1
|
Sivelle C, Sierocki R, Lesparre Y, Lomet A, Quintilio W, Dubois S, Correia E, Moro AM, Maillère B, Nozach H. Combining deep mutational scanning to heatmap of HLA class II binding of immunogenic sequences to preserve functionality and mitigate predicted immunogenicity. Front Immunol 2023; 14:1197919. [PMID: 37575221 PMCID: PMC10416631 DOI: 10.3389/fimmu.2023.1197919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Removal of CD4 T cell epitopes from therapeutic antibody sequences is expected to mitigate their potential immunogenicity, but its application is complicated by the location of their T cell epitopes, which mainly overlap with complementarity-determining regions. We therefore evaluated the flexibility of antibody sequences to reduce the predicted affinity of corresponding peptides for HLA II molecules and to maintain antibody binding to its target in order to guide antibody engineering for mitigation of predicted immunogenicity. Permissive substitutions to reduce affinity of peptides for HLA II molecules were identified by establishing a heatmap of HLA class II binding using T-cell epitope prediction tools, while permissive substitutions preserving binding to the target were identified by means of deep mutational scanning and yeast surface display. Combinatorial libraries were then designed to identify active clones. Applied to adalimumab, an anti-TNFα human antibody, this approach identified 200 mutants with a lower HLA binding score than adalimumab. Three mutants were produced as full-length antibodies and showed a higher affinity for TNFα and neutralization ability than adalimumab. This study also sheds light on the permissiveness of antibody sequences with regard to functionality and predicted T cell epitope content.
Collapse
Affiliation(s)
- Coline Sivelle
- Université de Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Raphael Sierocki
- Université de Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
- Deeptope SAS, Orsay, France
| | | | - Aurore Lomet
- CEA List, Université Paris-Saclay, Palaiseau, France
| | - Wagner Quintilio
- Biopharmaceuticals Laboratory, Butantan Institute, Sao Paulo, Brazil
| | - Steven Dubois
- Université de Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Evelyne Correia
- Université de Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Ana Maria Moro
- Biopharmaceuticals Laboratory, Butantan Institute, Sao Paulo, Brazil
| | - Bernard Maillère
- Université de Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Hervé Nozach
- Université de Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| |
Collapse
|
2
|
Biobetters in patients with immune-mediated inflammatory disorders: An international Delphi consensus. Autoimmun Rev 2021; 20:102849. [PMID: 33974946 DOI: 10.1016/j.autrev.2021.102849] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 12/27/2022]
Abstract
Several efforts have been made to improve the available therapeutic armamentarium of patients with immune-mediated inflammatory disorders (IMIDs) leading to the development of biobetters. To date, there is no commonly accepted definition of biobetters. Sixteen physicians with expertise in the field of IMIDs from eleven countries attended a virtual international consensus meeting to provide for the first time a definition of biobetter and to identify unmet needs on this topic. Improvements in clinical outcomes and drug pharmacology were considered crucial for the definition of biobetters, while safety profile and patient acceptability were not. In addition, an appropriate balance between clinical outcomes and costs and a shared decision between physicians and patients should guide the decision to use a biobetter. Clinical studies are required to validate the biobetter definition and to investigate their role in the management of patients with IMIDs.
Collapse
|
3
|
Huynh HH, Morita N, Sakamoto T, Katayama T, Miyakawa T, Tanokura M, Chiba Y, Shinkura R, Maruyama JI. Functional production of human antibody by the filamentous fungus Aspergillus oryzae. Fungal Biol Biotechnol 2020; 7:7. [PMID: 32514366 PMCID: PMC7257131 DOI: 10.1186/s40694-020-00098-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Monoclonal antibodies (mAbs) as biopharmaceuticals take a pivotal role in the current therapeutic applications. Generally mammalian cell lines, such as those derived from Chinese hamster ovaries (CHO), are used to produce the recombinant antibody. However, there are still concerns about the high cost and the risk of pathogenic contamination when using mammalian cells. Aspergillus oryzae, a filamentous fungus recognized as a GRAS (Generally Regarded As Safe) organism, has an ability to secrete a large amount of proteins into the culture supernatant, and thus the fungus has been used as one of the cost-effective microbial hosts for heterologous protein production. Pursuing this strategy the human anti-TNFα antibody adalimumab, one of the world's best-selling antibodies for the treatment of immune-mediated inflammatory diseases including rheumatoid arthritis, was chosen to produce the full length of mAbs by A. oryzae. Generally, N-glycosylation of the antibody affects immune effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC) via binding to the Fc receptor (FcγR) on immune cells. The CRISPR/Cas9 system was used to first delete the Aooch1 gene encoding a key enzyme for the hyper-mannosylation process in fungi to investigate the binding ability of antibody with FcγRIIIa. RESULTS Adalimumab was expressed in A. oryzae by the fusion protein system with α-amylase AmyB. The full-length adalimumab consisting of two heavy and two light chains was successfully produced in the culture supernatants. Among the producing strains, the highest amount of antibody was obtained from the ten-protease deletion strain (39.7 mg/L). Two-step purifications by Protein A and size-exclusion chromatography were applied to obtain the high purity sample for further analysis. The antigen-binding and TNFα neutralizing activities of the adalimumab produced by A. oryzae were comparable with those of a commercial product Humira®. No apparent binding with the FcγRIIIa was detected with the recombinant adalimumab even by altering the N-glycan structure using the Aooch1 deletion strain, which suggests only a little additional activity of immune effector functions. CONCLUSION These results demonstrated an alternative low-cost platform for human antibody production by using A. oryzae, possibly offering a reasonable expenditure for patient's welfare.
Collapse
Affiliation(s)
- Hung Hiep Huynh
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Naoki Morita
- Laboratory of Immunology and Infection Control, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Toshihiro Sakamoto
- Laboratory of Immunology and Infection Control, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Takuya Katayama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Yasunori Chiba
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki Japan
| | - Reiko Shinkura
- Laboratory of Immunology and Infection Control, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Jun-ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Rodríguez-Salvador M, Villarreal-Garza D, Álvarez MM, Santiago GTD. Analysis of the knowledge landscape of three-dimensional bioprinting in Latin America. Int J Bioprint 2019; 5:240. [PMID: 32596548 PMCID: PMC7310266 DOI: 10.18063/ijb.v5i2.2.240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/04/2019] [Indexed: 12/23/2022] Open
Abstract
Bioprinting, the printing of living cells using polymeric matrixes (mainly hydrogels), has attracted great attention among science and technology circles. North America has been one of the sources of bioprinting-related technology in recent years. As a natural consequence of geography, high-quality research in the area of bioprinting has started to permeate Latin America. Here, we describe and analyze the knowledge landscape of bioprinting in Latin America using a competitive technology intelligence methodology. Our analysis provides relevant information, such as the scientific publication trends in Latin America and the scientific networks among research groups in Latin America and the world.
Collapse
Affiliation(s)
| | - Diego Villarreal-Garza
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, CP 64849, Monterrey, N.L., México
| | - Mario Moisés Álvarez
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, CP 64849, Monterrey, N.L., México
- Departamento de Bioingeniería, Tecnologico de Monterrey, CP 64849, Monterrey, N.L., México
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, CP 64849, Monterrey, N.L., México
- Departamento de Ingeniería Mecátrónica y Electrica, Tecnologico de Monterrey, CP 64849, Monterrey, N.L., México
| |
Collapse
|