1
|
Loaiza JD, Gómez JF, Muñoz-Escudero D, Gonzalez SM, Eubank TK, Rugeles MT, Rodríguez-Perea AL, Aguilar-Jimenez W. Vitamin D Decreases Susceptibility of CD4 + T Cells to HIV Infection by Reducing AKT Phosphorylation and Glucose Uptake: A Bioinformatic and In Vitro Approach. Biomolecules 2025; 15:432. [PMID: 40149968 PMCID: PMC11940553 DOI: 10.3390/biom15030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/29/2025] [Accepted: 02/01/2025] [Indexed: 03/29/2025] Open
Abstract
Activated immune cells are highly susceptible to human immunodeficiency virus (HIV) infection. Vitamin D (VitD) induces antimicrobial responses and reduces cellular activation. We investigated VitD effects on HIV-1 replication, glucose uptake, and gene regulation using computational and in vitro approaches. CD4+ T cells from healthy male donors were treated with VitD and infected with HIV-1. After 72 h, p24 protein was measured to assess viral replication. VitD effects on anti- and pro-HIV genes were analyzed by a Boolean network model based on curated databases and the literature. CCR5 and CXCR4 coreceptor expression, AKT phosphorylation, and glucose uptake were evaluated by flow cytometry, and expression of some model-identified genes was quantified by qPCR. VitD reduced p24 by 53.2% (p = 0.0078). Boolean network modeling predicted that VitD upregulates antiviral, migration, and cell-differentiation related genes, while downregulating genes related to cellular activation, proliferation, glucose metabolism, and HIV replication, notably AKT1, CCNT1, SLC2A1, HIF1A, and PFKL. In vitro, VitD reduced AKT phosphorylation by 26.6% (p = 0.0156), transcription of CCNT1 by 22.7% (p = 0.0391), and glucose uptake by 22.8% (p = 0.0039) without affecting classic antiviral genes or coreceptor expression. These findings suggest an anti-HIV effect of VitD, mediated through AKT and glucose metabolism downmodulation, both involved in cell activation and HIV-1 replication.
Collapse
Affiliation(s)
- John D. Loaiza
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín 050010, ANT, Colombia
| | - Jose Fernando Gómez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín 050010, ANT, Colombia
| | - Daniel Muñoz-Escudero
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín 050010, ANT, Colombia
| | - Sandra M. Gonzalez
- Sexually Transmitted and Blood-Borne Infections Division at JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, MB R3E 3L5, Canada
| | - Timothy Kyle Eubank
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín 050010, ANT, Colombia
| | - Maria T. Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín 050010, ANT, Colombia
| | - Ana Lucía Rodríguez-Perea
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín 050010, ANT, Colombia
| | - Wbeimar Aguilar-Jimenez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín 050010, ANT, Colombia
| |
Collapse
|
2
|
Ni F, Tan X, Zhang J, Guo T, Yuan Z, Wang X, Li W, Shao J. Glycogen metabolism genes as a molecular signature for subtyping, prognostic prediction, and immunotherapy selection in clear cell renal cell carcinoma. Clin Exp Med 2025; 25:61. [PMID: 39961952 PMCID: PMC11832626 DOI: 10.1007/s10238-025-01592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025]
Abstract
Glycogen accumulation is a typical feature in clear cell renal cell carcinoma (ccRCC). It has been reported that glycogen metabolism-related genes can promote the progression of ccRCC, but its role in molecular typing, prognosis, immune infiltration, and immunotherapy response has rarely been reported. We applied an unsupervised clustering approach for molecular typing of ccRCC. The least absolute shrinkage and selection operator regression (LASSO) was used for prognostic model construction. The robustness of the model is evaluated by multicenter mutual verification. Weighted gene co-expression network analysis (WGCNA) was used to explore potential biological mechanisms. RT-qPCR was used to identify mRNA relative expression. We found ccRCC can be divided into two subtypes based on glycogen metabolism-related genes, and the prognosis of patients between the two subtypes is significantly different. Furthermore, we constructed a prognostic model for ccRCC patients based on glycogen metabolism-related genes using LASSO algorithm. We found that the model has a strong prognostic effect. Subsequently, we explored the underlying mechanisms through WGCNA and found that the model is associated with immune-related signaling pathways. Finally, we also found that this prognostic model can be used as a marker of response to immunotherapy in patients with advanced ccRCC. In conclusion, glycogen metabolism-related genes have critical value in molecular typing and prognosis evaluation of ccRCC.
