1
|
Bazarian JJ, Zetterberg H, Buki A, Dengler BA, Diaz-Arrastia R, Korley FK, Lazarus R, Meier TB, Mondello S, Moritz K, Okonkwo DO, Papa L, Phillips JB, Posti JP, Puccio AM, Sloley S, Steyerberg E, Wang KK, Awwad HO, Dams-O'Connor K, Doperalski A, Maas AIR, McCrea MA, Umoh N, Manley GT. Blood-Based Biomarkers for Improved Characterization of Traumatic Brain Injury: Recommendations from the 2024 National Institute for Neurological Disorders and Stroke Traumatic Brain Injury Classification and Nomenclature Initiative Blood-Based Biomarkers Working Group. J Neurotrauma 2025. [PMID: 40393505 DOI: 10.1089/neu.2024.0581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025] Open
Abstract
A 2022 report by the National Academies of Sciences, Engineering, and Medicine called for a Traumatic Brain Injury (TBI) Classification Workshop by the National Institutes of Health (NIH) to develop a more precise, evidence-based classification system. The workshop aimed to revise the Glasgow Coma Scale-based system by incorporating neuroimaging and validated blood biomarker tests. In December 2022, the National Institute for Neurological Disorders and Stroke formed six working groups of TBI experts to make recommendations for this revision. This report presents the findings and recommendations from the blood-based biomarker (BBM) working group, including feedback from the workshop and subsequent public review. The application of BBMs in a TBI classification system has potential to allow for a more adaptable and nuanced approach to triage, diagnosis, prognosis, and treatment. Current evidence supports the use of glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase L1, and S100B calcium-binding protein (S100B) to assist in reclassification of TBI at acute time points (0-24 h) primarily in emergency department settings, while neurofilament light chain (NfL), GFAP, and S100B have utility at subacute time points (1-30 days) in-hospital and intensive care unit settings. Blood levels of these biomarkers reflect the extent of structural brain injury in TBI and may be useful for describing the extent of structural brain injury in a classification system. While there is insufficient evidence to support a role for BBMs at chronic time points (>30 days), emerging evidence suggests that NfL and phosphorylated tau may have a potential future role in this regard. For inclusion in a revised TBI classification system, BBM assays must have appropriate age- and sex-specific reference ranges, be harmonized across platforms, and achieve high analytical precision, including accuracy, linearity, detection limits, selectivity, recovery, reproducibility, and stability. Improving transparency in BBM assay development can be achieved through large-scale data sharing of methods and results. Future research should focus on methods for promoting clinical adoption of BBM results, correlating BBMs with advanced neuroimaging, and on discovering new biomarkers for improved diagnosis and prognosis.
Collapse
Affiliation(s)
- Jeffrey J Bazarian
- Departments of Emergency Medicine and Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | | | | - Bradley A Dengler
- Military Traumatic Brain Injury Initiative, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Frederick K Korley
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Rachel Lazarus
- American Association of Retired Persons, Washington District of Columbia, USA
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Kasey Moritz
- U.S. Army Medical Research and Development Command, Combat Casualty Care Research Program, Fort Detrick, Maryland, USA
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Linda Papa
- Orlando Health Orlando Regional Medical Center, Orlando, Florida, USA
| | - James B Phillips
- U.S. Army Medical Research and Development Command, Combat Casualty Care Research Program, Fort Detrick, Maryland, USA
| | - Jussi P Posti
- Neurocenter, Department of Neurosurgery and Turku Brain Injury Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Ava M Puccio
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephanie Sloley
- TBI Center of Excellence, Defense Health Agency, Silver Spring, Maryland, USA
| | | | - Kevin K Wang
- Center for Neurotrauma, Multiomics & Biomarkers, Neuroscience institute, Morehouse School of Medicine, Atlanta, Georgia, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, Georgia, USA
| | - Hibah O Awwad
- Division of Neuroscience, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Kristen Dams-O'Connor
- Department of Rehabilitation and Human Performance, Icahn School of Medicine, Mount Sinai, New York, New York, USA
- Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Adele Doperalski
- Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Andrew I R Maas
- Department of Neurosurgery, Antwerp University Hospital, Edegem, Belgium
- Department of Translational Neuroscience, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | - Michael A McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Nsini Umoh
- Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Geoffrey T Manley
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
2
|
Hong E, Froese L, Pontén E, Fletcher-Sandersjöö A, Tatter C, Hammarlund E, Åkerlund CAI, Tjerkaski J, Alpkvist P, Bartek J, Raj R, Lindblad C, Nelson DW, Zeiler FA, Thelin EP. Critical thresholds of long-pressure reactivity index and impact of intracranial pressure monitoring methods in traumatic brain injury. Crit Care 2024; 28:256. [PMID: 39075480 PMCID: PMC11285281 DOI: 10.1186/s13054-024-05042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Moderate-to-severe traumatic brain injury (TBI) has a global mortality rate of about 30%, resulting in acquired life-long disabilities in many survivors. To potentially improve outcomes in this TBI population, the management of secondary injuries, particularly the failure of cerebrovascular reactivity (assessed via the pressure reactivity index; PRx, a correlation between intracranial pressure (ICP) and mean arterial blood pressure (MAP)), has gained interest in the field. However, derivation of PRx requires high-resolution data and expensive technological solutions, as calculations use a short time-window, which has resulted in it being used in only a handful of centers worldwide. As a solution to this, low resolution (longer time-windows) PRx has been suggested, known as Long-PRx or LPRx. Though LPRx has been proposed little is known about the best methodology to derive this measure, with different thresholds and time-windows proposed. Furthermore, the impact of ICP monitoring on cerebrovascular reactivity measures is poorly understood. Hence, this observational study establishes critical thresholds of LPRx associated with long-term functional outcome, comparing different time-windows for calculating LPRx as well as evaluating LPRx determined through external ventricular drains (EVD) vs intraparenchymal pressure device (IPD) ICP monitoring. METHODS The study included a total of n = 435 TBI patients from the Karolinska University Hospital. Patients were dichotomized into alive vs. dead and favorable vs. unfavorable outcomes based on 1-year Glasgow Outcome Scale (GOS). Pearson's chi-square values were computed for incrementally increasing LPRx or ICP thresholds against outcome. The thresholds that generated the greatest chi-squared value for each LPRx or ICP parameter had the highest outcome discriminatory capacity. This methodology was also completed for the segmentation of the population based on EVD, IPD, and time of data recorded in hospital stay. RESULTS LPRx calculated with 10-120-min windows behaved similarly, with maximal chi-square values ranging at around a LPRx of 0.25-0.35, for both survival and favorable outcome. When investigating the temporal relations of LPRx derived thresholds, the first 4 days appeared to be the most associated with outcomes. The segmentation of the data based on intracranial monitoring found limited differences between EVD and IPD, with similar LPRx values around 0.3. CONCLUSION Our work suggests that the underlying prognostic factors causing impairment in cerebrovascular reactivity can, to some degree, be detected using lower resolution PRx metrics (similar found thresholding values) with LPRx found clinically using as low as 10 min-by-minute samples of MAP and ICP. Furthermore, EVD derived LPRx with intermittent cerebrospinal fluid draining, seems to present similar outcome capacity as IPD. This low-resolution low sample LPRx method appears to be an adequate substitute for the clinical prognostic value of PRx and may be implemented independent of ICP monitoring method when PRx is not feasible, though further research is warranted.
Collapse
Affiliation(s)
- Erik Hong
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Logan Froese
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada.
| | - Emeli Pontén
- Department of Molecular Medicine and Surgery (MMK), Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Skåne University Hospital, Lund, Sweden
| | - Alexander Fletcher-Sandersjöö
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Charles Tatter
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Södersjukhuset, Stockholm, Sweden
| | - Emma Hammarlund
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Cecilia A I Åkerlund
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
- Section of Perioperative Medicine and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Peter Alpkvist
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Jiri Bartek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Rahul Raj
- Department of Neurosurgery, University of Helsinki, Helsinki, Finland
| | - Caroline Lindblad
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - David W Nelson
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
- Section of Perioperative Medicine and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Frederick A Zeiler
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Pan Am Clinic Foundation, Winnipeg, MB, Canada
- Centre on Aging, University of Manitoba, Winnipeg, Canada
| | - Eric P Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Trivedi D, Forssten MP, Cao Y, Ismail AM, Czeiter E, Amrein K, Kobeissy F, Wang KKW, DeSoucy E, Buki A, Mohseni S. Screening Performance of S100 Calcium-Binding Protein B, Glial Fibrillary Acidic Protein, and Ubiquitin C-Terminal Hydrolase L1 for Intracranial Injury Within Six Hours of Injury and Beyond. J Neurotrauma 2024; 41:349-358. [PMID: 38115670 DOI: 10.1089/neu.2023.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
The Scandinavian NeuroTrauma Committee (SNC) guidelines recommend S100 calcium-binding protein B (S100B) as a screening tool for early detection of Traumatic brain injury (TBI) in patients presenting with an initial Glasgow Coma Scale (GCS) of 14-15. The objective of the current study was to compare S100B's diagnostic performance within the recommended 6-h window after injury, compared with glial fibrillary acidic protein (GFAP) and UCH-L1. The secondary outcome of interest was the ability of these biomarkers in detecting traumatic intracranial pathology beyond the 6-h mark. The Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) core database (2014-2017) was queried for data pertaining to all TBI patients with an initial GCS of 14-15 who had a blood sample taken within 6 h of injury in which the levels of S100B, GFAP, and UCH-L1 were measured. As a subgroup analysis, data involving patients with blood samples taken within 6-9 h and 9-12 h were analyzed separately for diagnostic ability. The diagnostic ability of these biomarkers for detecting any intracranial injury was evaluated based on the area under the receiver operating characteristic curve (AUC). Each biomarker's sensitivity, specificity, and accuracy were also reported at the cutoff that maximized Youden's index. A total of 531 TBI patients with GCS 14-15 on admission had a blood sample taken within 6 h, of whom 24.9% (n = 132) had radiologically confirmed intracranial injury. The AUCs of GFAP (0.86, 95% confidence interval [CI]: 0.82-0.90) and UCH-L1 (0.81, 95% CI: 0.76-0.85) were statistically significantly higher than that of S100B (0.74, 95% CI: 0.69-0.79) during this time. There was no statistically significant difference in the predictive ability of S100B when sampled within 6 h, 6-9 h, and 9-12 h of injury, as the p values were >0.05 when comparing the AUCs. Overlapping AUC 95% CI suggests no benefit of a combined GFAP and UCH-L1 screening tool over GFAP during the time periods studied [0.87 (0.83-0.90) vs. 0.86 (0.82-0.90) when sampled within 6 h of injury, 0.83 (0.78-0.88) vs. 0.83 (0.78-0.89) within 6 to 9 h and 0.81 (0.73-0.88) vs. 0.79 (0.72-0.87) within 9-12 h]. Targeted analysis of the CENTER-TBI core database, with focus on the patient category for which biomarker testing is recommended by the SNC guidelines, revealed that GFAP and UCH-L1 perform superior to S100B in predicting CT-positive intracranial lesions within 6 h of injury. GFAP continued to exhibit superior predictive ability to S100B during the time periods studied. S100B displayed relatively unaltered screening performance beyond the diagnostic timeline provided by SNC guidelines. These findings suggest the need for a reevaluation of the current SNC TBI guidelines.
Collapse
Affiliation(s)
- Dhanisha Trivedi
- Department of Neurosurgery, Orebro University Hospital, Orebro, Sweden
- School of Medical Sciences , Orebro University Hospital, Orebro, Sweden
| | | | - Yang Cao
- Clinical Epidemiology and Biostatistics, Orebro University Hospital, Orebro, Sweden
| | | | - Endre Czeiter
- Department of Neurosurgery, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentágothai Research Center, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Krisztina Amrein
- Department of Neurosurgery, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentágothai Research Center, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Firas Kobeissy
- Center for Neurotrauma, Multiomics, and Biomarkers, Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Kevin K W Wang
- Center for Neurotrauma, Multiomics, and Biomarkers, Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Erik DeSoucy
- Division of Trauma, Critical Care, and Acute Care Surgery, Department of Surgery, Sheikh Shakhbout Medical City-Mayo Clinic, Abu Dhabi, United Arab Emirates
| | - Andras Buki
- Department of Neurosurgery, Orebro University Hospital, Orebro, Sweden
- School of Medical Sciences , Orebro University Hospital, Orebro, Sweden
| | - Shahin Mohseni
- School of Medical Sciences , Orebro University Hospital, Orebro, Sweden
| |
Collapse
|
4
|
Korhonen O, Mononen M, Mohammadian M, Tenovuo O, Blennow K, Hossain I, Hutchinson P, Maanpää HR, Menon DK, Newcombe VF, Sanchez JC, Takala RSK, Tallus J, van Gils M, Zetterberg H, Posti JP. Outlier Analysis for Acute Blood Biomarkers of Moderate and Severe Traumatic Brain Injury. J Neurotrauma 2024; 41:91-105. [PMID: 37725575 DOI: 10.1089/neu.2023.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Blood biomarkers have been studied to improve the clinical assessment and prognostication of patients with moderate-severe traumatic brain injury (mo/sTBI). To assess their clinical usability, one needs to know of potential factors that might cause outlier values and affect clinical decision making. In a prospective study, we recruited patients with mo/sTBI (n = 85) and measured the blood levels of eight protein brain pathophysiology biomarkers, including glial fibrillary acidic protein (GFAP), S100 calcium-binding protein B (S100B), neurofilament light (Nf-L), heart-type fatty acid-binding protein (H-FABP), interleukin-10 (IL-10), total tau (T-tau), amyloid β40 (Aβ40) and amyloid β42 (Aβ42), within 24 h of admission. Similar analyses were conducted for controls (n = 40) with an acute orthopedic injury without any head trauma. The patients with TBI were divided into subgroups of normal versus abnormal (n = 9/76) head computed tomography (CT) and favorable (Glasgow Outcome Scale Extended [GOSE] 5-8) versus unfavorable (GOSE <5) (n = 38/42, 5 missing) outcome. Outliers were sought individually from all subgroups from and the whole TBI patient population. Biomarker levels outside Q1 - 1.5 interquartile range (IQR) or Q3 + 1.5 IQR were considered as outliers. The medical records of each outlier patient were reviewed in a team meeting to determine possible reasons for outlier values. A total of 29 patients (34%) combined from all subgroups and 12 patients (30%) among the controls showed outlier values for one or more of the eight biomarkers. Nine patients with TBI and five control patients had outlier values in more than one biomarker (up to 4). All outlier values were > Q3 + 1.5 IQR. A logical explanation was found for almost all cases, except the amyloid proteins. Explanations for outlier values included extremely severe injury, especially for GFAP and S100B. In the case of H-FABP and IL-10, the explanation was extracranial injuries (thoracic injuries for H-FABP and multi-trauma for IL-10), in some cases these also were associated with abnormally high S100B. Timing of sampling and demographic factors such as age and pre-existing neurological conditions (especially for T-tau), explained some of the abnormally high values especially for Nf-L. Similar explanations also emerged in controls, where the outlier values were caused especially by pre-existing neurological diseases. To utilize blood-based biomarkers in clinical assessment of mo/sTBI, very severe or fatal TBIs, various extracranial injuries, timing of sampling, and demographic factors such as age and pre-existing systemic or neurological conditions must be taken into consideration. Very high levels seem to be often associated with poor prognosis and mortality (GFAP and S100B).
