1
|
Krasik SV, Bryushkova EA, Sharonov GV, Myalik DS, Shurganova EV, Komarov DV, Shagina IA, Shpudeiko PS, Turchaninova MA, Vakhitova MT, Samoylenko IV, Marinov DT, Demidov LV, Zagaynov VE, Chudakov DM, Serebrovskaya EO. Systematic evaluation of intratumoral and peripheral BCR repertoires in three cancers. eLife 2025; 13:RP89506. [PMID: 39831798 PMCID: PMC11745494 DOI: 10.7554/elife.89506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
The current understanding of humoral immune response in cancer patients suggests that tumors may be infiltrated with diffuse B cells of extra-tumoral origin or may develop organized lymphoid structures, where somatic hypermutation and antigen-driven selection occur locally. These processes are believed to be significantly influenced by the tumor microenvironment through secretory factors and biased cell-cell interactions. To explore the manifestation of this influence, we used deep unbiased immunoglobulin profiling and systematically characterized the relationships between B cells in circulation, draining lymph nodes (draining LNs), and tumors in 14 patients with three human cancers. We demonstrated that draining LNs are differentially involved in the interaction with the tumor site, and that significant heterogeneity exists even between different parts of a single lymph node (LN). Next, we confirmed and elaborated upon previous observations regarding intratumoral immunoglobulin heterogeneity. We identified B cell receptor (BCR) clonotypes that were expanded in tumors relative to draining LNs and blood and observed that these tumor-expanded clonotypes were less hypermutated than non-expanded (ubiquitous) clonotypes. Furthermore, we observed a shift in the properties of complementarity-determining region 3 of the BCR heavy chain (CDR-H3) towards less mature and less specific BCR repertoire in tumor-infiltrating B-cells compared to circulating B-cells, which may indicate less stringent control for antibody-producing B cell development in tumor microenvironment (TME). In addition, we found repertoire-level evidence that B-cells may be selected according to their CDR-H3 physicochemical properties before they activate somatic hypermutation (SHM). Altogether, our work outlines a broad picture of the differences in the tumor BCR repertoire relative to non-tumor tissues and points to the unexpected features of the SHM process.
Collapse
Affiliation(s)
- Sofia V Krasik
- Center of Life Sciences, Skolkovo Institute of Science and TechnologyMoscowRussian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RASMoscowRussian Federation
| | - Ekaterina A Bryushkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RASMoscowRussian Federation
- Institute of Translational Medicine, Pirogov Russian National Research Medical UniversityMoscowRussian Federation
- Department of Molecular Biology, Lomonosov Moscow State UniversityMoscowRussian Federation
| | - George V Sharonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RASMoscowRussian Federation
- Institute of Translational Medicine, Pirogov Russian National Research Medical UniversityMoscowRussian Federation
- Privolzhsky Research Medical UniversityNizhny NovgorodRussian Federation
| | - Daria S Myalik
- Privolzhsky Research Medical UniversityNizhny NovgorodRussian Federation
- Nizhny Novgorod Regional Clinical Cancer HospitalNizhny NovgorodRussian Federation
| | | | - Dmitry V Komarov
- Volga Regional Medical Centre Under Federal Medical and Biological AgencyNizhny NovgorodRussian Federation
| | - Irina A Shagina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RASMoscowRussian Federation
- Institute of Translational Medicine, Pirogov Russian National Research Medical UniversityMoscowRussian Federation
| | - Polina S Shpudeiko
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State UniversityMoscowRussian Federation
| | - Maria A Turchaninova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RASMoscowRussian Federation
- Institute of Translational Medicine, Pirogov Russian National Research Medical UniversityMoscowRussian Federation
| | - Maria T Vakhitova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RASMoscowRussian Federation
- Institute of Translational Medicine, Pirogov Russian National Research Medical UniversityMoscowRussian Federation
| | - Igor V Samoylenko
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of Russian FederationMoscowRussian Federation
| | - Dimitr T Marinov
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of Russian FederationMoscowRussian Federation
| | - Lev V Demidov
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of Russian FederationMoscowRussian Federation
| | - Vladimir E Zagaynov
- Privolzhsky Research Medical UniversityNizhny NovgorodRussian Federation
