CAR) T cells, CAR natural killer (NK) cells, lymphokine-activated killer (LAK) cells, γδ T cells, and dendritic cell vaccination. We have also included perspectives for using other recent approaches, such as CAR macrophages, dendritic cell-cytokine induced killer cells and regulatory CAR-T cells to shed light on preclinical development of cell therapy and advancing cell therapy into clinic to achieve cures for RCC.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02215, USA
| | - Eloah Rabello Suarez
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre, SP, 09210-580, Brazil
- Graduate Program in Medicine - Hematology and Oncology, Federal University of Sao Paulo, São Paulo, SP, 04023-062, Brazil
| | - Gabriella Kastrunes
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Najla Santos Pacheco de Campos
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre, SP, 09210-580, Brazil
- Graduate Program in Medicine - Hematology and Oncology, Federal University of Sao Paulo, São Paulo, SP, 04023-062, Brazil
| | - Rabia Abbas
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Renata Schmieder Pivetta
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre, SP, 09210-580, Brazil
- Graduate Program in Medicine - Hematology and Oncology, Federal University of Sao Paulo, São Paulo, SP, 04023-062, Brazil
| | - Nithyassree Murugan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | | | - Vincent D'Andrea
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02215, USA
| | - Wayne A Marasco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
3
|
Issabekova A, Zhumabekova M, Zhunussova M, Ogay V. The Crosstalk Between Dendritic Cells, Cytokine-Induced Killer Cells And Cancer Cells From The Perspective Of Combination Therapy. RUSSIAN OPEN MEDICAL JOURNAL 2021. [DOI: 10.15275/rusomj.2021.0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Dendritic cells (DCs) are considered the most potent professional antigen-presenting cells (APCs) that elicit adaptive antitumour immunity. DCs integrate multiple environmental signals by efficiently processing tumour-associated antigens (TAAs) and migrating to draining lymph nodes (dLNs), where they present foreign antigens to T cells for priming. DCs thus serve as a major link between innate and adaptive immunity. Although DCs (mostly monocyte-derived DCs [mo-DCs]) have already been used in cancer therapies, such approaches have shown limited efficacy. Mo-DCs have the unique ability to present antigens to T cells in peripheral tissues. CD3+CD56+ cytokine-induced killer (CIK) cells are characterized by both MHC-restricted and MHC-unrestricted antitumour cytotoxicity against a broad range of cancer cells. This review presents an overview of the mechanisms by which mo-DCs and CIK cells’ interact with each other and with tumours. The maturation of DCs was identified as a crucial step in the development of effective DC-based vaccines against cancer. A further improved adoptive immunotherapy strategy involves a combination of mature mo-DCs and CIK cells. Combination therapy presents many opportunities for cancer treatment, as reported by a number of clinical trials. However, there is a lack of fundamental studies on the interaction of in vitro-generated mo-DCs with CIK cells. We discuss several methods of boosting DC-based vaccines and review the current knowledge of contact-dependent and cytokine-induced interactions of mo-DCs with CIK cells. We highlight that the combination of mo-DCs with CIK cells activates MHC-restricted and MHC-unrestricted immune responses.
Collapse
|
4
|
Tumor Immune Microenvironment and Immunosuppressive Therapy in Hepatocellular Carcinoma: A Review. Int J Mol Sci 2021; 22:ijms22115801. [PMID: 34071550 PMCID: PMC8198390 DOI: 10.3390/ijms22115801] [Citation(s) in RCA: 266] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Liver cancer has the fourth highest mortality rate of all cancers worldwide, with hepatocellular carcinoma (HCC) being the most prevalent subtype. Despite great advances in systemic therapy, such as molecular-targeted agents, HCC has one of the worst prognoses due to drug resistance and frequent recurrence and metastasis. Recently, new therapeutic strategies such as cancer immunosuppressive therapy have prolonged patients' lives, and the combination of an immune checkpoint inhibitor (ICI) and VEGF inhibitor is now positioned as the first-line therapy for advanced HCC. Since the efficacy of ICIs depends on the tumor immune microenvironment, it is necessary to elucidate the immune environment of HCC to select appropriate ICIs. In this review, we summarize the findings on the immune microenvironment and immunosuppressive approaches focused on monoclonal antibodies against cytotoxic T lymphocyte-associated protein 4 and programmed cell death protein 1 for HCC. We also describe ongoing treatment modalities, including adoptive cell transfer-based therapies and future areas of exploration based on recent literature. The results of pre-clinical studies using immunological classification and animal models will contribute to the development of biomarkers that predict the efficacy of immunosuppressive therapy and aid in the selection of appropriate strategies for HCC treatment.