Collapse
Affiliation(s)
- Otto Korhonen
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, Turko, Finland
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
| | - Malla Mononen
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, Turko, Finland
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
| | - Mehrbod Mohammadian
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
| | - Olli Tenovuo
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Iftakher Hossain
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, Turko, Finland
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Peter Hutchinson
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Henna-Riikka Maanpää
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, Turko, Finland
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Virginia F Newcombe
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Jean-Charles Sanchez
- Department of Specialities of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Riikka S K Takala
- Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku, Finland
| | - Jussi Tallus
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
- Department of Radiology, Turku University Hospital and University of Turku, Finland
| | - Mark van Gils
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jussi P Posti
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, Turko, Finland
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
| |
Collapse
|
5
|
Åkerlund CAI, Holst A, Bhattacharyay S, Stocchetti N, Steyerberg E, Smielewski P, Menon DK, Ercole A, Nelson DW. Clinical descriptors of disease trajectories in patients with traumatic brain injury in the intensive care unit (CENTER-TBI): a multicentre observational cohort study. Lancet Neurol 2024; 23:71-80. [PMID: 37977157 DOI: 10.1016/s1474-4422(23)00358-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Patients with traumatic brain injury are a heterogeneous population, and the most severely injured individuals are often treated in an intensive care unit (ICU). The primary injury at impact, and the harmful secondary events that can occur during the first week of the ICU stay, will affect outcome in this vulnerable group of patients. We aimed to identify clinical variables that might distinguish disease trajectories among patients with traumatic brain injury admitted to the ICU. METHODS We used data from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) prospective observational cohort study. We included patients aged 18 years or older with traumatic brain injury who were admitted to the ICU at one of the 65 CENTER-TBI participating centres, which range from large academic hospitals to small rural hospitals. For every patient, we obtained pre-injury data and injury features, clinical characteristics on admission, demographics, physiological parameters, laboratory features, brain biomarkers (ubiquitin carboxy-terminal hydrolase L1 [UCH-L1], S100 calcium-binding protein B [S100B], tau, neurofilament light [NFL], glial fibrillary acidic protein [GFAP], and neuron-specific enolase [NSE]), and information about intracranial pressure lowering treatments during the first 7 days of ICU stay. To identify clinical variables that might distinguish disease trajectories, we applied a novel clustering method to these data, which was based on a mixture of probabilistic graph models with a Markov chain extension. The relation of clusters to the extended Glasgow Outcome Scale (GOS-E) was investigated. FINDINGS Between Dec 19, 2014, and Dec 17, 2017, 4509 patients with traumatic brain injury were recruited into the CENTER-TBI core dataset, of whom 1728 were eligible for this analysis. Glucose variation (defined as the difference between daily maximum and minimum glucose concentrations) and brain biomarkers (S100B, NSE, NFL, tau, UCH-L1, and GFAP) were consistently found to be the main clinical descriptors of disease trajectories (ie, the leading variables contributing to the distinguishing clusters) in patients with traumatic brain injury in the ICU. The disease trajectory cluster to which a patient was assigned in a model was analysed as a predictor together with variables from the IMPACT model, and prediction of both mortality and unfavourable outcome (dichotomised GOS-E ≤4) was improved. INTERPRETATION First-day ICU admission data are not the only clinical descriptors of disease trajectories in patients with traumatic brain injury. By analysing temporal variables in our study, variation of glucose was identified as the most important clinical descriptor that might distinguish disease trajectories in the ICU, which should direct further research. Biomarkers of brain injury (S100B, NSE, NFL, tau, UCH-L1, and GFAP) were also top clinical descriptors over time, suggesting they might be important in future clinical practice. FUNDING European Union 7th Framework program, Hannelore Kohl Stiftung, OneMind, Integra LifeSciences Corporation, and NeuroTrauma Sciences.
Collapse
Affiliation(s)
- Cecilia A I Åkerlund
- Department of Physiology and Pharmacology, Section of Anaesthesiology and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Function Perioperative Medicine and Intensive Care, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Anders Holst
- School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Nino Stocchetti
- Department of Physiopathology and Transplant, Milan University, Milan, Italy; Fondazione IRCCS, Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ewout Steyerberg
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | | | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ari Ercole
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK; Centre for Artificial Intelligence in Medicine, University of Cambridge, Cambridge, UK
| | - David W Nelson
- Department of Physiology and Pharmacology, Section of Anaesthesiology and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Function Perioperative Medicine and Intensive Care, Karolinska University Hospital Solna, Stockholm, Sweden.
| |
Collapse
|
6
|
Agoston DV, Helmy A. Fluid-Based Protein Biomarkers in Traumatic Brain Injury: The View from the Bedside. Int J Mol Sci 2023; 24:16267. [PMID: 38003454 PMCID: PMC10671762 DOI: 10.3390/ijms242216267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
There has been an explosion of research into biofluid (blood, cerebrospinal fluid, CSF)-based protein biomarkers in traumatic brain injury (TBI) over the past decade. The availability of very large datasets, such as CENTRE-TBI and TRACK-TBI, allows for correlation of blood- and CSF-based molecular (protein), radiological (structural) and clinical (physiological) marker data to adverse clinical outcomes. The quality of a given biomarker has often been framed in relation to the predictive power on the outcome quantified from the area under the Receiver Operating Characteristic (ROC) curve. However, this does not in itself provide clinical utility but reflects a statistical association in any given population between one or more variables and clinical outcome. It is not currently established how to incorporate and integrate biofluid-based biomarker data into patient management because there is no standardized role for such data in clinical decision making. We review the current status of biomarker research and discuss how we can integrate existing markers into current clinical practice and what additional biomarkers do we need to improve diagnoses and to guide therapy and to assess treatment efficacy. Furthermore, we argue for employing machine learning (ML) capabilities to integrate the protein biomarker data with other established, routinely used clinical diagnostic tools, to provide the clinician with actionable information to guide medical intervention.
Collapse
Affiliation(s)
- Denes V. Agoston
- Department of Anatomy, Physiology and Genetic, School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK;
| |
Collapse
|
7
|
Thotakura AK, Velivela KC, Marabathina NR, Riyaz AA, Vuddandi SP, Danaboyina AR. S100B and optic nerve sheath diameter correlation in head injury patients with contusions. J Neurosci Rural Pract 2023; 14:599-602. [PMID: 38059225 PMCID: PMC10696316 DOI: 10.25259/jnrp_45_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/14/2023] [Indexed: 12/08/2023] Open
Abstract
S100B is a biochemical marker of head injury and optic nerve sheath diameter (ONSD) is a non-invasive bedside technique to detect intracranial pressure. We aim to demonstrate whether ONSD correlates with S100B protein in head injury patients with contusions and also whether the grade of contusion correlates with S100B protein. This is a prospective study done on head injury patients aged between 18 and 75 years having isolated contusions admitted within 24 h of injury. Patients were assessed neurologically with Glasgow Coma Scale (GCS) and cranial computed tomography study on admission. Ocular sonography was done for ONSD recording, and S100B protein venous samples were collected at 24 h, 48 h, and at discharge. The outcome was evaluated with Glasgow Outcome Scale (GOS) at discharge and 3 months. Out of 42 patients, the mean age was 46.2 years and 27 were males. There were 12 patients with mild, 25 with moderate, and 5 patients with severe head injury. The mean GCS at 24 h was 12.35, the mean ONSD at 24 h was 3.9 mm, and the mean S100B at 24 h was 0.214 µg/L. There was a statistically significant correlation noted between mean S100B and contusion grade. A moderate positive correlation was noted between ONSD and S100B at 48 h in mild and moderate head injury groups. Favorable outcome (GOS 4,5) at 3 months can be predicted by GCS, contusion grade, and S100B values. Better GCS (14 and 15), focal contusion grade, and S100B values (<0.5 µg/L) predict good outcome. Although ONSD and S100B give important information in different scenarios, S100B gives better predictive information in patients with traumatic cerebral contusions. Key message S100 B and ONSD are simple biochemical and radiological investigations that can be done in every neurosurgical setup and can be useful in the management of head injury patients.
Collapse
Affiliation(s)
- Amit Kumar Thotakura
- Department of Neurosurgery, NRI Academy of Sciences, Guntur, Andhra Pradesh, India
| | - Kiran Chand Velivela
- Department of Neurosurgery, NRI Academy of Sciences, Guntur, Andhra Pradesh, India
| | | | - Abdul Aziz Riyaz
- Department of Neurosurgery, NRI Academy of Sciences, Guntur, Andhra Pradesh, India
| | | | | |
Collapse
|
8
|
Toro C, Jain S, Sun S, Temkin N, Barber J, Manley G, Komisarow JM, Ohnuma T, Foreman B, Korley F, James ML, Laskowitz D, Vavilala MS, Hernandez A, Mathew JP, Markowitz AJ, Krishnamoorthy V. Association of Brain Injury Biomarkers and Circulatory Shock Following Moderate-Severe Traumatic Brain Injury: A TRACK-TBI Study. J Neurosurg Anesthesiol 2023; 35:284-291. [PMID: 34967764 PMCID: PMC9243189 DOI: 10.1097/ana.0000000000000828] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/19/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Early circulatory shock following traumatic brain injury (TBI) is a multifactorial process; however, the impact of brain injury biomarkers on the risk of shock has not been evaluated. We examined the association between neuronal injury biomarker levels and the development of circulatory shock following moderate-severe TBI. METHODS In this retrospective cohort study, we examined adults with moderate-severe TBI (Glasgow Coma Scale score <13) enrolled in the TRACK-TBI study, an 18-center prospective TBI cohort study. The exposures were day-1 levels of neuronal injury biomarkers (glial fibrillary acidic protein, ubiquitin C-terminal hydrolase-L1 [UCH-L1], S100 calcium-binding protein B [S100B], neuron-specific enolase), and of an inflammatory biomarker (high-sensitivity C-reactive protein). The primary outcome was the development of circulatory shock, defined as cardiovascular Sequential Organ Failure Assessment Score ≥2 within 72 hours of admission. Association between day-1 biomarker levels and the development of circulatory shock was assessed with regression analysis. RESULTS The study included 392 subjects, with a mean age of 40 years; 314 (80%) were male and 165 (42%) developed circulatory shock. Median (interquartile range) day-1 levels of UCH-L1 (994.8 [518.7 to 1988.2] pg/mL vs. 548.1 [280.2 to 1151.9] pg/mL; P <0.0001) and S100B (0.47 μg/mL [0.25 to 0.88] vs. 0.27 [0.16 to 0.46] μg/mL; P <0.0001) were elevated in those who developed early circulatory shock compared with those who did not. In multivariable regression, there were associations between levels of both UCH-L1 (odds ratio, 1.63 [95% confidence interval, 1.25-2.12]; P <0.0005) and S100B (odds ratio, 1.73 [95% confidence interval 1.27-2.36]; P <0.0005) with the development of circulatory shock. CONCLUSION Neuronal injury biomarkers may provide the improved mechanistic understanding and possibly early identification of patients at risk for early circulatory shock following moderate-severe TBI.