Collapse
Affiliation(s)
- Fangjing Ni
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyin Tan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Urology, Shanghai Geriatric Medical Center, Shanghai, China
| | - Tuanjie Guo
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihao Yuan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wenzhi Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jialiang Shao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Fan JN, Ho H, Chiang BL. Characterization of novel CD8 + regulatory T cells and their modulatory effects in murine model of inflammatory bowel disease. Cell Mol Life Sci 2024; 81:327. [PMID: 39085655 PMCID: PMC11335251 DOI: 10.1007/s00018-024-05378-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Dysregulation of mucosal immune system has been proposed to be critical in the pathogenesis of inflammatory bowel diseases (IBDs). Regulatory T cells (Tregs) play an important role in regulating immune responses. Tregs are involved in maintaining intestinal homeostasis and exerting suppressive function in colitis. Our previous studies showed that a novel forkhead box protein P3 (Foxp3) negative Tregs (Treg-of-B cells), induced by culturing naïve CD4+ T cells with B cells, could protect against colitis and downregulate T helper (Th) 1 and Th17 cell cytokines in T cell-mediated colitis. In the present study, we aimed to induce Treg-of-B cells in the CD8+ T-cell population and investigate their characteristics and immunomodulatory functions. Our results showed that CD8+ Treg-of-B cells expressed Treg-associated markers, including lymphocyte-activation gene-3 (LAG3), inducible co-stimulator (ICOS), programmed death-1 (PD-1), cytotoxic T-lymphocyte-associated protein-4 (CTLA-4), tumor necrosis factor receptor superfamily member-4 (TNFRSF4, OX40), and tumor necrosis factor receptor superfamily member-18 (TNFRSF18, GITR), but did not express Foxp3. CD8+ Treg-of-B cells produced higher concentration of inhibitory cytokine interleukin (IL)-10, and expressed higher levels of cytotoxic factor granzyme B and perforin after stimulation, compared to those of CD8+CD25- T cells. Moreover, CD8+ Treg-of-B cells suppressed T cell proliferation in vitro and alleviated colonic inflammation in chronic dextran sulfate sodium (DSS)-induced colitis. In conclusion, our study identified a novel subpopulation of CD8+ Tregs with suppressive effects through cell contact. These CD8+ Treg-of-B cells might have therapeutic potential for IBDs.
Collapse
Affiliation(s)
- Jia-Ning Fan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin Ho
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Bor-Luen Chiang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Pediatrics, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Taipei, 100, Taiwan.
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
4
|
Geng CA, Chen FY, Zheng JB, Liao P, Li TZ, Zhang XM, Chen X, Chen JJ. Rubiginosin B selectively inhibits Treg cell differentiation and enhances anti-tumor immune responses by targeting calcineurin-NFAT signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154898. [PMID: 37247590 DOI: 10.1016/j.phymed.2023.154898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/06/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND The accumulation of CD4+Foxp3+ regulatory T cells (Tregs) in the tumor microenvironment (TME) dampens anti-tumor immune responses and promotes tumor progression. Therefore, the elimination of Tregs has become a strategy to enhance the efficacy of tumor immunotherapy, although it is still a daunting challenge. Rhododendron brachypodum (R. brachypodum) is a perennial shrub mainly distributed in Southwestern China, whereas the chemical constituents in this plant remain elusive. PURPOSE To identify small-molecule inhibitors of Tregs from R. brachypodum. METHODS Meroterpenoids in R. brachypodum were isolated by column chromatography under the guidance of LCMS analyses. The structures of isolates were identified by spectroscopic data and quantum calculations. The activities of compounds were first evaluated on CD4+ T cell differentiation by flow cytometry in Th1, Th2, Th17, and Treg polarizing conditions, and then on CT26 and MC38 murine colorectal carcinoma cells-allografted mice models. The mechanism of action was first investigated by determining Foxp3 degradation in Jurkat T cells transfected with pLVX-TetOne-Puro-Foxp3-tGFP, and then through analyses of Foxp3 expression on several pre-transcriptional signaling molecules. RESULTS Two new prenylated phenolic acids (1 and 2) and a chromane meroterpenoid, rubiginosin B (RGB, 3) were obtained from R. brachypodum. The structure of S-anthopogochromene C (1) was rectified according to the electronic circular dichroism (ECD) experiment, and rhodobrachypodic acid (2) was proposed as the precursor of RGB by photochemical transformation. In this investigation, we first found that RGB (3) selectively suppressed the de novo differentiation of TGFβ-induced CD4+Foxp3+ regulatory T cells (iTregs), overcome the immunosuppressive TME, and consequently inhibited the growth of tumor in mouse models. The mechanistic study revealed that RGB could target calcineurin, inhibited the nuclear factor of activated T cells (NFAT) dephosphorylation, and down-regulated Foxp3 expression. The hypothetical binding modes of RGB with calcineurin were predicted by molecular docking, and the interactions were mainly hydrophobic effects and hydrogen bonds. CONCLUSION These results suggest that RGB enhances anti-tumor immune responses by inhibiting Treg cell differentiation through calcineurin-NFAT signaling pathway, and therefore RGB or its analogs may be used as adjuvant agents meriting further investigation.