Collapse
|
5
|
Abolarinwa BA, Ibrahim RB, Huang YH. Conceptual Development of Immunotherapeutic Approaches to Gastrointestinal Cancer. Int J Mol Sci 2019; 20:E4624. [PMID: 31540435 PMCID: PMC6769557 DOI: 10.3390/ijms20184624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) cancer is one of the common causes of cancer-related death worldwide. Chemotherapy and/or immunotherapy are the current treatments, but some patients do not derive clinical benefits. Recently, studies from cancer molecular subtyping have revealed that tumor molecular biomarkers may predict the immunotherapeutic response of GI cancer patients. However, the therapeutic response of patients selected by the predictive biomarkers is suboptimal. The tumor immune-microenvironment apparently plays a key role in modulating these molecular-determinant predictive biomarkers. Therefore, an understanding of the development and recent advances in immunotherapeutic pharmacological intervention targeting tumor immune-microenvironments and their potential predictive biomarkers will be helpful to strengthen patient immunotherapeutic efficacy. The current review focuses on an understanding of how the host-microenvironment interactions and the predictive biomarkers can determine the efficacy of immune checkpoint inhibitors. The contribution of environmental pathogens and host immunity to GI cancer is summarized. A discussion regarding the clinical evidence of predictive biomarkers for clinical trial therapy design, current immunotherapeutic strategies, and the outcomes to GI cancer patients are highlighted. An understanding of the underlying mechanism can predict the immunotherapeutic efficacy and facilitate the future development of personalized therapeutic strategies targeting GI cancers.
Collapse
Affiliation(s)
- Bilikis Aderonke Abolarinwa
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ridwan Babatunde Ibrahim
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Taiwan International Graduate Program (TIGP) in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei 11529, Taiwan.
| | - Yen-Hua Huang
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
- Comprehensive Cancer Center of Taipei Medical University, Taipei 11031, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
6
|
Fu Y, Liu S, Zeng S, Shen H. From bench to bed: the tumor immune microenvironment and current immunotherapeutic strategies for hepatocellular carcinoma. J Exp Clin Cancer Res 2019; 38:396. [PMID: 31500650 PMCID: PMC6734524 DOI: 10.1186/s13046-019-1396-4] [Citation(s) in RCA: 295] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) ranks the most common primary liver malignancy and the third leading cause of tumor-related mortality worldwide. Unfortunately, despite advances in HCC treatment, less than 40% of HCC patients are eligible for potentially curative therapies. Recently, cancer immunotherapy has emerged as one of the most promising approaches for cancer treatment. It has been proven therapeutically effective in many types of solid tumors, such as non-small cell lung cancer and melanoma. As an inflammation-associated tumor, it's well-evidenced that the immunosuppressive microenvironment of HCC can promote immune tolerance and evasion by various mechanisms. Triggering more vigorous HCC-specific immune response represents a novel strategy for its management. Pre-clinical and clinical investigations have revealed that various immunotherapies might extend current options for needed HCC treatment. In this review, we provide the recent progress on HCC immunology from both basic and clinical perspectives, and discuss potential advances and challenges of immunotherapy in HCC.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Biomarkers, Tumor
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Clinical Trials as Topic
- Combined Modality Therapy/methods
- Humans
- Immunity, Innate
- Immunotherapy/adverse effects
- Immunotherapy/methods
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Translational Research, Biomedical
- Treatment Outcome
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Yaojie Fu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Shanshan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| |
Collapse
|
7
|
Zhang W, Cai H, Tan WS. Dynamic suspension culture improves ex vivo expansion of cytokine-induced killer cells by upregulating cell activation and glucose consumption rate. J Biotechnol 2018; 287:8-17. [PMID: 30273619 DOI: 10.1016/j.jbiotec.2018.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/17/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022]
Abstract
Ex vivo expansion is an effective strategy to acquire cytokine-induced killer (CIK) cells needed for clinical trials. In this work, the effects of dynamic suspension culture, which was carried out by shake flasks on a shaker, on CIK cells were investigated by the analysis of expansion characteristics and physiological functions, with the objective to optimize the culture conditions for ex vivo expansion of CIK cells. The results showed that the expansion folds of total cells in dynamic cultures reached 69.36 ± 30.36 folds on day 14, which were significantly higher than those in static cultures (9.24 ± 1.12 folds, P < 0.05), however, the proportions of CD3+ cells and CD3+CD56+ cells in both cultures were similar, leading to much higher expansion of CD3+ cells and CD3+CD56+ cells in dynamic cultures. Additionally, expanded CIK cells in two cultures possessed comparable physiological functions. Notably, significantly higher percentages of CD25+ cells and CD69+ cells were found in dynamic cultures (P < 0.05). Besides, much higher glucose consumption rate of cells (P < 0.05) but similar YLac/gluc were observed in dynamic cultures. Further, cells in dynamic cultures had better glucose utilization efficiency. Together, these results suggested that dynamic cultures improved cell activation, then accelerated glucose consumption rate, which enhanced cell expansion and promoted glucose utilization efficiency of cells.