Collapse
Affiliation(s)
- Camilo Toro
- Duke University School of Medicine. Durham, NC
| | - Sonia Jain
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego. San Diego, CA
| | - Shelly Sun
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego. San Diego, CA
| | - Nancy Temkin
- Department of Biostatistics, Anesthesiology and Pain Medicine, University of Washington. Seattle, WA
- Department of Neurosurgery, Anesthesiology and Pain Medicine, University of Washington. Seattle, WA
| | - Jason Barber
- Department of Neurosurgery, Anesthesiology and Pain Medicine, University of Washington. Seattle, WA
| | - Geoffrey Manley
- Brain and Spinal Injury Center, University of California, San Francisco. San Francisco, CA
| | | | - Tetsu Ohnuma
- Department of Anesthesiology, Duke University. Durham, NC
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University. Durham, NC
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati. Cincinnati, OH
| | - Frederick Korley
- Department of Emergency Medicine, University of Michigan. Ann Arbor, MI
| | - Michael L. James
- Department of Anesthesiology, Duke University. Durham, NC
- Department of Neurology, Duke University. Durham, NC
| | - Daniel Laskowitz
- Department of Anesthesiology, Duke University. Durham, NC
- Department of Neurology, Duke University. Durham, NC
| | - Monica S. Vavilala
- Department of Anesthesiology and Pain Medicine, and Harborview Injury Prevention and Research Center, University of Washington, Seattle, WA
| | | | | | - Amy J. Markowitz
- Brain and Spinal Injury Center, University of California, San Francisco. San Francisco, CA
| | - Vijay Krishnamoorthy
- Department of Anesthesiology, Duke University. Durham, NC
- Department of Population Health Sciences, Duke University. Durham, NC
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University. Durham, NC
| | | |
Collapse
|
9
|
Mafuika SN, Naicker T, Harrichandparsad R, Lazarus L. The potential of serum S100 calcium-binding protein B and glial fibrillary acidic protein as biomarkers for traumatic brain injury. TRANSLATIONAL RESEARCH IN ANATOMY 2022. [DOI: 10.1016/j.tria.2022.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Leifsdottir K, Thelin EP, Lassarén P, Siljehav V, Nilsson P, Eksborg S, Herlenius E. Proteomic profiles in cerebrospinal fluid predicted death and disability in term infants with perinatal asphyxia: A pilot study. Acta Paediatr 2022; 111:961-970. [PMID: 35106835 PMCID: PMC9305740 DOI: 10.1111/apa.16277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/23/2021] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
Abstract
Aim Perinatal asphyxia, resulting in hypoxic‐ischaemic encephalopathy (HIE), has been associated with high mortality rates and severe lifelong neurodevelopmental disabilities. Our aim was to study the association between the proteomic profile in cerebrospinal fluid (CSF) and the degree of HIE and long‐term outcomes. Methods We prospectively enrolled 18‐term born infants with HIE and 10‐term born controls between 2000 and 2004 from the Karolinska University Hospital. An antibody suspension bead array and FlexMap3D analysis was used to characterise 178 unique brain‐derived and inflammation associated proteins in their CSF. Results Increased CSF concentrations of several brain‐specific proteins were observed in the proteome of HIE patients compared with the controls. An upregulation of neuroinflammatory pathways was also noted and this was confirmed by pathway analysis. Principal component analysis revealed a gradient from favourable to unfavourable HIE grades and outcomes. The proteins that provided strong predictors were structural proteins, including myelin basic protein and alpha‐II spectrin. The functional proteins included energy‐related proteins like neuron‐specific enolase and synaptic regulatory proteins. Increased CSF levels of 51 proteins correlated with adverse outcomes in infants with HIE. Conclusion Brain‐specific proteins and neuroinflammatory mediators in CSF may predict HIE degrees and outcomes after perinatal asphyxia.
Collapse
Affiliation(s)
- Kristin Leifsdottir
- Department of Women´s and Children´s Health Karolinska Institutet Stockholm Sweden
- Astrid Lindgren Children’s Hospital Karolinska University Hospital Stockholm Sweden
| | - Eric P Thelin
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
- Department of Neurology Karolinska University Hospital Stockholm Sweden
| | - Philipp Lassarén
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
| | - Veronica Siljehav
- Department of Women´s and Children´s Health Karolinska Institutet Stockholm Sweden
- Astrid Lindgren Children’s Hospital Karolinska University Hospital Stockholm Sweden
| | - Peter Nilsson
- Department of Protein Science KTH Royal Institute of Technology SciLifeLab Stockholm Sweden
| | - Staffan Eksborg
- Department of Women´s and Children´s Health Karolinska Institutet Stockholm Sweden
- Astrid Lindgren Children’s Hospital Karolinska University Hospital Stockholm Sweden
| | - Eric Herlenius
- Department of Women´s and Children´s Health Karolinska Institutet Stockholm Sweden
- Astrid Lindgren Children’s Hospital Karolinska University Hospital Stockholm Sweden
| |
Collapse
|
11
|
Shahim P, Zetterberg H. Neurochemical Markers of Traumatic Brain Injury: Relevance to Acute Diagnostics, Disease Monitoring, and Neuropsychiatric Outcome Prediction. Biol Psychiatry 2022; 91:405-412. [PMID: 34857362 DOI: 10.1016/j.biopsych.2021.10.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022]
Abstract
Considerable advancements have been made in the quantification of biofluid-based biomarkers for traumatic brain injury (TBI), which provide a clinically accessible window to investigate disease mechanisms and progression. Methods with improved analytical sensitivity compared with standard immunoassays are increasingly used, and blood tests are being used in the diagnosis, monitoring, and outcome prediction of TBI. Most work to date has focused on acute TBI diagnostics, while the literature on biomarkers for long-term sequelae is relatively scarce. In this review, we give an update on the latest developments in biofluid-based biomarker research in TBI and discuss how acute and prolonged biomarker changes can be used to detect and quantify brain injury and predict clinical outcome and neuropsychiatric sequelae.
Collapse
Affiliation(s)
- Pashtun Shahim
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at University College London, London, United Kingdom; Department of Neurodegenerative Disease, University College London Institute of Neurology, London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China.
| |
Collapse
|
12
|
Whitehouse DP, Vile AR, Adatia K, Herlekar R, Roy AS, Mondello S, Czeiter E, Amrein K, Büki A, Maas AIR, Menon DK, Newcombe VFJ. Blood Biomarkers and Structural Imaging Correlations Post-Traumatic Brain Injury: A Systematic Review. Neurosurgery 2022; 90:170-179. [PMID: 34995235 DOI: 10.1227/neu.0000000000001776] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Blood biomarkers are of increasing importance in the diagnosis and assessment of traumatic brain injury (TBI). However, the relationship between them and lesions seen on imaging remains unclear. OBJECTIVE To perform a systematic review of the relationship between blood biomarkers and intracranial lesion types, intracranial lesion injury patterns, volume/number of intracranial lesions, and imaging classification systems. METHODS We searched Medical Literature Analysis and Retrieval System Online, Excerpta Medica dataBASE, and Cumulative Index to Nursing and Allied Health Literature from inception to May 2021, and the references of included studies were also screened. Heterogeneity in study design, biomarker types, imaging modalities, and analyses inhibited quantitative analysis, with a qualitative synthesis presented. RESULTS Fifty-nine papers were included assessing one or more biomarker to imaging comparisons per paper: 30 assessed imaging classifications or injury patterns, 28 assessed lesion type, and 11 assessed lesion volume or number. Biomarker concentrations were associated with the burden of brain injury, as assessed by increasing intracranial lesion volume, increasing numbers of traumatic intracranial lesions, and positive correlations with imaging classification scores. There were inconsistent findings associating different biomarkers with specific imaging phenotypes including diffuse axonal injury, cerebral edema, and intracranial hemorrhage. CONCLUSION Blood-based biomarker concentrations after TBI are consistently demonstrated to correlate burden of intracranial disease. The relation with specific injury types is unclear suggesting a lack of diagnostic specificity and/or is the result of the complex and heterogeneous nature of TBI.
Collapse
Affiliation(s)
- Daniel P Whitehouse
- Department of Medicine, University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | | | - Krishma Adatia
- Department of Medicine, University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Rahul Herlekar
- School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Akangsha Sur Roy
- School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Endre Czeiter
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
- Neurotrauma Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
| | - Krisztina Amrein
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
- Neurotrauma Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - András Büki
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
- Neurotrauma Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Andrew I R Maas
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - David K Menon
- Department of Medicine, University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Virginia F J Newcombe
- Department of Medicine, University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| |
Collapse
|
13
|
Current state of high-fidelity multimodal monitoring in traumatic brain injury. Acta Neurochir (Wien) 2022; 164:3091-3100. [PMID: 36260235 PMCID: PMC9705453 DOI: 10.1007/s00701-022-05383-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/28/2022] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Multimodality monitoring of patients with severe traumatic brain injury (TBI) is primarily performed in neuro-critical care units to prevent secondary harmful brain insults and facilitate patient recovery. Several metrics are commonly monitored using both invasive and non-invasive techniques. The latest Brain Trauma Foundation guidelines from 2016 provide recommendations and thresholds for some of these. Still, high-level evidence for several metrics and thresholds is lacking. METHODS Regarding invasive brain monitoring, intracranial pressure (ICP) forms the cornerstone, and pressures above 22 mmHg should be avoided. From ICP, cerebral perfusion pressure (CPP) (mean arterial pressure (MAP)-ICP) and pressure reactivity index (PRx) (a correlation between slow waves MAP and ICP as a surrogate for cerebrovascular reactivity) may be derived. In terms of regional monitoring, partial brain tissue oxygen pressure (PbtO2) is commonly used, and phase 3 studies are currently ongoing to determine its added effect to outcome together with ICP monitoring. Cerebral microdialysis (CMD) is another regional invasive modality to measure substances in the brain extracellular fluid. International consortiums have suggested thresholds and management strategies, in spite of lacking high-level evidence. Although invasive monitoring is generally safe, iatrogenic hemorrhages are reported in about 10% of cases, but these probably do not significantly affect long-term outcome. Non-invasive monitoring is relatively recent in the field of TBI care, and research is usually from single-center retrospective experiences. Near-infrared spectrometry (NIRS) measuring regional tissue saturation has been shown to be associated with outcome. Transcranial doppler (TCD) has several tentative utilities in TBI like measuring ICP and detecting vasospasm. Furthermore, serial sampling of biomarkers of brain injury in the blood can be used to detect secondary brain injury development. CONCLUSIONS In multimodal monitoring, the most important aspect is data interpretation, which requires knowledge of each metric's strengths and limitations. Combinations of several modalities might make it possible to discern specific pathologic states suitable for treatment. However, the cost-benefit should be considered as the incremental benefit of adding several metrics has a low level of evidence, thus warranting additional research.
Collapse
|
14
|
Mozaffari K, Dejam D, Duong C, Ding K, French A, Ng E, Preet K, Franks A, Kwan I, Phillips HW, Kim DY, Yang I. Systematic Review of Serum Biomarkers in Traumatic Brain Injury. Cureus 2021; 13:e17056. [PMID: 34522534 PMCID: PMC8428323 DOI: 10.7759/cureus.17056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 12/20/2022] Open
Abstract
Traumatic brain injury (TBI) is responsible for the majority of trauma-related deaths and is a leading cause of disability. It is characterized by an inflammatory process involved in the progression of secondary brain injury. TBI is measured by the Glasgow Coma Scale (GCS) with scores ranging from 15-3, demonstrating mild to severe brain injury. Apart from this clinical assessment of TBI, compendiums of literature have been published on TBI-related serum markers.Herein we create a comprehensive appraisal of the most prominent serum biomarkers used in the assessment and care of TBI.The PubMed, Scopus, Cochrane, and Web of Science databases were queried with the terms “biomarker” and “traumatic brain injury” as search terms with only full-text, English articles within the past 10 years selected. Non-human studies were excluded, and only adult patients fell within the purview of this analysis. A total of 528 articles were analyzed in the initial search with 289 selected for screening. A further 152 were excluded for primary screening. Of the remaining 137, 54 were included in the final analysis. Serum biomarkers were listed into the following broad categories for ease of discussion: immune markers and markers of inflammation, hormones as biomarkers, coagulation and vasculature, genetic polymorphisms, antioxidants and oxidative stress, apoptosis and degradation pathways, and protein markers. Glial fibrillary acidic protein(GFAP), S100, and neurons specific enolase (NSE) were the most prominent and frequently cited markers. Amongst these three, no single serum biomarker demonstrated neither superior sensitivity nor specificity compared to the other two, therefore noninvasive panels should incorporate these three serum biomarkers to retain sensitivity and maximize specificity for TBI.
Collapse
Affiliation(s)
- Khashayar Mozaffari
- Neurosurgery, Ronald Reagan University of California Los Angeles Medical Center, Los Angeles, USA
| | - Dillon Dejam
- Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Courtney Duong
- Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Kevin Ding
- Neurosurgery, Ronald Reagan University of California Los Angeles Medical Center, Los Angeles, USA
| | - Alexis French
- Neurosurgery, Ronald Reagan University of California Los Angeles Medical Center, Los Angeles, USA
| | - Edwin Ng
- Neurosurgery, Ronald Reagan University of California Los Angeles Medical Center, Los Angeles, USA
| | - Komal Preet
- Neurosurgery, University of California, Los Angeles, USA
| | - Alyssa Franks
- Neurosurgery, Ronald Reagan University of California Los Angeles Medical Center, Los Angeles, USA
| | - Isabelle Kwan
- Neurosurgery, Ronald Reagan University of California Los Angeles Medical Center, Los Angeles, USA
| | - H Westley Phillips
- Neurosurgery, Ronald Reagan University of California Los Angeles Medical Center, Los Angeles, USA
| | - Dennis Y Kim
- Biomedical Sciences, Harbor University of California Los Angeles Medical Center, Los Angeles, USA
| | - Isaac Yang
- Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, USA
| |
Collapse
|
15
|
Peters AJ, Schnell E, Saugstad JA, Treggiari MM. Longitudinal Course of Traumatic Brain Injury Biomarkers for the Prediction of Clinical Outcomes: A Review. J Neurotrauma 2021; 38:2490-2501. [PMID: 33899510 DOI: 10.1089/neu.2020.7448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protein biomarkers are often measured at hospital presentation to diagnose traumatic brain injury (TBI) and predict patient outcomes. However, a biomarker measurement at this single time point is no more accurate at predicting patient outcomes than less invasive and more cost-effective methods. Here, we review evidence that TBI biomarkers provide greater prognostic value when measured repeatedly over time, such that a trajectory of biomarker concentrations can be evaluated. PubMed, Google Scholar, and Cochrane Central Register were searched to identify studies from the last decade in which established TBI biomarkers had been measured at more than one time point following acute TBI, and which related their findings to patient outcomes. Twenty-two studies were identified, 18 of which focused on adults and 4 of which focused on children. Three general biomarker trajectories were identified: persistently high, persistently low, and reversal of decreasing concentrations. Downtrend reversal was highly specific to predicting poor patient outcomes. Four studies demonstrated that biomarker trajectories can be affected by therapeutic interventions. Additional studies demonstrated that biomarkers measured at a later time point offered superior prognostic value than a single measurement obtained at initial hospital presentation. Among other details, longitudinal biomarker trajectory assessments may identify ongoing injury and predict patient deterioration before clinical symptoms develop and thus help guide therapeutic interventions.