Collapse
Affiliation(s)
- Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Feng-Yang Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau SAR 999078, China; School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Jing-Bin Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau SAR 999078, China
| | - Ping Liao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau SAR 999078, China
| | - Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xue-Mei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau SAR 999078, China; Department of Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China.; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China.
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Chen J, Zhuang L, Li Y, Wu K, Duan Y, Feng J, Sun D, Qu Z, Shi L. CD8 +iTregs mediate the protective effect of rapamycin against graft versus host disease in a humanized murine model. Transpl Immunol 2023; 77:101805. [PMID: 36841514 DOI: 10.1016/j.trim.2023.101805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/29/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
CD8+Tregs are important immunoregulatory cells that participate in immunopathological processes in many diseases. Rapamycin (Rapa) is a macrolide immunosuppressant that inhibits the mammalian target of rapamycin (mTOR) and has been shown to improve CD4+-induced Tregs (iTregs) generation. This study aimed to evaluate the role of Rapa in the generation and function of CD8+iTregs. Human CD8 + CD25-CD45RA + T cells were divided into two groups, one with Rapa and the other without Rapa, and both groups were cultured under Treg-induced conditions. Rapa significantly improved Foxp3 expression and the suppressive function of CD8+iTregs in vitro. Further studies showed that Rapa suppressed inflammatory cytokine expression and enhanced anti-inflammatory cytokine expression. Under inflammatory conditions in vitro, Rapa-CD8 + iTregs sustained Foxp3 and anti-inflammatory cytokine expression. An in-depth study showed that Rapa regulated CpG demethylation in the Foxp3 region and STAT1 and STAT3 phosphorylation in CD8+iTregs. Finally, we compared the regulatory ability of Rapa and all-trans retinoic acid, another reagent that stimulates CD4+ iTreg generation in vitro, which showed that Rapa, but not all-trans retinoic acid, improved CD8+ iTreg induction and suppressed CD4+T cell expansion in vitro and protected against graft-versus-host disease in a humanized murine model in vivo. These results strongly suggest that CD8+iTregs initiated by Rapa may represent a new therapeutic strategy for inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Jing Chen
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Lin Zhuang
- Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University and The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Yuanjiu Li
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Kejia Wu
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Yunfei Duan
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jin Feng
- Department of Gastrointestinal Sugery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soohow University, Changzhou, Jiangsu, China
| | - Donglin Sun
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| | - Zhen Qu
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| | - Longqing Shi
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| |
Collapse
|
6
|
Sun G, Liu H, Zhao J, Zhang J, Huang T, Sun G, Zhao S, Zhang Z, Cao H, Rong D, Kong X, Ji Q, Liu L, Wang X, Tang W, Xia Y. Macrophage GSK3β-deficiency inhibits the progression of hepatocellular carcinoma and enhances the sensitivity of anti-PD1 immunotherapy. J Immunother Cancer 2022; 10:jitc-2022-005655. [PMID: 36600662 DOI: 10.1136/jitc-2022-005655] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Glycogen synthase kinase 3β (GSK3β) was originally discovered to regulate glycogen synthesis and show a relationship to tumors. However, the biological functions of GSK3β in tumor-associated macrophages (TAMs) in cancers including hepatocellular carcinoma (HCC) remain unclear. METHODS The enrichment of GSK3β in tumor tissues was assessed by Gene Expression Omnibus (GEO) database. The in vitro and in vivo assays assisted in evaluating how GSK3β in TAMs affected HCC in terms of proliferation, invasion and migration. Immunofluorescence was used to assess GSK3β expression in TAMs in the anti-PD1 therapy non-responsive HCC group and the responsive group. Western blot and coimmunoprecipitation were performed to demonstrate the interaction between GSK3β and PD-L1. We carried out in vivo experiments in a C57BL/6 mouse model of HCC established through subcutaneous injection. RESULTS GEO single-cell RNA sequencing data suggested that GSK3β was highly enriched in TAMs of HCC. According to in vitro and in vivo experiments, reducing GSK3β in TAMs inhibits the cancer cell proliferation, invasion, and migration. The immunofluorescence and immunohistochemistry results confirmed that the GSK3β is significantly upregulated in TAMs of the anti-PD1 therapy non-responsive group in comparison with the responsive group. In vitro and in vivo experiments confirmed that reduced GSK3β in TAMs are capable of enhancing the sensitivity of anti-PD1 immunotherapy for HCC by decreasing PD-L1 ubiquitination. Mass spectrometry results suggested that high expression of CD14+GSK3β+ in the peripheral blood mononuclear cell (PBMC) can predict non-responsive to anti-PD1 treatment. Moreover, escitalopram is confirmed to act as GSK3β inhibitor that can increase the sensitivity of anti-PD1 immunotherapy for HCC. CONCLUSIONS This study revealed that macrophage GSK3β deficiency can inhibit the development of HCC by inhibiting the M2 phenotype and enhance the sensitivity of anti-PD1 immunotherapy for HCC by decreasing PD-L1 ubiquitination. The expression of CD14+GSK3β+ in PBMC can noninvasively predict anti-PD1 sensitivity in HCC patients, which provides novel strategies to predict anti-PD1 sensitivity, increase anti-PD1 therapeutic effect, and bring new hope for HCC patients.