Collapse
Affiliation(s)
- Weiwei Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China.
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| |
Collapse
|
8
|
Abstract
Cytokine-induced killer (CIK) cells form under certain stimulation conditions in cultures of peripheral blood mononuclear cells (PBMCs). They are a heterogeneous immune cell population and contain a high percentage of cells with a mixed T-NK phenotype (CD3+CD56+). The ready availability of a lymphocyte source, together with the high proliferative rate and potent anti-tumor activity of CIK cells, has allowed their use as immunotherapy in a wide variety of neoplasms. Cytotoxicity mediated by CD3+CD56+ T cells depends on the major histocompatibility antigen (MHC)-independent recognition of tumor cells and the activation of signaling pathways through the natural killer group 2 member D (NKG2D) cell-surface receptor. Clinical trials have demonstrated the feasibility and efficacy of CIK cell immunotherapy even in advanced stage cancer patients or those that have not responded to first-line treatment. This review summarizes biological and technical aspects of CIK cells, as well as past and current clinical trials and future trends in this form of immunotherapy.
Collapse
|
9
|
Pluangnooch P, Timalsena S, Wongkajornsilp A, Soontrapa K. Cytokine-induced killer cells: A novel treatment for allergic airway inflammation. PLoS One 2017; 12:e0186971. [PMID: 29073213 PMCID: PMC5658108 DOI: 10.1371/journal.pone.0186971] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/11/2017] [Indexed: 12/25/2022] Open
Abstract
The effectiveness of cytokine-induced killer (CIK) cells for treatment of cancers has long been appreciated. Here, we report for the first time that CIK cells can be applied to treat allergic airway inflammation. Adopting from an established protocol with some modifications, we generated CIK cells ex vivo from mouse T cells, and examined their effectiveness in treatment of allergic airway inflammation using the ovalbumin-induced model of allergic airway inflammation. Based upon evaluation of bronchoalveolar lavage cellularity, T helper type2 cytokine levels and lung histology, all of which are important parameters for determining the severity of allergic airway inflammation, diseased mice treated with CIK cells showed significant reductions in all the parameters without any obvious adverse effects. Interestingly, the observed effects were comparable to those treated with dexamethasone. Thus, our study provides a novel application of CIK cells in treatment of allergic airway inflammation.
Collapse
Affiliation(s)
- Panwadee Pluangnooch
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunita Timalsena
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Adisak Wongkajornsilp
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kitipong Soontrapa
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
10
|
Gao X, Mi Y, Guo N, Xu H, Xu L, Gou X, Jin W. Cytokine-Induced Killer Cells As Pharmacological Tools for Cancer Immunotherapy. Front Immunol 2017; 8:774. [PMID: 28729866 PMCID: PMC5498561 DOI: 10.3389/fimmu.2017.00774] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/19/2017] [Indexed: 12/31/2022] Open
Abstract
Cytokine-induced killer (CIK) cells are a heterogeneous population of effector CD3+CD56+ natural killer T cells, which can be easily expanded in vitro from peripheral blood mononuclear cells. CIK cells work as pharmacological tools for cancer immunotherapy as they exhibit MHC-unrestricted, safe, and effective antitumor activity. Much effort has been made to improve CIK cells cytotoxicity and treatments of CIK cells combined with other antitumor therapies are applied. This review summarizes some strategies, including the combination of CIK with additional cytokines, dendritic cells, check point inhibitors, antibodies, chemotherapeutic agents, nanomedicines, and engineering CIK cells with a chimeric antigen receptor. Furthermore, we briefly sum up the clinical trials on CIK cells and compare the effect of clinical CIK therapy with other immunotherapies. Finally, further research is needed to clarify the pharmacological mechanism of CIK and provide evidence to formulate uniform culturing criteria for CIK expansion.