Collapse
Affiliation(s)
- Austin J Peters
- Department of Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Eric Schnell
- Portland Health Care System, Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Julie A Saugstad
- Portland Health Care System, Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Miriam M Treggiari
- Department of Anesthesiology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
16
|
Zeiler FA, Iturria-Medina Y, Thelin EP, Gomez A, Shankar JJ, Ko JH, Figley CR, Wright GEB, Anderson CM. Integrative Neuroinformatics for Precision Prognostication and Personalized Therapeutics in Moderate and Severe Traumatic Brain Injury. Front Neurol 2021; 12:729184. [PMID: 34557154 PMCID: PMC8452858 DOI: 10.3389/fneur.2021.729184] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/09/2021] [Indexed: 01/13/2023] Open
Abstract
Despite changes in guideline-based management of moderate/severe traumatic brain injury (TBI) over the preceding decades, little impact on mortality and morbidity have been seen. This argues against the "one-treatment fits all" approach to such management strategies. With this, some preliminary advances in the area of personalized medicine in TBI care have displayed promising results. However, to continue transitioning toward individually-tailored care, we require integration of complex "-omics" data sets. The past few decades have seen dramatic increases in the volume of complex multi-modal data in moderate and severe TBI care. Such data includes serial high-fidelity multi-modal characterization of the cerebral physiome, serum/cerebrospinal fluid proteomics, admission genetic profiles, and serial advanced neuroimaging modalities. Integrating these complex and serially obtained data sets, with patient baseline demographics, treatment information and clinical outcomes over time, can be a daunting task for the treating clinician. Within this review, we highlight the current status of such multi-modal omics data sets in moderate/severe TBI, current limitations to the utilization of such data, and a potential path forward through employing integrative neuroinformatic approaches, which are applied in other neuropathologies. Such advances are positioned to facilitate the transition to precision prognostication and inform a top-down approach to the development of personalized therapeutics in moderate/severe TBI.
Collapse
Affiliation(s)
- Frederick A. Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
| | - Eric P. Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jai J. Shankar
- Department of Radiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ji Hyun Ko
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
| | - Chase R. Figley
- Department of Radiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
| | - Galen E. B. Wright
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Chris M. Anderson
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
17
|
Yin W, Weng S, Lai S, Nie H. [GCS score combined with CT score and serum S100B protein level Can evaluate severity and early prognosis of acute traumatic brain injury]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:543-548. [PMID: 33963713 DOI: 10.12122/j.issn.1673-4254.2021.04.09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To explore the value of Glasgow Coma Scale (GCS) score and CT score combined with serum S100B protein level for evaluation of injury severity and predicting early prognosis of acute traumatic brain injury (TBI). OBJECTIVE A total of 108 patients with TBI admitted within 24 h after injury in the Emergency Department of West China Hospital from May, 2019 to May, 2020 were enrolled in this study. The clinical data, laboratory test results, CT examination, GCS score, Full Outline of Unresponsiveness score, Fisher CT classification, Rotterdam CT score, and serum S100B protein level of the patients were collected upon admission. The patients were followed up for 28 days and divided based on their Glasgow Outcome Scale (GOS) scores into poor prognosis group (GOS 1-3) and good prognosis group (GOS 4-5). The indexes related to poor prognosis were analyzed for their efficacy for predicting the patinets' prognosis. According to the results of head CT, the patients were divided into CT- positive (CT+) group and CT- negative (CT-) group, and the efficacy of serum S100B protein level for predicting CT positivity was evaluated. OBJECTIVE Compared with those with favorable prognosis, the patients with poor prognosis had significantly lower GCS scores (P < 0.01) and higher Rotterdam CT score and serum S100B protein levels (P < 0.01). Among the 3 index, serum S100B protein level had the highest AUC value (0.79); among the combined indexes, GCS score combined with serum S100B protein had the highest AUC value (0.80). Serum S100B protein level was significantly higher in CT+ group than in CT - group (P < 0.05) with a significant correlation with Rotterdam CT score (r=0.26, P < 0.01). OBJECTIVE Serum S100B protein level, GCS score, and Rotterdam CT score can be used as indicators for evaluating the severity of acute TBI, and they are all closely related with early prognosis of the patients. The combination of serum S100B protein, GCS score and Rotterdam CT score has better performance than any of the 3 indexes alone for predicting early prognosis of the patients. Serum S100B protein level is correlated with head imaging findings of patients with acute TBI, but its value in selection of appropriate imaging modalities awaits further investigation.
Collapse
Affiliation(s)
- W Yin
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - S Weng
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - S Lai
- Department of Intensive Care Medicine, Panzhihua Municipal Central Hospital, Panzhihua 617067, China
| | - H Nie
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Turner S, Lazarus R, Marion D, Main KL. Molecular and Diffusion Tensor Imaging Biomarkers of Traumatic Brain Injury: Principles for Investigation and Integration. J Neurotrauma 2021; 38:1762-1782. [PMID: 33446015 DOI: 10.1089/neu.2020.7259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The last 20 years have seen the advent of new technologies that enhance the diagnosis and prognosis of traumatic brain injury (TBI). There is recognition that TBI affects the brain beyond initial injury, in some cases inciting a progressive neuropathology that leads to chronic impairments. Medical researchers are now searching for biomarkers to detect and monitor this condition. Perhaps the most promising developments are in the biomolecular and neuroimaging domains. Molecular assays can identify proteins indicative of neuronal injury and/or degeneration. Diffusion imaging now allows sensitive evaluations of the brain's cellular microstructure. As the pace of discovery accelerates, it is important to survey the research landscape and identify promising avenues of investigation. In this review, we discuss the potential of molecular and diffusion tensor imaging (DTI) biomarkers in TBI research. Integration of these technologies could advance models of disease prognosis, ultimately improving care. To date, however, few studies have explored relationships between molecular and DTI variables in patients with TBI. Here, we provide a short primer on each technology, review the latest research, and discuss how these biomarkers may be incorporated in future studies.
Collapse
Affiliation(s)
- Stephanie Turner
- Defense and Veterans Brain Injury Center, Silver Spring, Maryland, USA.,General Dynamics Information Technology, Falls Church, Virginia, USA
| | - Rachel Lazarus
- Defense and Veterans Brain Injury Center, Silver Spring, Maryland, USA.,General Dynamics Information Technology, Falls Church, Virginia, USA
| | - Donald Marion
- Defense and Veterans Brain Injury Center, Silver Spring, Maryland, USA.,General Dynamics Information Technology, Falls Church, Virginia, USA
| | - Keith L Main
- Defense and Veterans Brain Injury Center, Silver Spring, Maryland, USA.,General Dynamics Information Technology, Falls Church, Virginia, USA
| |
Collapse
|
19
|
Zhang W, Wu H, Zhang S, Zhang H, Xue C, Li G, Liu J, Liu G. Can S100B Predict and Evaluate Post-Traumatic Hydrocephalus. World Neurosurg 2021; 149:e931-e934. [PMID: 33508492 DOI: 10.1016/j.wneu.2021.01.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Post-traumatic hydrocephalus (PTH) is a common complication of craniocerebral injury. If not diagnosed in time, PTH can lead to clinical deterioration and a poor prognosis. The early diagnosis of PTH can lead to success with early treatment. However, PTH can be easily ignored during rehabilitation. The main purpose of the present study was to investigate whether plasma S100B protein levels can be used as a biochemical predictive index of PTH. We also explored the correlation among S100B protein levels, intracranial pressure, and PTH severity. METHODS The data from 235 patients with traumatic brain injury treated from June 2014 to June 2019 in our hospital were retrospectively analyzed. Statistical analysis was performed on 3 serum S100B samples from each patient. The first sample was taken 1-3 days after the injury and surgery. The second sample was harvested during the stable period after treatment, and the third sample was taken when PTH had been confirmed by computed tomography. We analyzed the change in S100B protein levels, and intracranial pressure was measured by lumbar puncture. RESULTS A total of 235 patients (Glasgow coma scale score <12) with traumatic brain injury were investigated. Of these 235 patients, 46 (19%) had developed PTH. The first and second S100B samples showed no significant differences between the patients with and without PTH. In the third sample, the S100B level of the patients with PTH was significantly greater than that of the patients without PTH, with a statistically significant difference. Statistical analysis found no correlation between the S100B level and the severity of PTH. CONCLUSIONS Measurements of serum S100B can be used to predict for PTH. We found a positive correlation between S100B levels and intracranial pressure but no correlation with the severity of PTH. Thus, serum S100B could have important clinical significance for the early detection and evaluation of PTH.
Collapse
Affiliation(s)
- Wanhong Zhang
- Department of Neurosurgery, Kaifeng Central Hospital, Kaifeng, China
| | - Henghao Wu
- Department of Neurosurgery, Kaifeng Central Hospital, Kaifeng, China
| | - Shengxu Zhang
- Department of Neurosurgery, Kaifeng Central Hospital, Kaifeng, China
| | - Haijun Zhang
- Department of Neurosurgery, Kaifeng Central Hospital, Kaifeng, China
| | - Changli Xue
- Department of Neurosurgery, Kaifeng Central Hospital, Kaifeng, China
| | - Gejun Li
- Department of Neurosurgery, Kaifeng Central Hospital, Kaifeng, China
| | - Junchao Liu
- Department of Neurosurgery, Kaifeng Central Hospital, Kaifeng, China
| | - Guanzheng Liu
- Department of Neurosurgery, Kaifeng Central Hospital, Kaifeng, China.
| |
Collapse
|
20
|
Abstract
Traumatic brain injury, which is a clinical spectrum, requires a thorough evaluation and strict monitoring for clinical deterioration owing to ongoing secondary injury and raised intracranial pressure. Once the intracranial pressure has been treated with maximal medical therapy, surgical decompression is necessary and must be initiated rapidly. Anesthetic management of surgical decompression must balance reduction of the intracranial pressure, maintenance of cerebral perfusion pressures, avoidance of secondary injuries, and optimization of surgical conditions.
Collapse
|
21
|
Posti JP, Takala RSK, Raj R, Luoto TM, Azurmendi L, Lagerstedt L, Mohammadian M, Hossain I, Gill J, Frantzén J, van Gils M, Hutchinson PJ, Katila AJ, Koivikko P, Maanpää HR, Menon DK, Newcombe VF, Tallus J, Blennow K, Tenovuo O, Zetterberg H, Sanchez JC. Admission Levels of Interleukin 10 and Amyloid β 1-40 Improve the Outcome Prediction Performance of the Helsinki Computed Tomography Score in Traumatic Brain Injury. Front Neurol 2020; 11:549527. [PMID: 33192979 PMCID: PMC7661930 DOI: 10.3389/fneur.2020.549527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/28/2020] [Indexed: 01/05/2023] Open
Abstract
Background: Blood biomarkers may enhance outcome prediction performance of head computed tomography scores in traumatic brain injury (TBI). Objective: To investigate whether admission levels of eight different protein biomarkers can improve the outcome prediction performance of the Helsinki computed tomography score (HCTS) without clinical covariates in TBI. Materials and methods: Eighty-two patients with computed tomography positive TBIs were included in this study. Plasma levels of β-amyloid isoforms 1–40 (Aβ40) and 1–42 (Aβ42), glial fibrillary acidic protein, heart fatty acid-binding protein, interleukin 10 (IL-10), neurofilament light, S100 calcium-binding protein B, and total tau were measured within 24 h from admission. The patients were divided into favorable (Glasgow Outcome Scale—Extended 5–8, n = 49) and unfavorable (Glasgow Outcome Scale—Extended 1–4, n = 33) groups. The outcome was assessed 6–12 months after injury. An optimal predictive panel was investigated with the sensitivity set at 90–100%. Results: The HCTS alone yielded a sensitivity of 97.0% (95% CI: 90.9–100) and specificity of 22.4% (95% CI: 10.2–32.7) and partial area under the curve of the receiver operating characteristic of 2.5% (95% CI: 1.1–4.7), in discriminating patients with favorable and unfavorable outcomes. The threshold to detect a patient with unfavorable outcome was an HCTS > 1. The three best individually performing biomarkers in outcome prediction were Aβ40, Aβ42, and neurofilament light. The optimal panel included IL-10, Aβ40, and the HCTS reaching a partial area under the curve of the receiver operating characteristic of 3.4% (95% CI: 1.7–6.2) with a sensitivity of 90.9% (95% CI: 81.8–100) and specificity of 59.2% (95% CI: 40.8–69.4). Conclusion: Admission plasma levels of IL-10 and Aβ40 significantly improve the prognostication ability of the HCTS after TBI.