Collapse
Affiliation(s)
- Guangshun Sun
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China.,Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hanyuan Liu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Zhao
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Jinyu Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China, Suzhou, Jiangsu, China
| | - Tian Huang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Guoqiang Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Siqi Zhao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zihao Zhang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Hengsong Cao
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Dawei Rong
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Xiangyi Kong
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Qinghua Ji
- Zhejiang Puluoting Health Technology Co., Ltd, Hangzhou, Zhejiang, China
| | - Li Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China .,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuehao Wang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Weiwei Tang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Yongxiang Xia
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Bednar KJ, Lee JH, Ort T. Tregs in Autoimmunity: Insights Into Intrinsic Brake Mechanism Driving Pathogenesis and Immune Homeostasis. Front Immunol 2022; 13:932485. [PMID: 35844555 PMCID: PMC9280893 DOI: 10.3389/fimmu.2022.932485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
CD4+CD25highFoxp3+ regulatory T-cells (Tregs) are functionally characterized for their ability to suppress the activation of multiple immune cell types and are indispensable for maintaining immune homeostasis and tolerance. Disruption of this intrinsic brake system assessed by loss of suppressive capacity, cell numbers, and Foxp3 expression, leads to uncontrolled immune responses and tissue damage. The conversion of Tregs to a pathogenic pro-inflammatory phenotype is widely observed in immune mediated diseases. However, the molecular mechanisms that underpin the control of Treg stability and suppressive capacity are incompletely understood. This review summarizes the concepts of Treg cell stability and Treg cell plasticity highlighting underlying mechanisms including translational and epigenetic regulators that may enable translation to new therapeutic strategies. Our enhanced understanding of molecular mechanism controlling Tregs will have important implications into immune homeostasis and therapeutic potential for the treatment of immune-mediated diseases.
Collapse
|
8
|
Analysis of Related Risk Factors of Microvascular Invasion in Hepatocellular Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8195512. [PMID: 35356664 PMCID: PMC8960018 DOI: 10.1155/2022/8195512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022]
Abstract
Objective To forecast the onset of microvascular invasion (MVI) in patients with hepatoma by evaluating the preoperative aspartate aminotransferase-to-platelet ratio index (APRI), alpha-fetoprotein (AFP), neutrophil-to-lymphocyte ratio (NLR), and other clinicopathological data. Methods In this study, we retrospectively analysed the clinical data of 62 patients who received radical surgery for hepa toma from 2019 to 2021. Patients were separated into the MVI-negative group and the MVI-positive group according to the postoperative pathological diagnosis. The relationships between MVI and NLR, APRI, AFP, tumor size, and other clinical data were assessed using the univariate analysis, receiver operating characteristic (ROC) curve, least absolute shrinkage and selection operator (LASSO) analysis, and logistic analysis. Results The ROC curve determined that the cutoff values of NLR, platelet-to-lymphocyte ratio (PLR), and APRI were 1.520, 98, and 0.275, respectively. The univariate analysis showed that the MVI-positive result was associated with five factors: tumor size (χ2 = 10.620, p = 0.001), AFP (χ2 = 10.524, p = 0.001), Edmondson grade (χ2 = 20.736, p < 0.001), NLR (χ2 = 8.744, p = 0.003), and APRI (χ2 = 4.849, p = 0.028). The LASSO analysis indicated that the risk factors were the number of tumors, PLR, APRI, NLR, AFP, Edmondson grade, and tumor size. The multivariate logistic regression analysis showed that NLR ≥ 1.520 (OR 11.119, p = 0.006), APRI ≥ 0.275 (OR 12.515, p = 0.009), AFP ≥ 200 μg/mL (OR 7.823, p = 0.016), and tumor size > 3 cm (OR 7.689, p = 0.022) were independent risk factors for MVI in patients with hepatoma. Conclusion Preoperative NLR, APRI, AFP, and tumor size are reliable indicators for predicting the appearance of MVI in patients with hepatoma and are of great value in making detailed and reliable treatment protocols for these patients before surgery.