- Nizhny Novgorod Regional Clinical Cancer HospitalNizhny NovgorodRussian Federation
| | - Dmitriy M Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RASMoscowRussian Federation
- Institute of Translational Medicine, Pirogov Russian National Research Medical UniversityMoscowRussian Federation
- Privolzhsky Research Medical UniversityNizhny NovgorodRussian Federation
| | - Ekaterina O Serebrovskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RASMoscowRussian Federation
- Institute of Translational Medicine, Pirogov Russian National Research Medical UniversityMoscowRussian Federation
| |
Collapse
|
2
|
Kotlan B, Horvath S, Eles K, Plotar VK, Naszados G, Czirbesz K, Blank M, Farkas E, Toth L, Tovari J, Szekacs A, Shoenfeld Y, Godeny M, Kasler M, Liszkay G. Tumor-Associated Disialylated Glycosphingolipid Antigen-Revealing Antibodies Found in Melanoma Patients' Immunoglobulin Repertoire Suggest a Two-Direction Regulation Mechanism Between Immune B Cells and the Tumor. Front Immunol 2019; 10:650. [PMID: 31024530 PMCID: PMC6459966 DOI: 10.3389/fimmu.2019.00650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/11/2019] [Indexed: 12/24/2022] Open
Abstract
There is far less information available about the tumor infiltrating B (TIL-B) cells, than about the tumor infiltrating T cells. We focused on discovering the features and potential role of B lymphocytes in solid tumors. Our project aimed to develop innovative strategies to define cancer membrane structures. We chose two solid tumor types, with variable to considerable B cell infiltration. The strategy we set up with invasive breast carcinoma, showing medullary features, has been introduced and standardized in metastatic melanoma. After detecting B lymphocytes by immunohistochemistry, VH-JH, Vκ-Jκ immunoglobulin rearranged V region genes were amplified by RT-PCR, from TIL-B cDNA. Immunoglobulin variable-region genes of interest were cloned, sequenced, and subjected to a comparative DNA analysis. Single-chain variable (scFv) antibody construction was performed in selected cases to generate a scFv library and to test tumor binding capacity. DNA sequence analysis revealed an overrepresented VH3-1 cluster, represented both in the breast cancer and the melanoma TIL-B immunoglobulin repertoire. We observed that our previously defined anti GD3 ganglioside-binder antibody-variable region genes were present in melanoma as well. Our antibody fragments showed binding potential to disialylated glycosphingolipids (GD3 ganglioside) and their O acetylated forms on melanoma cancer cells. We conclude that our results have a considerable tumor immunological impact, as they reveal the power of TIL-B cells to recognize strong tumor-associated glycosphingolipid structures on melanomas and other solid tumors. As tumor-derived gangliosides affect immune cell functions and reduce the B lymphocytes' antibody production, we suspect an important B lymphocyte and cancer cell crosstalk mechanism. We not only described the isolation and specificity testing of the tumor infiltrating B cells, but also showed the TIL-B cells' highly tumor-associated GD3 ganglioside-revealing potential in melanomas. The present data help to identify new cancer-associated biomarkers that may serve for novel cancer diagnostics. The two-direction regulation mechanism between immune B cells and the tumor could eventually be developed into an innovative cancer treatment strategy.
Collapse
Affiliation(s)
- Beatrix Kotlan
- Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary
| | - Szabolcs Horvath
- Center of Surgical and Molecular Pathology, National Institute of Oncology, Budapest, Hungary
| | - Klara Eles
- Center of Surgical and Molecular Pathology, National Institute of Oncology, Budapest, Hungary
| | - Vanda K Plotar
- Center of Surgical and Molecular Pathology, National Institute of Oncology, Budapest, Hungary
| | - Gyorgy Naszados
- Center of Image Analysis and Radiological Diagnostics, National Institute of Oncology, Budapest, Hungary
| | - Katalin Czirbesz
- Department of Oncodermatology, National Institute of Oncology, Budapest, Hungary
| | - Miri Blank
- Zabludowitz Center for Autoimmune Diseases, Sheba Medical Center Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Emil Farkas
- Center of Oncosurgery, National Institute of Oncology, Budapest, Hungary
| | - Laszlo Toth
- Center of Oncosurgery, National Institute of Oncology, Budapest, Hungary
| | - Jozsef Tovari
- Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - Andras Szekacs
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary
| | - Yehuda Shoenfeld
- Zabludowitz Center for Autoimmune Diseases, Sheba Medical Center Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Maria Godeny
- Center of Image Analysis and Radiological Diagnostics, National Institute of Oncology, Budapest, Hungary