Collapse
Affiliation(s)
- Jussi P Posti
- Clinical Neurosciences, Department of Neurosurgery, Turku Brain Injury Centre, Turku University Hospital, University of Turku, Turku, Finland
| | - Riikka S K Takala
- Perioperative Services, Intensive Care Medicine and Pain Management, Department of Anesthesiology and Intensive Care, Turku University Hospital, University of Turku, Turku, Finland
| | - Rahul Raj
- Department of Neurosurgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Teemu M Luoto
- Department of Neurosurgery, Tampere University Hospital, Tampere University, Tampere, Finland
| | - Leire Azurmendi
- Department of Specialities of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Linnéa Lagerstedt
- Department of Specialities of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mehrbod Mohammadian
- Turku Brain Injury Centre, Turku University Hospital, University of Turku, Turku, Finland
| | - Iftakher Hossain
- Turku Brain Injury Centre, Turku University Hospital, University of Turku, Turku, Finland.,Neurosurgery Unit, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Jessica Gill
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Janek Frantzén
- Clinical Neurosciences, Department of Neurosurgery, Turku Brain Injury Centre, Turku University Hospital, University of Turku, Turku, Finland
| | - Mark van Gils
- VTT Technical Research Centre of Finland Ltd., Tampere, Finland
| | - Peter J Hutchinson
- Neurosurgery Unit, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Ari J Katila
- Perioperative Services, Intensive Care Medicine and Pain Management, Department of Anesthesiology and Intensive Care, Turku University Hospital, University of Turku, Turku, Finland
| | - Pia Koivikko
- Perioperative Services, Intensive Care Medicine and Pain Management, Department of Anesthesiology and Intensive Care, Turku University Hospital, University of Turku, Turku, Finland
| | - Henna-Riikka Maanpää
- Clinical Neurosciences, Department of Neurosurgery, Turku Brain Injury Centre, Turku University Hospital, University of Turku, Turku, Finland
| | - David K Menon
- Division of Anaesthesia, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Virginia F Newcombe
- Division of Anaesthesia, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Jussi Tallus
- Turku Brain Injury Centre, Turku University Hospital, University of Turku, Turku, Finland
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Olli Tenovuo
- Turku Brain Injury Centre, Turku University Hospital, University of Turku, Turku, Finland
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Neurodegenerative Disease, University College London Institute of Neurology, London, United Kingdom.,The United Kingdom Dementia Research Institute at University College London, University College London, London, United Kingdom
| | - Jean-Charles Sanchez
- Department of Specialities of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
22
|
Lagerstedt L, Azurmendi L, Tenovuo O, Katila AJ, Takala RSK, Blennow K, Newcombe VFJ, Maanpää HR, Tallus J, Hossain I, van Gils M, Menon DK, Hutchinson PJ, Zetterberg H, Posti JP, Sanchez JC. Interleukin 10 and Heart Fatty Acid-Binding Protein as Early Outcome Predictors in Patients With Traumatic Brain Injury. Front Neurol 2020; 11:376. [PMID: 32581990 PMCID: PMC7280446 DOI: 10.3389/fneur.2020.00376] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/14/2020] [Indexed: 12/27/2022] Open
Abstract
Background: Patients with traumatic brain injury (TBI) exhibit a variable and unpredictable outcome. The proteins interleukin 10 (IL-10) and heart fatty acid-binding protein (H-FABP) have shown predictive values for the presence of intracranial lesions. Aim: To evaluate the individual and combined outcome prediction ability of IL-10 and H-FABP, and to compare them to the more studied proteins S100β, glial fibrillary acidic protein (GFAP), and neurofilament light (NF-L), both with and without clinical predictors. Methods: Blood samples from patients with acute TBI (all severities) were collected <24 h post trauma. The outcome was measured >6 months post injury using the Glasgow Outcome Scale Extended (GOSE) score, dichotomizing patients into: (i) those with favorable (GOSE≥5)/unfavorable outcome (GOSE ≤ 4) and complete (GOSE = 8)/incomplete (GOSE ≤ 7) recovery, and (ii) patients with mild TBI (mTBI) and patients with TBIs of all severities. Results: When sensitivity was set at 95-100%, the proteins' individual specificities remained low. H-FABP showed the best specificity (%) and sensitivity (100%) in predicting complete recovery in patients with mTBI. IL-10 had the best specificity (50%) and sensitivity (96%) in identifying patients with favorable outcome in patients with TBIs of all severities. When individual proteins were combined with clinical parameters, a model including H-FABP, NF-L, and ISS yielded a specificity of 56% and a sensitivity of 96% in predicting complete recovery in patients with mTBI. In predicting favorable outcome, a model consisting IL-10, age, and TBI severity reached a specificity of 80% and a sensitivity of 96% in patients with TBIs of all severities. Conclusion: Combining novel TBI biomarkers H-FABP and IL-10 with GFAP, NF-L and S100β and clinical parameters improves outcome prediction models in TBI.
Collapse
Affiliation(s)
- Linnéa Lagerstedt
- Department of Specialities of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Leire Azurmendi
- Department of Specialities of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Olli Tenovuo
- Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Ari J Katila
- Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku, Turku, Finland
| | - Riikka S K Takala
- Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku, Turku, Finland
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Virginia F J Newcombe
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Henna-Riikka Maanpää
- Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland.,Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital Turku, Turku, Finland
| | - Jussi Tallus
- Department of Clinical Neurosciences, University of Turku, Turku, Finland
| | - Iftakher Hossain
- Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland.,Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital Turku, Turku, Finland
| | - Mark van Gils
- Knowledge Intensive Products and Services, VTT Technical Research Centre of Finland Ltd, Tampere, Finland
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom.,National Institute for Health Research, Cambridge BRC, Cambridge, United Kingdom.,Royal College of Surgeons of England, London, United Kingdom
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, United Kingdom.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Jussi P Posti
- Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Neurosciences, University of Turku, Turku, Finland.,Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital Turku, Turku, Finland
| | - Jean-Charles Sanchez
- Department of Specialities of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
23
|
The dynamic change of serum S100B levels from day 1 to day 3 is more associated with sepsis-associated encephalopathy. Sci Rep 2020; 10:7718. [PMID: 32382007 PMCID: PMC7206038 DOI: 10.1038/s41598-020-64200-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/24/2020] [Indexed: 01/08/2023] Open
Abstract
We investigated the role of dynamic changes of serum levels S100B protein in brain injury and poor outcome of sepsis. This is a prospective cohort study designed to include 104 adult patients with sepsis who are admitted to ICU from Jan 2015 to Aug 2016. Sepsis was defined as sepsis 3.0. Patients with a GCS score of <15, or at least one positive CAM-ICU score were thought to have brain dysfunction. 59 patients were diagnosed with SAE and the rest 45 patients were diagnosed with non-SAE. Serum S100B was measured on day 1 and 3 after ICU admission. Primary outcomes included brain dysfunction and 28-day/180-day mortality. The SAE group showed a significantly higher APACHE II score, SOFA scores, length of ICU stay, 28-day and 180-day mortality, serum S100B levels on day 1 and day 3. S100B levels on day 1 of 0.226 μg/L were diagnostic for SAE with 80.0% specificity and 66.1% sensitivity, and the area under (AUC) the curve was 0.728, S100B levels on day 3 of 0.144 μg/L were diagnostic for SAE with 84.44% specificity and 69.49% sensitivity, and the AUC was 0.819. In addition, the AUC for S100B on day 3 for predicting 180-day mortality was larger than for S100B on day 1 (0.731 vs. 0.611). Multiple logistic regression analysis showed that S100B3 (p = 0.001) but not S100B1 (p = 0.927) were independently correlated with SAE. Kaplan-Meier survival analysis showed that patients with S100B levels higher than 0.144 μg/L had a lower probability of survival at day 180. There were more patients with encephalopathy and a higher 28-day or 180-day mortality in the ΔS100B + group than in the ΔS100B- group. Multiple logistic regression analysis showed that SAE and IL-6 on day 3 were independently correlated with S100B dynamic increase. These findings suggest that elevated serum S100B levels on day 3 and the dynamic changes of serum S100B levels from day three to one were more associated with brain dysfunction and mortality than that on day 1 in patients with sepsis.
Collapse
|
24
|
Tokshilykova AB, Sarkulova ZN, Kabdrakhmanova GB, Utepkaliyeva AP, Tleuova AS, Satenov ZK. Neuron-Specific Markers and their Correlation with Neurological Scales in Patients with Acute Neuropathologies. J Mol Neurosci 2020; 70:1267-1273. [PMID: 32350763 DOI: 10.1007/s12031-020-01536-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/12/2020] [Indexed: 12/22/2022]
Abstract
In predicting outcomes in patients with acute brain injury, current practice focuses special attention on neuron-specific proteins that reliably reflect the severity of the lesion. Further studies of molecular markers and their specificity and sensitivity could contribute to broadening the understanding of pathophysiological, diagnostic, and prognostic methods, which is vital to reducing the mortality and disability associated with these critical conditions. The purpose of this study was to assess the biomarkers of brain lesions and their correlative relations with the integral Glasgow Coma Scale (GCS) and National Institutes of Health Stroke Scale (NIHSS) in predicting severity and treatment outcomes in patients with acute neuropathologies. Ninety patients were examined, including those with traumatic brain lesions (16.6%, n = 15), hemorrhagic stroke (52.2%, n = 47), and ischemic stroke (31.1%, n = 28). Patients were classified into two groups according to the outcome of the disease: those who survived (group I, 57.8%, n = 52) and those who died (group II, 42.2%, n = 38). In comparison with the survivors, the group of patients who died demonstrated an initial increase in neuron-specific enolase (NSE) by 1.23 and S100 by 6.45 times, and in dynamics by 1.5 and 7.4 times. A significant correlation with NIHSS and GCS was determined for NSE (r = 0.1149; P = 0.3073 and r = -0.0758; P = 0.5011) and for S100 (r = 0.3243; P = 0.0031 and r = -0.2661; P = 0.0163). The receiver operating characteristic (ROC) curves were 0.828 for S100 and 0.712 for NSE. The degree of sensitivity and specificity of the markers was studied. Increased levels of S100 and NSE correlated with NIHSS and GCS, with sensitivity of 80.77 and 63.46% and specificity of 42.11 and 73.68%, respectively, and were predictive of adverse disease outcome. The survival analysis showed that early detection of these biomarkers enables the timely prognostication of the progression of secondary brain injury and aids in implementing treatment.
Collapse
Affiliation(s)
| | - Zhanslu N Sarkulova
- West Kazakhstan Medical University named after M. Ospanov, Aktobe, Kazakhstan
| | | | | | - Arzikhiya S Tleuova
- West Kazakhstan Medical University named after M. Ospanov, Aktobe, Kazakhstan
| | - Zhusupbek K Satenov
- West Kazakhstan Medical University named after M. Ospanov, Aktobe, Kazakhstan
| |
Collapse
|
25
|
Lindblad C, Nelson DW, Zeiler FA, Ercole A, Ghatan PH, von Horn H, Risling M, Svensson M, Agoston DV, Bellander BM, Thelin EP. Influence of Blood-Brain Barrier Integrity on Brain Protein Biomarker Clearance in Severe Traumatic Brain Injury: A Longitudinal Prospective Study. J Neurotrauma 2020; 37:1381-1391. [PMID: 32013731 PMCID: PMC7249468 DOI: 10.1089/neu.2019.6741] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Brain protein biomarker clearance to blood in traumatic brain injury (TBI) is not fully understood. The aim of this study was to analyze the effect that a disrupted blood–brain barrier (BBB) had on biomarker clearance. Seventeen severe TBI patients admitted to Karolinska University Hospital were prospectively included. Cerebrospinal fluid (CSF) and blood concentrations of S100 calcium binding protein B (S100B) and neuron-specific enolase (NSE) were analyzed every 6–12 h for ∼1 week. Blood and CSF albumin were analyzed every 12–24 h, and BBB integrity was assessed using the CSF:blood albumin quotient (QA). We found that time-dependent changes in the CSF and blood levels of the two biomarkers were similar, but that the correlation between the biomarkers and QA was lower for NSE (ρ = 0.444) than for S100B (ρ = 0.668). Because data were longitudinal, we also conducted cross correlation analyses, which indicated a directional flow and lag-time of biomarkers from CSF to blood. For S100B, this lag-time could be ascribed to BBB integrity, whereas for NSE it could not. Upon inferential modelling, using generalized least square estimation (S100B) or linear mixed models (NSE), QA (p = 0.045), time from trauma (p < 0.001), time from trauma2 (p = 0.023), and CSF biomarker levels (p = 0.008) were independent predictors of S100B in blood. In contrast, for NSE, only time from trauma was significant (p < 0.001). These findings are novel and important, but must be carefully interpreted because of different characteristics between the two proteins. Nonetheless, we present the first data that indicate that S100B and NSE are cleared differently from the central nervous system, and that both the disrupted BBB and additional alternative pathways, such as the recently described glymphatic system, may play a role. This is of importance both for clinicians aiming to utilize these biomarkers and for the pathophysiological understanding of brain protein clearance, but warrants further examination.