Collapse
Affiliation(s)
- Xingchun Gao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China.,State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, Key Lab for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yajing Mi
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China.,State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Na Guo
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Hao Xu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Lixian Xu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Weilin Jin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China.,Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, Key Lab for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China.,National Centers for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Meng Y, Yu Z, Wu Y, Du T, Chen S, Meng F, Su N, Ma Y, Li X, Sun S, Zhang G. Cell-based immunotherapy with cytokine-induced killer (CIK) cells: From preparation and testing to clinical application. Hum Vaccin Immunother 2017; 13:1-9. [PMID: 28301281 PMCID: PMC5489295 DOI: 10.1080/21645515.2017.1285987] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/11/2017] [Accepted: 01/19/2017] [Indexed: 12/24/2022] Open
Abstract
Cell-based immunotherapy holds promise in the quest for the treatment of cancer, having potential synergy with surgery, chemotherapy and radiotherapy. As a novel approach for adoptive cell-based immunotherapy, cytokine-induced killer (CIK) cells have moved from the 'bench to bedside'. CIK cells are a heterogeneous subset of ex-vitro expanded, polyclonal T-effector cells with both natural killer (NK) and T-cell properties, which present potent non-major histocompatibility complex-restricted cytotoxicity against a variety of tumor target cells. Initial clinical studies on CIK cell therapy have provided encouraging results and revealed synergistic antitumor effects when combined with standard therapeutic procedures. At the same time, issues such as inadequate quality control and quantity of CIK cells as well as exaggerated propaganda were continuously emerging. Thus, the Ministry of Health in China stopped CIK cell therapy in May 2016, which was a major setback for the innovation of CIK cell-based immunotherapy. Thus, it is very important to modify technical criteria to develop a standardized operation procedure (SOP) and standardized system for evaluating antitumor efficacy in a safe way.
Collapse
Affiliation(s)
- Yiming Meng
- Central Laboratory, Cancer Hospital of China Medical University, Dadong District, Shenyang, China
| | - Zhifu Yu
- Department of Epidemiology, Cancer Hospital of China Medical University, Dadong District, Shenyang, China
| | - Yefeng Wu
- Central Laboratory, Cancer Hospital of China Medical University, Dadong District, Shenyang, China
| | - Tianzhao Du
- Central Laboratory, Cancer Hospital of China Medical University, Dadong District, Shenyang, China
| | - Shi Chen
- Central Laboratory, Cancer Hospital of China Medical University, Dadong District, Shenyang, China
| | - Fanjuan Meng
- Central Laboratory, Cancer Hospital of China Medical University, Dadong District, Shenyang, China
| | - Nan Su
- Central Laboratory, Cancer Hospital of China Medical University, Dadong District, Shenyang, China
| | - Yushu Ma
- Central Laboratory, Cancer Hospital of China Medical University, Dadong District, Shenyang, China
| | - Xiaoxi Li
- Central Laboratory, Cancer Hospital of China Medical University, Dadong District, Shenyang, China
| | - Sulan Sun
- Central Laboratory, Cancer Hospital of China Medical University, Dadong District, Shenyang, China
| | - Guirong Zhang
- Central Laboratory, Cancer Hospital of China Medical University, Dadong District, Shenyang, China
| |
Collapse
|
12
|
Li H, Huang L, Liu L, Wang X, Zhang Z, Yue D, He W, Fu K, Guo X, Huang J, Zhao X, Zhu Y, Wang L, Dong W, Yan Y, Xu L, Gao M, Yang S, Zhang Y. Selective effect of cytokine-induced killer cells on survival of patients with early-stage melanoma. Cancer Immunol Immunother 2017; 66:299-308. [PMID: 27889798 PMCID: PMC11028712 DOI: 10.1007/s00262-016-1939-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/21/2016] [Indexed: 12/18/2022]
Abstract
Adoptive immunotherapy using cytokine-induced killer (CIK) cells has shown potential antitumor ability against several kinds of cancers, including melanoma. However, little is known about the achievable outcome of CIK cells in melanoma patients at different pathological stages. Here we recruited 55 patients treated with conventional therapy plus CIK cells as the CIK group, and 49 patients treated with conventional therapy alone as the control group. The pathological characteristics were comparable between two groups, with a follow-up period up to 40 months. Survival data and immune responses were evaluated after CIK cell treatment. In this study, CIK cells were successfully generated from peripheral blood of melanoma patients after in vitro culture for 14 days. The cultured CIK cells not only produced high levels of pro-inflammatory cytokines upon in vitro stimulation but also efficiently killed human melanoma cell lines. No serious side events were observed in all patients treated with CIK cells. Furthermore, infusions of CIK cells improved the quality of life in some patients, including advanced cases. More importantly, the CIK group exhibited better survival rates compared to the control group among early-stage melanoma patients, in consistent with the increased frequency of peripheral CD4+ T cells. However, the patients with advanced-stage melanoma did not benefit from the CIK cell therapy in terms of survival rate. In conclusion, CIK cells combined with conventional treatments may prolong the survival of early-stage melanoma patients and improve the quality of life for some advanced cases in a safe way.