Collapse
|
9
|
Li J, Gao J, Zhou H, Zhou J, Deng Z, Lu Y, Rao J, Ji G, Gu J, Yang X, Xia Y, Wang X. Inhibition of Glycogen Synthase Kinase 3β Increases the Proportion and Suppressive Function of CD19 +CD24 hiCD27 + Breg Cells. Front Immunol 2020; 11:603288. [PMID: 33343576 PMCID: PMC7746849 DOI: 10.3389/fimmu.2020.603288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/02/2020] [Indexed: 01/03/2023] Open
Abstract
CD19+CD24hiCD27+ memory Breg cells exhibit decreased abundance in patients with chronic graft-versus-host disease (cGVHD) after liver transplantation and produce less IL-10 than those from patients without cGVHD and healthy donors. Due to the lack of Breg cells and the difficulty in expanding them in vitro, in mouse models and early human clinical trials, the adoptive transfer of Breg cells to autoimmune diseases is greatly restricted. Glycogen synthase kinase 3β (GSK-3β) is a multifunctional serine/threonine (ser/thr) protein kinase that can participate in B cell growth, metabolic activity, and proliferation. Phosphoprotein array analysis showed that p-GSK-3β-s9 was highly expressed in mBreg cells. Furthermore, here, we demonstrated that GSK-3β expression in mBreg cells is lower than that observed in B cells by flow cytometry. We found that the treatment of B cells with the specific GSK-3β inhibitor SB216763 can significantly increase the proportion and immunosuppressive function of mBreg cells in vitro. Nuclear factor of activated T cells (NFAT) is one of a pivotal regulator of gene expression in adaptive immune system. Here, we observed that inhibition of GSK-3β by SB216763 results in enhanced expression of NFATc1 in B cells, which is essential in regulating the ability of B cells to secrete IL-10. By constructing a xGVHD mouse model, we observed that SB216763-treated mBreg cells effectively prevent xenogeneic GVHD. Here we propose a novel strategy using SB216763 to inhibit GSK-3β and then enhance the proportion and immunosuppressive function of mBreg cells by increasing the expression of NFATc1. This approach may be used as a therapy to ameliorate GVHD and inflammatory diseases.
Collapse
Affiliation(s)
- Jinyang Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, National Health Commission, Nanjing, China
| | - Ji Gao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, National Health Commission, Nanjing, China
| | - Haoming Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, National Health Commission, Nanjing, China
| | - Jinren Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, National Health Commission, Nanjing, China
| | - Zhenghua Deng
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, National Health Commission, Nanjing, China
| | - Yunjie Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, National Health Commission, Nanjing, China.,Hepatopancreatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jianhua Rao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, National Health Commission, Nanjing, China
| | - Guwei Ji
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, National Health Commission, Nanjing, China
| | - Jian Gu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, National Health Commission, Nanjing, China
| | - Xinxiang Yang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, National Health Commission, Nanjing, China
| | - Yongxiang Xia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, National Health Commission, Nanjing, China
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, National Health Commission, Nanjing, China
| |
Collapse
|
10
|
He R, Du S, Lei T, Xie X, Wang Y. Glycogen synthase kinase 3β in tumorigenesis and oncotherapy (Review). Oncol Rep 2020; 44:2373-2385. [PMID: 33125126 PMCID: PMC7610307 DOI: 10.3892/or.2020.7817] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/17/2020] [Indexed: 02/05/2023] Open
Abstract
Glycogen synthase kinase 3β (GSK 3β), a multifunctional serine and threonine kinase, plays a critical role in a variety of cellular activities, including signaling transduction, protein and glycogen metabolism, cell proliferation, cell differentiation, and apoptosis. Therefore, aberrant regulation of GSK 3β results in a broad range of human diseases, such as tumors, diabetes, inflammation and neurodegenerative diseases. Accumulating evidence has suggested that GSK 3β is correlated with tumorigenesis and progression. However, GSK 3β is controversial due to its bifacial roles of tumor suppression and activation. In addition, overexpression of GSK 3β is involved in tumor growth, whereas it contributes to the cell sensitivity to chemotherapy. However, the underlying regulatory mechanisms of GSK 3β in tumorigenesis remain obscure and require further in‑depth investigation. In this review, we comprehensively summarize the roles of GSK 3β in tumorigenesis and oncotherapy, and focus on its potentials as an available target in oncotherapy.