Collapse
Affiliation(s)
- Caroline Lindblad
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Address correspondence to: Caroline Lindblad, MD, Karolinska Universitetssjukhuset Solna J5:20, Tema Neuro, forskargrupp Svensson, SE-17176 Stockholm, Sweden
| | - David W. Nelson
- Department of Section for Perioperative Medicine and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Frederick A. Zeiler
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, and University of Manitoba, Winnipeg, Manitoba, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
- Centre on Aging, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Anaesthesia, Department of Medicine, and Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Ari Ercole
- Division of Anaesthesia, Department of Medicine, and Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Per Hamid Ghatan
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Henrik von Horn
- Department of Division of Clinical Chemistry, and Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Mårten Risling
- Department of Neuroscience, and Karolinska Institutet, Stockholm, Sweden
| | - Mikael Svensson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| | - Denes V. Agoston
- Department of Neuroscience, and Karolinska Institutet, Stockholm, Sweden
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Bo-Michael Bellander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| | - Eric Peter Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Department of Theme Neuro, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
26
|
Yue JK, Upadhyayula PS, Avalos LN, Deng H, Wang KKW. The Role of Blood Biomarkers for Magnetic Resonance Imaging Diagnosis of Traumatic Brain Injury. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E87. [PMID: 32098419 PMCID: PMC7074393 DOI: 10.3390/medicina56020087] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/07/2020] [Accepted: 02/19/2020] [Indexed: 01/21/2023]
Abstract
Background and Objectives: The annual global incidence of traumatic brain injury (TBI) is over 10 million. An estimated 29% of TBI patients with negative computed tomography (CT-) have positive magnetic resonance imaging (MRI+) findings. Judicious use of serum biomarkers with MRI may aid in diagnosis of CT-occult TBI. The current manuscript aimed to evaluate the diagnostic, therapeutic and risk-stratification utility of known biomarkers and intracranial MRI pathology. Materials and Methods: The PubMed database was queried with keywords (plasma OR serum) AND (biomarker OR marker OR protein) AND (brain injury/trauma OR head injury/trauma OR concussion) AND (magnetic resonance imaging/MRI) (title/abstract) in English. Seventeen articles on TBI biomarkers and MRI were included: S100 calcium-binding protein B (S100B; N = 6), glial fibrillary acidic protein (GFAP; N = 3), GFAP/ubiquitin carboxyl-terminal hydrolase-L1 (UCH-L1; N = 2), Tau (N = 2), neurofilament-light (NF-L; N = 2), alpha-synuclein (N = 1), and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor peptide (AMPAR; N = 1). Results: Acute GFAP distinguished CT-/MRI+ from CT-/MRI- (AUC = 0.777, 0.852 at 9-16 h). GFAP discriminated CT-/diffuse axonal injury (DAI+) from controls (AUC = 0.903). Tau correlated directly with number of head strikes and inversely with white matter fractional anisotropy (FA), and a cutoff > 1.5 pg/mL discriminated between DAI+ and DAI- (sensitivity = 74%/specificity = 69%). NF-L had 100% discrimination of DAI in severe TBI and correlated with FA. Low alpha-synuclein was associated with poorer functional connectivity. AMPAR cutoff > 0.4 ng/mL had a sensitivity of 91% and a specificity of 92% for concussion and was associated with minor MRI findings. Low/undetectable S100B had a high negative predictive value for CT/MRI pathology. UCH-L1 showed no notable correlations with MRI. Conclusions: An acute circulating biomarker capable of discriminating intracranial MRI abnormalities is critical to establishing diagnosis for CT-occult TBI and can triage patients who may benefit from outpatient MRI, surveillance and/or follow up with TBI specialists. GFAP has shown diagnostic potential for MRI findings such as DAI and awaits further validation. Tau shows promise in detecting DAI and disrupted functional connectivity. Candidate biomarkers should be evaluated within the context of analytical performance of the assays used, as well as the post-injury timeframe for blood collection relative to MRI abnormalities.
Collapse
Affiliation(s)
- John K. Yue
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA;
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
| | - Pavan S. Upadhyayula
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY 10027, USA;
- Department of Neurological Surgery, University of California Diego, San Diego, CA 92093, USA
| | - Lauro N. Avalos
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA;
| | - Hansen Deng
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA;
| | - Kevin K. W. Wang
- Brain Rehabilitation Research Center (BRRC), Malcom Randall Veterans Affairs Medical Center, Gainesville, FL 32608, USA;
| |
Collapse
|
27
|
Forssten MP, Thelin EP, Nelson DW, Bellander BM. The Role of Glycerol-Containing Drugs in Cerebral Microdialysis: A Retrospective Study on the Effects of Intravenously Administered Glycerol. Neurocrit Care 2020; 30:590-600. [PMID: 30430381 PMCID: PMC6513829 DOI: 10.1007/s12028-018-0643-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cerebral microdialysis (CMD) is a valuable tool for monitoring compounds in the cerebral extracellular fluid (ECF). Glycerol is one such compound which is regarded as a marker of cell membrane decomposition. Notably, in some acutely brain-injured patients, CMD-glycerol levels rise without any other apparent indication of cerebral deterioration. The aim of this study was to investigate whether this could be due to an association between CMD-glycerol levels and the administration of glycerol-containing drugs. METHODS Microdialysis data were retrospectively retrieved from the hospital's intensive care unit patient data management system (PDMS). All patients who were monitored with CMD for ≥ 96 h were included. Administered drug doses were retrieved from the PDMS and converted to exact doses of glycerol. Cross-correlation analyses were performed between the free, metabolized as well as total administered dose of glycerol and the detrended and differenced CMD-glycerol concentration. These analyses were repeated for two sets of subgroups based upon the individual catheter's graphical trend and its location in relation to the lesion. RESULTS There was no significant correlation between the differenced CMD-glycerol levels and drug-administered glycerol. Furthermore, there was no significant correlation between CMD-glycerol and catheter location or graphical trend. However, if the CMD-glycerol levels were detrended, significant but clinically non-relevant correlations were identified (maximum correlation coefficient of 0.1 (0.04-0.15, 95% CI) at a lag of 7 h using the total administered dose of glycerol). CONCLUSIONS Glycerol-containing drugs routinely administered intravenously in the clinical setting appear to have a minimal and clinically insignificant effect on levels of glycerol in the cerebral ECF.
Collapse
Affiliation(s)
- Maximilian Peter Forssten
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Eric Peter Thelin
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - David W Nelson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Bo-Michael Bellander
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
28
|
Elastin-derived peptide VGVAPG affects the proliferation of mouse cortical astrocytes with the involvement of aryl hydrocarbon receptor (Ahr), peroxisome proliferator-activated receptor gamma (Pparγ), and elastin-binding protein (EBP). Cytokine 2019; 126:154930. [PMID: 31760184 DOI: 10.1016/j.cyto.2019.154930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022]
Abstract
During aging and ischemic and hemorrhagic stroke, elastin molecules are degraded and elastin-derived peptides are released into the brain microenvironment. Val-Gly-Val-Ala-Pro-Gly (VGVAPG) is a repeating hexapeptide in the elastin molecule. It is well documented that the peptide sequence binds with high affinity to elastin-binding protein (EBP) located on the cell surface, thereby transducing a molecular signal into the cell. The aim of our study was to investigate whether EBP, aryl hydrocarbon receptor (Ahr), and peroxisome proliferator-activated receptor gamma (Pparγ) are involved in VGVAPG-stimulated proliferation. Primary astrocytes were maintained in DMEM/F12 medium without phenol red, supplemented with 10 or 1% charcoal/dextran-treated fetal bovine serum (FBS). The cells were exposed to increasing concentrations of VGVAPG peptide, and resazurin reduction was measured. In addition, Glb1, Pparγ, and Ahr genes were silenced. After 48 h of exposure to 10 nM and 1 µM of VGVAPG peptide, the level of estradiol (E2) and the expression of Ki67 and S100B proteins were measured. The results showed that at a wide range of concentrations, VGVAPG peptide increased the metabolism of astrocytes depending on the concentration of FBS. After silencing of Glb1, Pparγ, and Ahr genes, VGVAPG peptide did not affect the cell metabolism which suggests the involvement of all the mentioned receptors in its mechanism of action. Interestingly, in the low-FBS medium, the silencing of Glb1 gene did not result in complete inhibition of VGVAPG-stimulated proliferation. On the other hand, in the medium with 10% FBS VGVAPG increased Ki67 expression after Pparγ silencing, whereas in the medium with 1% FBS VGVAPG decreased Ki67 expression. Following the application of Ahr siRNA, VGVAPG peptide decreased the production of E2 and increased the expression of Ki67 and S100B proteins.
Collapse
|
29
|
Trautz F, Franke H, Bohnert S, Hammer N, Müller W, Stassart R, Tse R, Zwirner J, Dreßler J, Ondruschka B. Survival-time dependent increase in neuronal IL-6 and astroglial GFAP expression in fatally injured human brain tissue. Sci Rep 2019; 9:11771. [PMID: 31417126 PMCID: PMC6695416 DOI: 10.1038/s41598-019-48145-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/30/2019] [Indexed: 01/31/2023] Open
Abstract
Knowledge on trauma survival time prior to death following a lethal traumatic brain injury (TBI) may be essential for legal purposes. Immunohistochemistry studies might allow to narrow down this survival interval. The biomarkers interleukin-6 (IL-6) and glial fibrillary acidic protein (GFAP) are well known in the clinical setting for their usability in TBI prediction. Here, both proteins were chosen in forensics to determine whether neuronal or glial expression in various brain regions may be associated with the cause of death and the survival time prior to death following TBI. IL-6 positive neurons, glial cells and GFAP positive astrocytes all concordantly increase with longer trauma survival time, with statistically significant changes being evident from three days post-TBI (p < 0.05) in the pericontusional zone, irrespective of its definite cortical localization. IL-6 staining in neurons increases significantly in the cerebellum after trauma, whereas increasing GFAP positivity is also detected in the cortex contralateral to the focal lesion. These systematic chronological changes in biomarkers of pericontusional neurons and glial cells allow for an estimation of trauma survival time. Higher numbers of IL-6 and GFAP-stained cells above threshold values in the pericontusional zone substantiate the existence of fatal traumatic changes in the brain with reasonable certainty.
Collapse
Affiliation(s)
- Florian Trautz
- Institute of Legal Medicine, Medical Faculty University of Leipzig, Leipzig, Germany
| | - Heike Franke
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty University of Leipzig, Leipzig, Germany
| | - Simone Bohnert
- Institute of Forensic Medicine, University of Würzburg, Würzburg, Germany
| | - Niels Hammer
- Department of Anatomy, University of Otago, Dunedin, New Zealand.,Department of Orthopedic and Trauma Surgery, University Hospital of Leipzig, Leipzig, Germany.,Fraunhofer IWU, Dresden, Germany
| | - Wolf Müller
- Department of Neuropathology, University Hospital of Leipzig, Leipzig, Germany
| | - Ruth Stassart
- Department of Neuropathology, University Hospital of Leipzig, Leipzig, Germany
| | - Rexson Tse
- Department of Forensic Pathology, LabPLUS, Auckland City Hospital, Auckland, New Zealand
| | - Johann Zwirner
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jan Dreßler
- Institute of Legal Medicine, Medical Faculty University of Leipzig, Leipzig, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, Medical Faculty University of Leipzig, Leipzig, Germany.
| |
Collapse
|
30
|
Thelin E, Al Nimer F, Frostell A, Zetterberg H, Blennow K, Nyström H, Svensson M, Bellander BM, Piehl F, Nelson DW. A Serum Protein Biomarker Panel Improves Outcome Prediction in Human Traumatic Brain Injury. J Neurotrauma 2019; 36:2850-2862. [PMID: 31072225 PMCID: PMC6761606 DOI: 10.1089/neu.2019.6375] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Brain-enriched protein biomarkers of tissue fate are being introduced clinically to aid in traumatic brain injury (TBI) management. The aim of this study was to determine how concentrations of six different protein biomarkers, measured in samples collected during the first weeks after TBI, relate to injury severity and outcome. We included neurocritical care TBI patients that were prospectively enrolled from 2007 to 2013, all having one to three blood samples drawn during the first 2 weeks. The biomarkers analyzed were S100 calcium-binding protein B (S100B), neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1), tau, and neurofilament-light (NF-L). Glasgow Outcome Score (GOS) was assessed at 12 months. In total, 172 patients were included. All serum markers were associated with injury severity as classified on computed tomography scans at admission. Almost all biomarkers outperformed other known outcome predictors with higher levels the first 5 days, correlating with unfavorable outcomes, and UCH-L1 (0.260, pseduo-R2) displaying the best discrimination in univariate analyses. After adjusting for acknowledged TBI outcome predictors, GFAP and NF-L added most independent information to predict favorable/unfavorable GOS, improving the model from 0.38 to 0.51 pseudo-R2. A correlation matrix indicated substantial covariance, with the strongest correlation between UCH-L1, GFAP, and tau (r = 0.827-0.880). Additionally, the principal component analysis exhibited clustering of UCH-L1 and tau, as well as GFAP, S100B, and NSE, which was separate from NF-L. In summary, a panel of several different protein biomarkers, all associated with injury severity, with different cellular origin and temporal trajectories, improve outcome prediction models.
Collapse
Affiliation(s)
- Eric Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.,Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Faiez Al Nimer
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Arvid Frostell
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom.,UK Dementia Research Institute, UCL, London, United Kingdom
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Harriet Nyström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Svensson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Bo-Michael Bellander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - David W Nelson
- Department of Physiology and Pharmacology, Section of Perioperative Medicine and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
31
|
Marklund N, Bellander BM, Godbolt AK, Levin H, McCrory P, Thelin EP. Treatments and rehabilitation in the acute and chronic state of traumatic brain injury. J Intern Med 2019; 285:608-623. [PMID: 30883980 PMCID: PMC6527474 DOI: 10.1111/joim.12900] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Traumatic brain injury (TBI) is a major cause of acquired disability globally, and effective treatment methods are scarce. Lately, there has been increasing recognition of the devastating impact of TBI resulting from sports and other recreational activities, ranging from primarily sport-related concussions (SRC) but also more severe brain injuries requiring hospitalization. There are currently no established treatments for the underlying pathophysiology in TBI and while neuro-rehabilitation efforts are promising, there are currently is a lack of consensus regarding rehabilitation following TBI of any severity. In this narrative review, we highlight short- and long-term consequences of SRCs, and how the sideline management of these patients should be performed. We also cover the basic concepts of neuro-critical care management for more severely brain-injured patients with a focus on brain oedema and the necessity of improving intracranial conditions in terms of substrate delivery in order to facilitate recovery and improve outcome. Further, following the acute phase, promising new approaches to rehabilitation are covered for both patients with severe TBI and athletes suffering from SRC. These highlight the need for co-ordinated interdisciplinary rehabilitation, with a special focus on cognition, in order to promote recovery after TBI.