Collapse
Affiliation(s)
- Hong Li
- Biotherapy Center, The First Affiliated Hospital, Zhengzhou University, Building #9, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Lan Huang
- Biotherapy Center, The First Affiliated Hospital, Zhengzhou University, Building #9, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Linbo Liu
- Department of Plastic Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ximei Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhen Zhang
- Biotherapy Center, The First Affiliated Hospital, Zhengzhou University, Building #9, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Dongli Yue
- Biotherapy Center, The First Affiliated Hospital, Zhengzhou University, Building #9, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Wei He
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Kun Fu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xueli Guo
- Department of Vascular Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jianmin Huang
- Biotherapy Center, The First Affiliated Hospital, Zhengzhou University, Building #9, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Xuan Zhao
- Biotherapy Center, The First Affiliated Hospital, Zhengzhou University, Building #9, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Yu Zhu
- Department of Ophthalmology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Liping Wang
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Wenjie Dong
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yan Yan
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Li Xu
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ming Gao
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shuangning Yang
- Biotherapy Center, The First Affiliated Hospital, Zhengzhou University, Building #9, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital, Zhengzhou University, Building #9, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
13
|
Wang H, Liu A, Bo W, Feng X, Hu Y, Tian L, Zhang H, Tang X. Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma patients after curative resection, a systematic review and meta-analysis. Dig Liver Dis 2016; 48:1275-1282. [PMID: 27481586 DOI: 10.1016/j.dld.2016.07.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/26/2016] [Accepted: 07/11/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cytokine-induced killer cells have been used as an adjuvant treatment for hepatocellular carcinoma with curative treatment. However, the outcomes remain controversial. AIM We conducted this meta-analysis to assess the safety and efficacy of cytokine-induced killer cells. METHODS Randomized controlled trials on cytokine-induced killer cells for hepatocellular carcinoma after curative treatments were identified by electronic searches. A meta-analysis was carried out to examine disease-free survival, overall survival rate and adverse effect. RESULTS Six randomized controlled trials with 844 patients (85.9% with hepatitis B or C) were included. Our meta-analysis showed that cytokine-induced killer cells can not only improve the 1-year (RR=1.23, P<0.001), 2-year (RR=1.37, P<0.001) and 3-year (RR=1.35, P=0.004) disease-free survival, but also improve the 1-year (RR=1.08, P=0.001), 2-year (RR=1.14, P<0.001) and 3-year (RR=1.15, P=0.02) overall survival. However, it failed to affect the 4-year and 5-year disease-free survival and overall survival (P>0.05). At the same time, cytokine-induced killer cells treatment was proved to be a safe strategy with the comparable adverse events comparing to the control group (P=0.39). CONCLUSIONS This review provides the best available evidence that adjuvant cytokine-induced killer cells treatment can be safely used to improve the early disease-free survival and survival of hepatitis B or C related hepatocellular carcinoma.
Collapse
Affiliation(s)
- Haiqing Wang
- Department of Hepato-Biliary-Pancreatic Surgery, Sichuan Cancer Hospital, Chengdu, Sichuan Province, China
| | - Aixiang Liu
- Department of Hepato-Biliary-Pancreatic Surgery, Sichuan Cancer Hospital, Chengdu, Sichuan Province, China
| | - Wentao Bo
- Department of Hepato-Biliary-Pancreatic Surgery, Sichuan Cancer Hospital, Chengdu, Sichuan Province, China
| | - Xielin Feng
- Department of Hepato-Biliary-Pancreatic Surgery, Sichuan Cancer Hospital, Chengdu, Sichuan Province, China.