Collapse
Affiliation(s)
- Rui He
- Department of Union, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Suya Du
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Tiantian Lei
- Department of Pharmacy, Chongqing Health Center for Women and Children, Chongqing 400013, P.R. China
| | - Xiaofang Xie
- Department of Medicine, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Yi Wang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
- Center of Translational Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
11
|
Cheng H, Wang L, Yang B, Li D, Wang X, Liu X, Tian N, Huang Q, Feng R, Wang Z, Liang R, Dai SM, Lv L, Wu J, Zang YS, Li B. Cutting Edge: Inhibition of Glycogen Synthase Kinase 3 Activity Induces the Generation and Enhanced Suppressive Function of Human IL-10 + FOXP3 +-Induced Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:1497-1502. [PMID: 32817370 DOI: 10.4049/jimmunol.2000136] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/24/2020] [Indexed: 01/17/2023]
Abstract
IL-10 is critical for Foxp3+ regulatory T cell (Tregs)-mediated immune suppression, but how to efficiently upregulate IL-10 production in Tregs remains unclear. In this article, we show that human IL-10+ FOXP3+-induced regulatory T cell (iTreg) generation can be dramatically promoted by inhibiting GSK3 activity. IL-10+ FOXP3+ iTregs induced by GSK3 inhibition exhibit classical features of immune-suppressive T cells. We further demonstrate that IL-10+ iTregs exhibit enhanced suppressive function in both IL-10-dependent and -independent manners. The enhanced suppressive function of IL-10+ Tregs is not due to a single factor such as IL-10, although IL-10 may mediate this enhanced suppressive function to some extent. Mechanistically, the increased transcriptional activity of IL-10 promoter and the enhanced expression of C-Maf and BLIMP1 coordinately facilitate IL-10 expression in human iTregs under GSK3 inhibition. Our study provides a new strategy to generate human immune-suppressive IL-10+ FOXP3+ Tregs for immunotherapies.
Collapse
Affiliation(s)
- Hao Cheng
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lingbiao Wang
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Biaolong Yang
- Department of Medical Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Dan Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoxia Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinnan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Na Tian
- Department of Rheumatology and Immunology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; and
| | - Qianru Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ru Feng
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Liang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sheng-Ming Dai
- Department of Rheumatology and Immunology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; and
| | - Ling Lv
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ji Wu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Yuan-Sheng Zang
- Department of Medical Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China;
| | - Bin Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| |
Collapse
|
12
|
Augello G, Emma MR, Cusimano A, Azzolina A, Montalto G, McCubrey JA, Cervello M. The Role of GSK-3 in Cancer Immunotherapy: GSK-3 Inhibitors as a New Frontier in Cancer Treatment. Cells 2020; 9:cells9061427. [PMID: 32526891 PMCID: PMC7348946 DOI: 10.3390/cells9061427] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/31/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
The serine/threonine kinase glycogen synthase kinase-3 (GSK-3) was initially identified because of its key role in the regulation of glycogen synthesis. However, it is now well-established that GSK-3 performs critical functions in many cellular processes, such as apoptosis, tumor growth, cell invasion, and metastasis. Aberrant GSK-3 activity has been associated with many human diseases, including cancer, highlighting its potential therapeutic relevance as a target for anticancer therapy. Recently, newly emerging data have demonstrated the pivotal role of GSK-3 in the anticancer immune response. In the last few years, many GSK-3 inhibitors have been developed, and some are currently being tested in clinical trials. This review will discuss preclinical and initial clinical results with GSK-3β inhibitors, highlighting the potential importance of this target in cancer immunotherapy. As described in this review, GSK-3 inhibitors have been shown to have antitumor activity in a wide range of human cancer cells, and they may also contribute to promoting a more efficacious immune response against tumor target cells, thus showing a double therapeutic advantage.
Collapse
Affiliation(s)
- Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90144 Palermo, Italy; (G.A.); (M.R.E.); (A.C.); (A.A.); (G.M.)
| | - Maria R. Emma
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90144 Palermo, Italy; (G.A.); (M.R.E.); (A.C.); (A.A.); (G.M.)