Collapse
Affiliation(s)
- N Marklund
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Skane University Hospital, Lund, Sweden
| | - B-M Bellander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - A K Godbolt
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
- University Department of Rehabilitation Medicine Stockholm, Danderyd Hospital, Danderyd, Sweden
| | - H Levin
- Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. De Bakey Veterans Affairs Medical Center, Houston, TX, USA
| | - P McCrory
- TBI Laboratory, Florey Institute of Neurosciences & Mental Health, Parkville, Vic, Australia
| | - E P Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
32
|
Fletcher-Sandersjöö A, Lindblad C, Thelin EP, Bartek J, Sallisalmi M, Elmi-Terander A, Svensson M, Bellander BM, Broman LM. Serial S100B Sampling Detects Intracranial Lesion Development in Patients on Extracorporeal Membrane Oxygenation. Front Neurol 2019; 10:512. [PMID: 31156541 PMCID: PMC6532588 DOI: 10.3389/fneur.2019.00512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/30/2019] [Indexed: 12/20/2022] Open
Abstract
Introduction: Intracranial lesion development is a recognized complication in adults treated with extracorporeal membrane oxygenation (ECMO) and is associated with increased mortality. As neurological assessment during ECMO treatment remains challenging, protein biomarkers of cerebral injury could provide an opportunity to detect intracranial lesion development at an early stage. The aim of this study was to determine if serially sampled S100B could be used to detect intracranial lesion development during ECMO treatment. Methods: We conducted an observational cohort study of all patients treated with ECMO at ECMO Center Karolinska (Karolinska University Hospital, Stockholm, Sweden) between January and August 2018, excluding patients who did not undergo a computerized tomography scan (CT) during treatment. S100B was prospectively collected at hospital admission and then once daily. The primary end-point was any type of CT verified intracranial lesion. Receiver operating characteristics (ROC) curves and Cox proportional hazards models were employed. Results: Twenty-nine patients were included, of which 15 (52%) developed an intracranial lesion and exhibited higher levels of S100B overall. S100B had a robust association with intracranial lesion development, especially during the first 200 hours following admission. The best area-under-curve (AUC) to predict intracranial lesion development was 40 and 140 hours following ECMO initiation, were a S100B level of 0.69μg/L had an AUC of 0.81 (0.628-0.997). S100B levels were markedly increased following the development of intracranial hemorrhage. Conclusions: Serial serum S100B samples in ECMO patients were both significantly elevated and had an increasing trajectory in patients developing intracranial lesions. Larger prospective trials are warranted to validate these findings and to ascertain their clinical utility.
Collapse
Affiliation(s)
- Alexander Fletcher-Sandersjöö
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Lindblad
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Eric Peter Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Jiri Bartek
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marko Sallisalmi
- ECMO Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Adrian Elmi-Terander
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Svensson
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Bo-Michael Bellander
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lars Mikael Broman
- ECMO Center Karolinska, Karolinska University Hospital, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Luo Q, Pin T, Dai L, Chen G, Chen Y, Tian F, Zhang M. The Role of S100B Protein at 24 Hours of Postnatal Age as Early Indicator of Brain Damage and Prognostic Parameter of Perinatal Asphyxia. Glob Pediatr Health 2019; 6:2333794X19833729. [PMID: 31044150 PMCID: PMC6446251 DOI: 10.1177/2333794x19833729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/02/2022] Open
Abstract
Introduction. S100B protein is a cytosolic calcium-binding protein with a molecular weight of 21 kDa, which is present in various cells and concentrated mainly in the glial cells, which play a vital role in the maintenance of cellular homeostasis in the central nervous system. It is possible that increased S100B protein level might be considered as sensitive and specific indicator to predict early brain damage. Aim. To investigate the prognostic value of serum S100B protein in neonates with perinatal asphyxia (PA) at 24 hours of postnatal age. Methods. A systematic review was performed. Inclusion criteria were studies including data of neonates with PA, monitored with serum S100B, and with neurodevelopmental follow-up of at least 2 weeks. The period of bibliographic search was until January 2017. The consulted databases were MEDLINE, PsycINFO, and Embase. A combination of the following subject headings and keywords was adapted for each electronic database: “perinatal asphyxia,” “hypoxic ischemic encephalopathy,” “hypoxia-ischemia, brain,” and “S100B.” Meta-Disc1.4 software was used. Results. From the 1620 articles initially identified, 6 were finally included and reviewed. The overall diagnostic sensitivity of serum S100B was 0.80 (95% confidence interval [CI] = 0.68-0.88) and the specificity was 0.79 (95% CI = 0.70-0.87). But there was lower predictability value, that is, the positive likelihood ratio was only 3.26 (95% CI 1.74-6.12) and the negative likelihood ratio was 0.32 (95% CI = 0.20-0.5). The diagnostic odds ratio was 12.40 (95% CI = 4.66-33.0). Conclusion. Increased serum S100B level at 24 hours of postnatal life can demonstrate brain damage, but it should not be the only one used to predict PA outcome.
Collapse
Affiliation(s)
- Qiu Luo
- Kunming Medical University Second Hospital, Kunming, China
| | - Tamis Pin
- The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - LiFen Dai
- Kunming Medical University Second Hospital, Kunming, China
| | - GuiXian Chen
- Kunming Medical University Second Hospital, Kunming, China
| | - YuTong Chen
- Kunming Medical University Second Hospital, Kunming, China
| | - FuLu Tian
- Kunming Medical University Second Hospital, Kunming, China
| | - Man Zhang
- Kunming Medical University Second Hospital, Kunming, China
| |
Collapse
|
34
|
Agoston DV, Kamnaksh A. Protein biomarkers of epileptogenicity after traumatic brain injury. Neurobiol Dis 2019; 123:59-68. [PMID: 30030023 PMCID: PMC6800147 DOI: 10.1016/j.nbd.2018.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 12/15/2022] Open
Abstract
Traumatic brain injury (TBI) is a major risk factor for acquired epilepsy. Post-traumatic epilepsy (PTE) develops over time in up to 50% of patients with severe TBI. PTE is mostly unresponsive to traditional anti-seizure treatments suggesting distinct, injury-induced pathomechanisms in the development of this condition. Moderate and severe TBIs cause significant tissue damage, bleeding, neuron and glia death, as well as axonal, vascular, and metabolic abnormalities. These changes trigger a complex biological response aimed at curtailing the physical damage and restoring homeostasis and functionality. Although a positive correlation exists between the type and severity of TBI and PTE, there is only an incomplete understanding of the time-dependent sequelae of TBI pathobiologies and their role in epileptogenesis. Determining the temporal profile of protein biomarkers in the blood (serum or plasma) and cerebrospinal fluid (CSF) can help to identify pathobiologies underlying the development of PTE, high-risk individuals, and disease modifying therapies. Here we review the pathobiological sequelae of TBI in the context of blood- and CSF-based protein biomarkers, their potential role in epileptogenesis, and discuss future directions aimed at improving the diagnosis and treatment of PTE.
Collapse
Affiliation(s)
- Denes V Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, USA.
| | - Alaa Kamnaksh
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
35
|
Abstract
S100B is a calcium-binding protein most abundant in neuronal tissue. It is expressed in glial cells and Schwann cells and exerts both intra- and extracellular effects. Depending on the concentration, secreted S100B exerts either trophic or toxic effects. Its functions have been extensively studied but are still not fully understood. It can be measured in cerebrospinal fluid and in blood, and increased S100B level in blood can be seen after, e.g., traumatic brain injury, certain neurodegenerative disorders, and malignant melanoma. This chapter provides a short background of protein S100B, commercially available methods of analysis, and its clinical use, especially as a biomarker in minor head injury.
Collapse
Affiliation(s)
- Ramona Astrand
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| | - Johan Undén
- Department of Anaesthesia and Intensive Care, Länssjukhuset Halland, Halmstad, Sweden
| |
Collapse
|
36
|
Fletcher-Sandersjöö A, Thelin EP, Bartek J, Broman M, Sallisalmi M, Elmi-Terander A, Bellander BM. Incidence, Outcome, and Predictors of Intracranial Hemorrhage in Adult Patients on Extracorporeal Membrane Oxygenation: A Systematic and Narrative Review. Front Neurol 2018; 9:548. [PMID: 30034364 PMCID: PMC6043665 DOI: 10.3389/fneur.2018.00548] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Abstract
Background: Intracranial hemorrhage (ICH) is a common complication in adults treated with extracorporeal membrane oxygenation (ECMO). Objectives: The aim of this study was to conduct a systematic review of the literature on the incidence, outcome and predictors of ECMO-associated ICH in adult patients, supplemented by a narrative review of its pathophysiology, management and future perspectives. Methods: MEDLINE, EMBASE, Cochrane Database of Systematic Reviews and www.clinicaltrials.gov were systematically searched. Studies that reported incidence, outcome or predictors of ECMO-associated ICH in adults (≥18 years) were eligible for inclusion. Results: Twenty five articles were included in the systematic review. The incidence of ECMO-associated ICH varied between 1.8 and 21 %. Mortality rates in ICH-cohorts varied between 32 and 100 %, with a relative risk of mortality of 1.27–4.43 compared to non-ICH cohorts. An increased risk of ICH was associated with ECMO-duration, antithrombotic therapy, altered intrinsic coagulation, renal failure, need of blood products, rapid hypercapnia at ECMO initiation, and even pre-ECMO morbidity. Conclusions: ICH is a common complication in adults treated with ECMO and associated with increased mortality. Treating an ICH during ECMO represents a balance between pro- and anticoagulatory demands. Neurosurgical treatment is associated with severe morbidity, but has been successful in selected cases. Future studies should aim at investigating the validity and feasibility of non-invasive monitoring in early detection of ECMO-associated ICH.
Collapse
Affiliation(s)
- Alexander Fletcher-Sandersjöö
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Eric Peter Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Jiri Bartek
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Broman
- ECMO Center Karolinska, Karolinska University Hospital, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marko Sallisalmi
- ECMO Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | | | - Bo-Michael Bellander
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
37
|
Abstract
PRIMARY OBJECTIVE The purpose of this paper is to review the clinical and research utility and applications of blood, cerebrospinal fluid (CSF), and cerebral microdialysis biomarkers in traumatic brain injury (TBI). RESEARCH DESIGN Not applicable. METHODS AND PROCEDURES A selective review was performed on these biofluid biomarkers in TBI. MAIN OUTCOME AND RESULTS Neurofilament heavy chain protein (NF-H), glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCHL1), neuron-specific enolase (NSE), myelin basic protein (MBP), tau, and s100β blood biomarkers are elevated during the acute phase of severe head trauma but have key limitations in their research and clinical applications to mild TBI (mTBI). CSF biomarkers currently provide the best reflection of the central nervous system (CNS) pathobiological processes in TBI. Both animal and human studies of TBI have demonstrated the importance of serial sampling of biofluids and suggest that CSF biomarkers may be better equipped to characterize both TBI severity and temporal profiles. CONCLUSIONS The identification of biofluid biomarkers could play a vital role in identifying, diagnosing, and treating the underlying individual pathobiological changes of TBI. CNS-derived exosomes analyzed by ultra-high sensitivity detection methods have the potential to identify blood biomarkers for the range of TBI severity and time course.
Collapse
Affiliation(s)
- Denes V Agoston
- a Department of Anatomy, Physiology and Genetics , Uniformed Services University , Bethesda , MD , USA.,b Department of Neuroscience , Karolinska Institutet , Stockholm , Sweden
| | - Andrew Shutes-David
- c VA Northwest Network Mental Illness Research, Education, and Clinical Center , Veterans Affairs Puget Sound Health Care System , Seattle , WA , USA.,d Geriatric Research, Education, and Clinical Center , Veterans Affairs Puget Sound Health Care System , Seattle , WA , USA
| | - Elaine R Peskind
- c VA Northwest Network Mental Illness Research, Education, and Clinical Center , Veterans Affairs Puget Sound Health Care System , Seattle , WA , USA.,e Department of Psychiatry and Behavioral Sciences , University of Washington , Seattle , WA , USA
| |
Collapse
|
38
|
Sieber M, Dreßler J, Franke H, Pohlers D, Ondruschka B. Post-mortem biochemistry of NSE and S100B: A supplemental tool for detecting a lethal traumatic brain injury? J Forensic Leg Med 2018; 55:65-73. [PMID: 29471249 DOI: 10.1016/j.jflm.2018.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/07/2018] [Accepted: 02/11/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE Traumatic brain injury (TBI) is a very common entity that leads to numerous fatalities all over the world. Therefore, forensic pathologists are in desperate need of supplemental methodological tools for the diagnosis of TBI in everyday practice besides the standard autopsy. The present study determined post-mortem neuron specific enolase (NSE) and S100 calcium-binding protein B (S100B) levels as biological markers of an underlying TBI in autopsy cases. METHODS Paired serum and CSF samples of 92 fatalities were collected throughout routine autopsies. Afterwards, the marker levels were assessed using commercially available immunoassays (ECLIA, Roche Diagnostics). For statistical analysis, we compared the TBI cases to three control groups (sudden natural death by acute myocardial infarction, traumatic death without impact on the head, cerebral hypoxia). Moreover, the TBI cases were subdivided according to their survival time of the trauma. Brain specimens have been collected and stained immunohistochemically against the aforementioned proteins to illustrate their typical cellular staining patterns with an underlying TBI compared to non-TBI fatalities. PRINCIPAL RESULTS CSF NSE and S100B levels were elevated after TBI compared to all control groups (p < 0.001). Although this finding can already be investigated among the TBI cases dying immediately subsequent to the trauma, the marker levels in CSF increase with longer survival times until a peak level within the first three days after trauma. There is a strong correlation between both marker levels in CSF (r = 0.67). The presence or absence of cerebral tissue contusion following the initial trauma does not seem to affect the CSF levels of both proteins (p > 0.05). Post-mortem serum levels of both proteins were not elevated in TBI cases compared to controls (p > 0.05). Former elaborated cut-off values in CSF were confirmed and were only exceeded when a TBI survival time of at least 30 min was reached. MAJOR CONCLUSIONS The present results report that post-mortem NSE and S100B CSF levels are significantly elevated subsequent to a fatal TBI.