| | - Yong Hu
- Department of Hepato-Biliary-Pancreatic Surgery, Sichuan Cancer Hospital, Chengdu, Sichuan Province, China
| | - Lang Tian
- Department of Hepato-Biliary-Pancreatic Surgery, Sichuan Cancer Hospital, Chengdu, Sichuan Province, China
| | - Hui Zhang
- Department of Hepato-Biliary-Pancreatic Surgery, Sichuan Cancer Hospital, Chengdu, Sichuan Province, China
| | - Xiaoli Tang
- Department of Hepato-Biliary-Pancreatic Surgery, Sichuan Cancer Hospital, Chengdu, Sichuan Province, China
| |
Collapse
|
14
|
Wei F, Rong XX, Xie RY, Jia LT, Wang HY, Qin YJ, Chen L, Shen HF, Lin XL, Yang J, Yang S, Hao WC, Chen Y, Xiao SJ, Zhou HR, Lin TY, Chen YS, Sun Y, Yao KT, Xiao D. Cytokine-induced killer cells efficiently kill stem-like cancer cells of nasopharyngeal carcinoma via the NKG2D-ligands recognition. Oncotarget 2016; 6:35023-39. [PMID: 26418951 PMCID: PMC4741506 DOI: 10.18632/oncotarget.5280] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/04/2015] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are considered to be the root cause for cancer treatment failure. Thus, there remains an urgent need for more potent and safer therapies against CSCs for curing cancer. In this study, the antitumor activity of cytokine-induced killer (CIK) cells against putative CSCs of nasopharyngeal carcinoma (NPC) was fully evaluated in vitro and in vivo. To visualize putative CSCs in vitro by fluorescence imaging, and image and quantify putative CSCs in tumor xenograft-bearing mice by in vivo bioluminescence imaging, NPC cells were engineered with CSC detector vector encoding GFP and luciferase (Luc) under control of Nanog promoter. Our study reported in vitro intense tumor-killing activity of CIK cells against putative CSCs of NPC, as revealed by percentage analysis of side population cells, tumorsphere formation assay and Nanog-promoter-GFP-Luc reporter gene strategy plus time-lapse recording. Additionally, time-lapse imaging firstly illustrated that GFP-labeled or PKH26-labeled putative CSCs or tumorspheres were usually attacked simultaneously by many CIK cells and finally killed by CIK cells, suggesting the necessity of achieving sufficient effector-to-target ratios. We firstly confirmed that NKG2D blockade by anti-NKG2D antibody significantly but partially abrogated CIK cell-mediated cytolysis against putative CSCs. More importantly, intravenous infusion of CIK cells significantly delayed tumor growth in NOD/SCID mice, accompanied by a remarkable reduction in putative CSC number monitored by whole-body bioluminescence imaging. Taken together, our findings suggest that CIK cells demonstrate the intense tumor-killing activity against putative CSCs of NPC, at least in part, by NKG2D-ligands recognition. These results indicate that CIK cell-based therapeutic strategy against CSCs presents a promising and safe approach for cancer treatment.
Collapse
Affiliation(s)
- Fang Wei
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Xiao-Xiang Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Rao-Ying Xie
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Li-Ting Jia
- Department of Pathology, Guilin Medical College, Guilin 541001, China
| | - Hui-Yan Wang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yu-Juan Qin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Lin Chen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Hong-Fen Shen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Lin Lin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jie Yang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Sheng Yang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Wei-Chao Hao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yan Chen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Sheng-Jun Xiao
- Department of Pathology, Guilin Medical College, Guilin 541001, China
| | - Hui-Rong Zhou
- Department of Pathology, Guilin Medical College, Guilin 541001, China
| | - Tao-Yan Lin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yu-Shuang Chen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yan Sun
- Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kai-Tai Yao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Dong Xiao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
15
|
Lee HK, Kim YG, Kim JS, Park EJ, Kim B, Park KH, Kang JS, Hong JT, Kim Y, Han SB. Cytokine-induced killer cells interact with tumor lysate-pulsed dendritic cells via CCR5 signaling. Cancer Lett 2016; 378:142-9. [PMID: 27216980 DOI: 10.1016/j.canlet.2016.05.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 01/22/2023]
Abstract
The antitumor activity of cytokine-induced killer (CIK) cells can be increased by co-culturing them with tumor lysate-pulsed dendritic cells (tDCs); this phenomenon has been studied mainly at the population level. Using time-lapse imaging, we examined how CIK cells gather information from tDCs at the single-cell level. tDCs highly expressed CCL5, which bound CCR5 expressed on CIK cells. tDCs strongly induced migration of Ccr5(+/+) CIK cells, but not that of Ccr5(-/-) CIK cells or Ccr5(+/+) CIK cells treated with the CCR5 antagonist Maraviroc. Individual tDCs contacted Ccr5(+/+) CIK cells more frequently and lengthily than with Ccr5(-/-) CIK cells. Consequently, tDCs increased the antitumor activity of Ccr5(+/+) CIK cells in vitro and in vivo, but did not increase that of Ccr5(-/-) CIK cells. Taken together, our data provide insight into the mechanism of CIK cell activation by tDCs at the single-cell level.