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90144 Palermo, Italy; (G.A.); (M.R.E.); (A.C.); (A.A.); (G.M.)
| | - Antonina Azzolina
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90144 Palermo, Italy; (G.A.); (M.R.E.); (A.C.); (A.A.); (G.M.)
| | - Giuseppe Montalto
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90144 Palermo, Italy; (G.A.); (M.R.E.); (A.C.); (A.A.); (G.M.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - James A. McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA;
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90144 Palermo, Italy; (G.A.); (M.R.E.); (A.C.); (A.A.); (G.M.)
- Correspondence: ; Tel.: +39-091-6809-534
| |
Collapse
|
13
|
Ding M, Brengdahl J, Lindqvist M, Gehrmann U, Ericson E, von Berg S, Ripa L, Malhotra R. A Phenotypic Screening Approach Using Human Treg Cells Identified Regulators of Forkhead Box p3 Expression. ACS Chem Biol 2019; 14:543-553. [PMID: 30807094 DOI: 10.1021/acschembio.9b00075] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Regulatory T (Treg) cells, expressing the transcription factor forkhead box p3 (FOXP3), are the key cells regulating peripheral autoreactive T lymphocytes by suppressing effector T cells. FOXP3+ Treg cells play essential roles controlling immune responses in autoimmune diseases and cancer. Several clinical approaches (e.g., polyclonal expansion of Treg cells with anti-CD3 and anti-CD28 coated beads in the presence of drugs) are under evaluation. However, expression of FOXP3, recognized as the master regulator of Treg cells, in induced Treg cells have been shown to be instable, and molecular targets involved in regulating FOXP3 expression and Treg cell function have not been well-defined. Thus, new targets directly regulating FOXP3 expression and the expression of its downstream genes (e.g., cytotoxic T-lymphocyte-associated protein 4 (CTLA4)) have the potential to stabilize the Treg cell phenotype and function. This report describes the development of an automated medium-throughput 384-well plate flow cytometry phenotypic assay meauring the protein expression of FOXP3 and CTLA4 in human Treg cells. Screening a library of 4213 structurally diverse compounds allowed us to identify a variety of compounds regulating FOXP3 and CTLA4 expression. Further evaluation of these and related small molecules, followed by confirmation using siRNA-mediated gene knockdown, revealed three targets: euchromatic histone-lysine N-methyltransferase (EHMT2) and glycogen synthase kinase 3 alpha/beta (GSK3α/β) as potent positive regulators of FOXP3 expression, and bromodomain and extra-terminal domain (BET) inhibitors as negative regulators of FOXP3 and CTLA4 expression. These targets have potential implications for establishing novel therapies for autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Mei Ding
- Discovery Sciences,
IMED Biotech Unit, AstraZeneca, Gothenburg, 431 83 Mölndal Sweden
| | - Johan Brengdahl
- Discovery Sciences,
IMED Biotech Unit, AstraZeneca, Gothenburg, 431 83 Mölndal Sweden
| | - Madelene Lindqvist
- Bioscience, Respiratory,
Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, 431 83 Mölndal Sweden
| | - Ulf Gehrmann
- Target and Translational
Science, Respiratory, Inflammation and Autoimmunity, IMED Biotech
Unit, AstraZeneca, Gothenburg, 431 83 Mölndal Sweden
| | - Elke Ericson
- Discovery Sciences,
IMED Biotech Unit, AstraZeneca, Gothenburg, 431 83 Mölndal Sweden
| | - Stefan von Berg
- Medicinal Chemistry,
Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, 431 83 Mölndal Sweden
| | - Lena Ripa
- Medicinal Chemistry,
Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, 431 83 Mölndal Sweden
| | - Rajneesh Malhotra
- Target and Translational
Science, Respiratory, Inflammation and Autoimmunity, IMED Biotech
Unit, AstraZeneca, Gothenburg, 431 83 Mölndal Sweden
| |
Collapse
|
14
|
Patterson AR, Endale M, Lampe K, Aksoylar HI, Flagg A, Woodgett JR, Hildeman D, Jordan MB, Singh H, Kucuk Z, Bleesing J, Hoebe K. Gimap5-dependent inactivation of GSK3β is required for CD4 + T cell homeostasis and prevention of immune pathology. Nat Commun 2018; 9:430. [PMID: 29382851 PMCID: PMC5789891 DOI: 10.1038/s41467-018-02897-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022] Open
Abstract
GTPase of immunity-associated protein 5 (Gimap5) is linked with lymphocyte survival, autoimmunity, and colitis, but its mechanisms of action are unclear. Here, we show that Gimap5 is essential for the inactivation of glycogen synthase kinase-3β (GSK3β) following T cell activation. In the absence of Gimap5, constitutive GSK3β activity constrains c-Myc induction and NFATc1 nuclear import, thereby limiting productive CD4+ T cell proliferation. Additionally, Gimap5 facilitates Ser389 phosphorylation and nuclear translocation of GSK3β, thereby limiting DNA damage in CD4+ T cells. Importantly, pharmacological inhibition and genetic targeting of GSK3β can override Gimap5 deficiency in CD4+ T cells and ameliorates immunopathology in mice. Finally, we show that a human patient with a GIMAP5 loss-of-function mutation has lymphopenia and impaired T cell proliferation in vitro that can be rescued with GSK3 inhibitors. Given that the expression of Gimap5 is lymphocyte-restricted, we propose that its control of GSK3β is an important checkpoint in lymphocyte proliferation. Loss of function GIMAP5 mutation is associated with lymphopenia, but how it mediates T cell homeostasis is unclear. Here the authors study Gimap5−/− mice and a patient with GIMAP5 deficiency to show how this GTPAse negatively regulates GSK3β activity to prevent DNA damage and cell death.