| | - Miklos Kasler
- National Institute of Oncology, Budapest, Hungary.,Ministry of Human Capacities, Budapest, Hungary
| | - Gabriella Liszkay
- Department of Oncodermatology, National Institute of Oncology, Budapest, Hungary
| |
Collapse
|
3
|
Challenging tumour immunological techniques that help to track cancer stem cells in malignant melanomas and other solid tumours. Contemp Oncol (Pozn) 2018; 22:41-47. [PMID: 29628793 PMCID: PMC5885074 DOI: 10.5114/wo.2018.73884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim of the study The arsenal of questions and answers about the minor cancer initiating cancer stem cell (CSC) population put responsible for cancer invasiveness and metastases, has left with an unsolved puzzle. Specific aims of a complex project were partly focused on revealing new biomarkers of cancer. We designed and set up novel techniques to facilitate the detection of cancerous cells. Materials and methods As a novel approach, we investigated B cells infiltrating breast carcinomas and melanomas (TIL-B) in terms of their tumour antigen binding potential. By developing the TIL-B phage display technology we provide here a new technology for the specific detection of highly tumour-associated antigens. Single chain Fv (scFv) antibody fragment phage ELISA, immunofluorescence (IF) FACS analysis, chamber slide technique with IF confocal laser microscopy and immunohistochemistry (IHC) in paraffin-embedded tissue sections were set up and standardized. Results We showed strong tumour-associated disialylated glycosphingolipid expression levels on various cancer cells using scFv antibody fragments, generated previously by uniquely invasive breast carcinoma TIL-B phage display library technology. Conclusions We report herein a novel strategy to obtain antibody fragments of human origin that recognise tumour-associated ganglioside antigens. Our investigations have the power to detect privileged molecules in cancer progression, invasiveness, and metastases. The technical achievements of this study are being harnessed for early diagnostics and effective cancer therapeutics.
Collapse
|
4
|
Lin X, Sun B, Zhu D, Zhao X, Sun R, Zhang Y, Zhang D, Dong X, Gu Q, Li Y, Liu F. Notch4+ cancer stem-like cells promote the metastatic and invasive ability of melanoma. Cancer Sci 2016; 107:1079-91. [PMID: 27234159 PMCID: PMC4982579 DOI: 10.1111/cas.12978] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/17/2016] [Accepted: 05/26/2016] [Indexed: 12/14/2022] Open
Abstract
Sphere formation in conditioned serum‐free culture medium supplemented with epidermal growth factor and basic fibroblast growth factor (tumorospheres) is considered useful for the enrichment of cancer stem‐like cells, also known as tumor‐initiating cells. We used a gene expression microarray to investigate the gene expression profile of melanoma cancer stem‐like cells (MCSLCs). The results showed that MCSLCs highly expressed the following Notch signaling pathway molecules: Notch3 (NM_008716), Notch4 (NM_010929), Dtx4 (NM_172442), and JAG2 (NM_010588). Immunofluorescence staining showed tumorosphere cells highly expressed Notch4. Notch4high B16F10 cells were isolated by FACS, and Western blotting showed that high Notch4 expression is related to the expression of epithelial–mesenchymal transition (EMT)‐associated proteins. Reduced invasive and migratory properties concomitant with the downregulation of the EMT markers Twist1, vimentin, and VE‐cadherin and the overexpression of E‐cadherin was observed in human melanoma A375 and MUM‐2B cells. In these cells, Notch4 was also downregulated, both by Notch4 gene knockdown and by application of the γ‐secretase inhibitor, DAPT. Mechanistically, the re‐overexpression of Twist1 by the transfection of cells with a Twist1 expression plasmid led to an increase in VE‐cadherin expression and a decrease in E‐cadherin expression. Immunohistochemical analysis of 120 human melanoma tissues revealed a significant correlation between the high expression of Notch4 and the metastasis of melanoma. Taken together, our findings indicate that Notch4+ MCSLCs trigger EMT and promote the metastasis of melanoma cells.
Collapse
Affiliation(s)
- Xian Lin
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Dongwang Zhu
- Department of Surgery, Stomatological Hospital of Tianjin Medical University, Tianjin, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Ran Sun
- Department of Surgery, Tianjin Hospital of ITCWM Nankai Hospital, Tianjin, China
| | - Yanhui Zhang
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Qiang Gu
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Fang Liu
- Department of Pathology, Tianjin Medical University, Tianjin, China
| |
Collapse
|