Collapse
Affiliation(s)
- Hong Kyung Lee
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Yong Guk Kim
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ji Sung Kim
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Eun Jae Park
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Boyeong Kim
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ki Hwan Park
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Jong Soon Kang
- Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Youngsoo Kim
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
16
|
Ren X, Ma W, Lu H, Yuan L, An L, Wang X, Cheng G, Zuo S. Modification of cytokine-induced killer cells with chimeric antigen receptors (CARs) enhances antitumor immunity to epidermal growth factor receptor (EGFR)-positive malignancies. Cancer Immunol Immunother 2015; 64:1517-29. [PMID: 26386966 PMCID: PMC11029695 DOI: 10.1007/s00262-015-1757-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 09/07/2015] [Indexed: 01/08/2023]
Abstract
Epidermal growth factor receptor (EGFR, ErbB1, Her-1) is a cell surface molecule overexpressing in a variety of human malignancies and, thus, is an excellent target for immunotherapy. Immunotherapy targeting EGFR-overexpressing malignancies using genetically modified immune effector cells is a novel and promising approach. In the present study, we have developed an adoptive cellular immunotherapy strategy based on the chimeric antigen receptor (CAR)-modified cytokine-induced killer (CAR-CIK) cells specific for the tumor cells expressing EGFR. To generate CAR-CIK cells, a lentiviral vector coding the EGFR-specific CAR was constructed and transduced into the CIK cells. The CAR-CIK cells showed significantly enhanced cytotoxicity and increased production of cytokines IFN-γ and IL-2 when co-cultured with EGFR-positive cancer cells. In tumor xenografts, adoptive immunotherapy of CAR-CIK cells could inhibit tumor growth and prolong the survival of EGFR-overexpressing human tumor xenografts. Moreover, tumor growth inhibition and prolonged survival in mice with EGFR(+) human cancer were associated with the increased persistence of CAR-CIK cells in vivo. Our study indicates that modification with EGFR-specific CAR strongly enhances the antitumor activity of the CIK cells against EGFR-positive malignancies.
Collapse
Affiliation(s)
- Xuequn Ren
- Translational Medicine Center, Huaihe Hospital of Henan University, No. 115, Simon Street, Kaifeng, 475001, Henan Province, China
| | - Wanli Ma
- General Surgery, Huaihe Hospital of Henan University, Kaifeng, 475001, Henan Province, China
| | - Hong Lu
- Department of Oncology, Huaihe Hospital of Henan University, Kaifeng, 475001, Henan Province, China
| | - Lei Yuan
- Experimental Center of Molecular Medicine, Luohe Medical College, Luohe, 462002, Henan Province, China
| | - Lei An
- Translational Medicine Center, Huaihe Hospital of Henan University, No. 115, Simon Street, Kaifeng, 475001, Henan Province, China
| | - Xicai Wang
- Tumor Institute of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Guanchang Cheng
- Translational Medicine Center, Huaihe Hospital of Henan University, No. 115, Simon Street, Kaifeng, 475001, Henan Province, China.
| | - Shuguang Zuo
- Translational Medicine Center, Huaihe Hospital of Henan University, No. 115, Simon Street, Kaifeng, 475001, Henan Province, China.