Collapse
Affiliation(s)
- Andrew R Patterson
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, 231 Albert Sabin Way # E251n, Cincinnati, OH, 45267, USA
| | - Mehari Endale
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Kristin Lampe
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Halil I Aksoylar
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Aron Flagg
- Pediatric Hematology/Oncology and Blood & Marrow Transplant, Cleveland Clinic Children's, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Jim R Woodgett
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - David Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, 231 Albert Sabin Way # E251n, Cincinnati, OH, 45267, USA
| | - Michael B Jordan
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, 231 Albert Sabin Way # E251n, Cincinnati, OH, 45267, USA
| | - Harinder Singh
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, 231 Albert Sabin Way # E251n, Cincinnati, OH, 45267, USA
| | - Zeynep Kucuk
- Division of Bone Marrow Transplantation & Immune Deficiency, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Jack Bleesing
- Division of Bone Marrow Transplantation & Immune Deficiency, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Kasper Hoebe
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA. .,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, 231 Albert Sabin Way # E251n, Cincinnati, OH, 45267, USA. .,Department of Pediatrics, University of Cincinnati, College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA.
| |
Collapse
|
15
|
Zhang JY, Zhao YL, Lv YP, Cheng P, Chen W, Duan M, Teng YS, Wang TT, Peng LS, Mao FY, Liu YG, Fu XL, Yu PW, Luo P, Zhang WJ, Zou QM, Zhuang Y. Modulation of CD8 + memory stem T cell activity and glycogen synthase kinase 3β inhibition enhances anti-tumoral immunity in gastric cancer. Oncoimmunology 2018; 7:e1412900. [PMID: 29632726 PMCID: PMC5889281 DOI: 10.1080/2162402x.2017.1412900] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 01/09/2023] Open
Abstract
The potential contributions of CD8+ memory stem T cells to anti-tumor immunity and immunotherapy responses in gastric cancer has not been demonstrated. We found that CD8+ memory stem T cell frequencies were increased in the peripheral blood of gastric cancer patients compared to healthy donors and declined in frequency with disease progression. Despite minimal in vitro cytotoxic activity, the adoptive transfer of CD8+ memory stem T cells into Rag1-/- tumor bearing mice enhanced tumor regression compared to CD8+ central or effector memory T cell counterparts. This effect was associated with an increase in splenic, draining lymph node and tumor infiltrating CD8+ T cell numbers and the development of an altered CD8+ T cell phenotype not seen during homeostasis. GSK-3β inhibition is known to promote memory stem T cell accumulation by arresting effector T cell differentiation in vivo. Surprisingly however, GSK-3β inhibition conversely increased the cytotoxic capacity of CD8+ memory stem T cells in vitro, and this was associated with the induction of effector T cell-associated effector proteins including FasL. Finally, FasL neutralization following GSK-3β inhibition directly attenuated the anti-tumoral capacity of CD8+ memory stem T cells both in vitro and in vivo. Altogether, our findings identify the therapeutic potential of modulating CD8+ memory stem T cells for improved anti-tumoral responses against gastric cancer.
Collapse
Affiliation(s)
- Jin-Yu Zhang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yong-Liang Zhao
- Department of General Surgery and Centre of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yi-Pin Lv
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ping Cheng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Weisan Chen
- School of Molecular Science, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Mubin Duan
- School of Molecular Science, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Yong-Sheng Teng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ting-Ting Wang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Liu-Sheng Peng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Fang-Yuan Mao
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yu-Gang Liu
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xiao-Long Fu
- Department of General Surgery and Centre of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Pei-Wu Yu
- Department of General Surgery and Centre of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ping Luo
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Wei-Jun Zhang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Quan-Ming Zou
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yuan Zhuang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|