| |
Collapse
|
17
|
Rong XX, Wei F, Lin XL, Qin YJ, Chen L, Wang HY, Shen HF, Jia LT, Xie RY, Lin TY, Hao WC, Yang J, Yang S, Cheng YS, Huang WH, Li AM, Sun Y, Luo RC, Xiao D. Recognition and killing of cancer stem-like cell population in hepatocellular carcinoma cells by cytokine-induced killer cells via NKG2d-ligands recognition. Oncoimmunology 2015; 5:e1086060. [PMID: 27141341 PMCID: PMC4839362 DOI: 10.1080/2162402x.2015.1086060] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/16/2015] [Accepted: 08/19/2015] [Indexed: 12/14/2022] Open
Abstract
There is an urgent need for more potent and safer approaches to eradicate cancer stem cells (CSCs) for curing cancer. In this study, we investigate cancer-killing activity (CKA) of cytokine-induced killer (CIK) cells against CSCs of hepatocellular carcinoma (HCC). To visualize CSCs in vitro by fluorescence imaging, and image and quantify CSCs in tumor xenograft-bearing mice by bioluminescence imaging, HCC cells were engineered with CSC detector vector encoding GFP and luciferase controlled by Nanog promoter. We found that CIK cells have a strong CKA in vitro against putative CSCs of HCC, as shown by tumorsphere formation and time-lapse imaging. Additionally, time-lapse recording firstly revealed that putative CSCs were attacked simultaneously by many CIK cells and finally eradicated by CIK cells, indicating the necessity of achieving sufficient effector-to-target ratios. We firstly illustrated that anti-NKG2D antibody blocking partially but significantly inhibited CKA of CIK cells against putative CSCs. More importantly, intravenous infusion of CIK cells remarkably delayed tumor growth in mice with a significant decrease in putative CSC number monitored by bioluminescence imaging. Taken together, these findings demonstrate CKA of CIK cells against putative CSCs of HCC, at least in part, by NKG2D-ligands recognition.
Collapse
Affiliation(s)
- Xiao-Xiang Rong
- Department of Oncology, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, China; Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fang Wei
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Xiao-Lin Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Yu-Juan Qin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Hui-Yan Wang
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Hong-Fen Shen
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Li-Ting Jia
- Department of Pathology, Guilin Medical College , Guilin, China
| | - Rao-Ying Xie
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Tao-Yan Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Wei-Chao Hao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Sheng Yang
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Yu-Shuang Cheng
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Wen-Hua Huang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering , School of Basic Medical Science, Southern Medical University , Guangzhou, China
| | - Ai-Min Li
- Department of Oncology, Traditional Chinese Medicine-Integrated Hospital , Southern Medical University , Guangzhou, China
| | - Yan Sun
- Children's Hospital Boston, Harvard Medical School , Boston, MA, USA
| | - Rong-Cheng Luo
- Department of Oncology, Traditional Chinese Medicine-Integrated Hospital , Southern Medical University , Guangzhou, China
| | - Dong Xiao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou, China; Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Liu H, Li J, Wang F, Gao Y, Luo Y, Wang P, Li C, Zhu Z. Comparative study of different procedures for the separation of peripheral blood mononuclear cells in cytokine-induced killer cell immunotherapy for hepatocarcinoma. Tumour Biol 2015; 36:2299-2307. [PMID: 25417201 DOI: 10.1007/s13277-014-2837-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/11/2014] [Indexed: 12/23/2022] Open
Abstract
Cytokine-induced killer (CIK) cell immunotherapy exhibits significant advantages in the clinical treatment of tumors. This study was designed to compare the biological characteristics of autologous CIK cells from patients with hepatocarcinoma following different procedures for the separation of peripheral blood mononuclear cells (PBMCs). Forty-four hepatocarcinoma patients were enrolled and distributed into two groups. PBMCs were isolated either using a blood cell separator (apheresis method) or Ficoll lymphocyte separation medium (Ficoll method). The total amount, collection efficacy, and cell status of PBMCs in the two groups were determined. According to the number and status of collected PBMCs, different cultivation procedures were used for their amplification and activation and the proliferation ability, phenotype, and killing activity of CIK cells in the two groups were evaluated. Our results indicated that the number of collected PBMCs in the apheresis group was far more than that in the Ficoll group. However, the isolation rate was lower, and more cellular debris was observed in the apheresis group, which may be the cause of some untoward effects. Following in vitro culture, the enrichment time of CIK cells was longer in the Ficoll group, and the percentages of CD3(+)CD4(+) (Th) and CD4(+)CD25(+) (Treg) cells were higher. In the apheresis group, the percentages of CD3(-)CD56(+) (NK) and CD3(+)CD56(+) (NKT) cells were higher, and the CIK cells exhibited a higher cytolytic activity against HepG2 hepatoma cells. In conclusion, different procedures for PBMCs separation can influence the biological activities of CIK cells, and the apheresis method is more effective at enhancing the antitumor efficacy of CIK cells. However, significant attention should be paid to the possibility of adverse reactions in apheresis donors.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Artificial Cell, Tianjin Third Central Hospital, No. 83 Jintang Road, Hedong District, Tianjin, 300170, China
| | | | | | | | | | | | | | | |
Collapse
|