Collapse
Affiliation(s)
- Monique Sieber
- Institute of Legal Medicine, University of Leipzig, Leipzig, Germany
| | - Jan Dreßler
- Institute of Legal Medicine, University of Leipzig, Leipzig, Germany
| | - Heike Franke
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Dirk Pohlers
- Center of Diagnostics GmbH, Klinikum Chemnitz, Chemnitz, Germany
| | | |
Collapse
|
39
|
Wang KK, Yang Z, Zhu T, Shi Y, Rubenstein R, Tyndall JA, Manley GT. An update on diagnostic and prognostic biomarkers for traumatic brain injury. Expert Rev Mol Diagn 2018; 18:165-180. [PMID: 29338452 PMCID: PMC6359936 DOI: 10.1080/14737159.2018.1428089] [Citation(s) in RCA: 332] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a major worldwide neurological disorder of epidemic proportions. To date, there are still no FDA-approved therapies to treat any forms of TBI. Encouragingly, there are emerging data showing that biofluid-based TBI biomarker tests have the potential to diagnose the presence of TBI of different severities including concussion, and to predict outcome. Areas covered: The authors provide an update on the current knowledge of TBI biomarkers, including protein biomarkers for neuronal cell body injury (UCH-L1, NSE), astroglial injury (GFAP, S100B), neuronal cell death (αII-spectrin breakdown products), axonal injury (NF proteins), white matter injury (MBP), post-injury neurodegeneration (total Tau and phospho-Tau), post-injury autoimmune response (brain antigen-targeting autoantibodies), and other emerging non-protein biomarkers. The authors discuss biomarker evidence in TBI diagnosis, outcome prognosis and possible identification of post-TBI neurodegernative diseases (e.g. chronic traumatic encephalopathy and Alzheimer's disease), and as theranostic tools in pre-clinical and clinical settings. Expert commentary: A spectrum of biomarkers is now at or near the stage of formal clinical validation of their diagnostic and prognostic utilities in the management of TBI of varied severities including concussions. TBI biomarkers could serve as a theranostic tool in facilitating drug development and treatment monitoring.
Collapse
Affiliation(s)
- Kevin K Wang
- a Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry , University of Florida , Gainesville , Florida , USA
| | - Zhihui Yang
- a Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry , University of Florida , Gainesville , Florida , USA
| | - Tian Zhu
- a Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry , University of Florida , Gainesville , Florida , USA
| | - Yuan Shi
- b Department Of Pediatrics, Daping Hospital, Chongqing , Third Military Medical University , Chongqing , China
| | - Richard Rubenstein
- c Laboratory of Neurodegenerative Diseases and CNS Biomarker Discovery, Departments of Neurology and Physiology/Pharmacology , SUNY Downstate Medical Center , Brooklyn , NY , USA
| | - J Adrian Tyndall
- d Department of Emergency Medicine , University of Florida , Gainesville , Florida , USA
| | - Geoff T Manley
- e Brain and Spinal Injury Center , San Francisco General Hospital , San Francisco , CA , USA
- f Department of Neurological Surgery , University of California, San Francisco , San Francisco , CA , USA
| |
Collapse
|
40
|
Dadas A, Washington J, Diaz-Arrastia R, Janigro D. Biomarkers in traumatic brain injury (TBI): a review. Neuropsychiatr Dis Treat 2018; 14:2989-3000. [PMID: 30510421 PMCID: PMC6231511 DOI: 10.2147/ndt.s125620] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Biomarkers can be broadly defined as qualitative or quantitative measurements that convey information on the physiopathological state of a subject at a certain time point or disease state. Biomarkers can indicate health, pathology, or response to treatment, including unwanted side effects. When used as outcomes in clinical trials, biomarkers act as surrogates or substitutes for clinically meaningful endpoints. Biomarkers of disease can be diagnostic (the identification of the nature and cause of a condition) or prognostic (predicting the likelihood of a person's survival or outcome of a disease). In addition, genetic biomarkers can be used to quantify the risk of developing a certain disease. In the specific case of traumatic brain injury, surrogate blood biomarkers of imaging can improve the standard of care and reduce the costs of diagnosis. In addition, a prognostic role for biomarkers has been suggested in the case of post-traumatic epilepsy. Given the extensive literature on clinical biomarkers, we will focus herein on biomarkers which are present in peripheral body fluids such as saliva and blood. In particular, blood biomarkers, such as glial fibrillary acidic protein and salivary/blood S100B, will be discussed together with the use of nucleic acids (eg, DNA) collected from peripheral cells.
Collapse
Affiliation(s)
| | | | | | - Damir Janigro
- FloTBI Inc., Cleveland, OH, USA, .,Department of Physiology, Case Western Reserve University, Cleveland, OH, USA,
| |
Collapse
|
41
|
Nekludov M, Bellander BM, Gryth D, Wallen H, Mobarrez F. Brain-Derived Microparticles in Patients with Severe Isolated TBI. Brain Inj 2017; 31:1856-1862. [PMID: 28972406 DOI: 10.1080/02699052.2017.1358395] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PRIMARY OBJECTIVE to investigate the presence of circulating microparticles (MPs) of brain tissue origin in the systemic and cerebrovenous blood of patients with severe traumatic brain injury (TBI). RESEARCH DESIGN Prospective observational study in 15 consecutive patients with severe isolated TBI. METHODS AND PROCEDURES We repeatedly measured concentrations of MPs expressing glial fibrillary acidic protein (GFAP), neuron-specific enolase (NSE) and aquaporin-4 (AQP4), in arterial and cerebrovenous blood at admittance to hospital and up to 72 hours after the injury. MAIN OUTCOMES AND RESULTS Concentrations of MPs expressing GFAP and AQP4 were significantly higher in the TBI group compared with healthy controls: GFAP 2.0 [1.1-7.9] vs. 1.3 [1-2.1] × 106/mL, p < 0.001; AQP4 0.1 [0.07-0.22] vs. 0.08 [0.06-0.11] × 106/mL, p < 0.001 (median, range). No transcranial gradients were found. Levels of NSE-expressing MPs were also higher in the TBI group compared with healthy controls: 0.4 [0.25-2.1] vs. 0.26 [0.13-0.98] × 106/mL, p < 0.05; however, regarding NSE-positive non-platelet MPs, there were no differences between patients and controls. CONCLUSIONS Patients with TBI have higher numbers of brain-derived MPs. Further studies are needed, however, to identify specific and sensitive MP markers of brain injury.
Collapse
Affiliation(s)
- M Nekludov
- a Karolinska Institutet, Department of Physiology and Pharmacology, section for Anesthesiology and Intensive Care , Karolinska University Hospital Solna , Stockholm , Sweden
| | - B-M Bellander
- b Karolinska Institutet, Department of Clinical Neuroscience, section for Neurosurgery , Karolinska University Hospital Solna , Stockholm , Sweden
| | - D Gryth
- a Karolinska Institutet, Department of Physiology and Pharmacology, section for Anesthesiology and Intensive Care , Karolinska University Hospital Solna , Stockholm , Sweden
| | - H Wallen
- c Karolinska Institutet , Department of Clinical Sciences, Division of Cardiovascular Medicine, Danderyds Hospital , Stockholm , Sweden
| | - F Mobarrez
- c Karolinska Institutet , Department of Clinical Sciences, Division of Cardiovascular Medicine, Danderyds Hospital , Stockholm , Sweden.,d Karolinska Institutet , Department of Medicine, Rheumatology Unit , Stockholm , Sweden
| |
Collapse
|
42
|
Stefanović B, Đurić O, Stanković S, Mijatović S, Doklestić K, Stefanović B, Jovanović B, Marjanović N, Kalezić N. Elevated Serum Protein S100B and Neuron Specific Enolase Values as Predictors of Early Neurological Outcome After Traumatic Brain Injury. J Med Biochem 2017; 36:314-321. [PMID: 30581328 PMCID: PMC6294083 DOI: 10.1515/jomb-2017-0018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/25/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The objective of our study was to determine the serum concentrations of protein S100B and neuron specific enolase (NSE) as well as their ability and accuracy in the prediction of early neurological outcome after a traumatic brain injury. METHODS A total of 130 polytraumatized patients with the associated traumatic brain injuries were included in this prospective cohort study. Serum protein S100B and NSE levels were measured at 6, 24, 48 and 72 hours after the injury. Early neurological outcome was scored by Glasgow Outcome Scale (GOS) on day 14 after the brain injury. RESULTS The protein S100B concentrations were maximal at 6 hours after the injury, which was followed by an abrupt fall, and subsequently slower release in the following two days with continual and significantly increased values (p<0.0001) in patients with poor outcome. Secondary increase in protein S100B at 72 hours was recorded in patients with lethal outcome (GOS 1). Dynamics of NSE changes was characterized by a secondary increase in concentrations at 72 hours after the injury in patients with poor outcome. CONCLUSION Both markers have good predictive ability for poor neurological outcome, although NSE provides better discriminative potential at 72 hours after the brain injury, while protein S100B has better discriminative potential for mortality prediction.
Collapse
Affiliation(s)
- Branislava Stefanović
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Department of Anesthesiology, Emergency Center, Clinical Center of Serbia, Belgrade, Serbia
| | - Olivera Đurić
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Institute for Epidemiology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sanja Stanković
- Center for Medical Biochemistry, Clinical Center of Serbia, Belgrade, Serbia
| | - Srđan Mijatović
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic for Emergency Surgery, Emergency Center, Clinical Center of Serbia, Belgrade, Serbia
| | - Krstina Doklestić
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic for Emergency Surgery, Emergency Center, Clinical Center of Serbia, Belgrade, Serbia
| | - Branislav Stefanović
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic for Emergency Surgery, Emergency Center, Clinical Center of Serbia, Belgrade, Serbia
| | - Bojan Jovanović
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Department of Anesthesiology, Emergency Center, Clinical Center of Serbia, Belgrade, Serbia
| | - Nataša Marjanović
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Department of Anesthesiology, Clinic for Digestive Surgery, Clinical Center of Serbia, Belgrade, Serbia
| | - Nevena Kalezić
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Department of Anesthesiology, Clinic for Endocrine Surgery, Clinical Center of Serbia, Belgrade, Serbia
| |
Collapse
|
43
|
Posti JP, Dickens AM, Orešič M, Hyötyläinen T, Tenovuo O. Metabolomics Profiling As a Diagnostic Tool in Severe Traumatic Brain Injury. Front Neurol 2017; 8:398. [PMID: 28868043 PMCID: PMC5563327 DOI: 10.3389/fneur.2017.00398] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/25/2017] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) is a complex disease with a multifaceted pathophysiology. Impairment of energy metabolism is a key component of secondary insults. This phenomenon is a consequence of multiple potential mechanisms including diffusion hypoxia, mitochondrial failure, and increased energy needs due to systemic trauma responses, seizures, or spreading depolarization. The degree of disturbance in brain metabolism is affected by treatment interventions and reflected in clinical patient outcome. Hence, monitoring of these secondary events in peripheral blood will provide a window into the pathophysiological course of severe TBI. New methods for assessing perturbation of brain metabolism are needed in order to monitor on-going pathophysiological processes and thus facilitate targeted interventions and predict outcome. Circulating metabolites in peripheral blood may serve as sensitive markers of pathological processes in TBI. The levels of these small molecules in blood are less dependent on the integrity of the blood–brain barrier as compared to protein biomarkers. We have recently characterized a specific metabolic profile in serum that is associated with both initial severity and patient outcome of TBI. We found that two medium-chain fatty acids, octanoic and decanoic acids, as well as several sugar derivatives are significantly associated with the severity of TBI. The top ranking peripheral blood metabolites were also highly correlated with their levels in cerebral microdialyzates. Based on the metabolite profile upon admission, we have been able to develop a model that accurately predicts patient outcome. Moreover, metabolomics profiling improved the performance of the well-established clinical prognostication model. In this review, we discuss metabolomics profiling in patients with severe TBI. We present arguments in support of the need for further development and validation of circulating biomarkers of cerebral metabolism and for their use in assessing patients with severe TBI.
Collapse
Affiliation(s)
- Jussi P Posti
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital, Turku, Finland.,Division of Clinical Neurosciences, Department of Rehabilitation and Brain Trauma, Turku University Hospital, Turku, Finland.,Department of Neurology, University of Turku, Turku, Finland
| | - Alex M Dickens
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | - Matej Orešič
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | | | - Olli Tenovuo
- Division of Clinical Neurosciences, Department of Rehabilitation and Brain Trauma, Turku University Hospital, Turku, Finland.,Department of Neurology, University of Turku, Turku, Finland
| |
Collapse
|
44
|
Bogdanovski DA, DiFazio LT, Bogdanovski AK, Csóka B, Jordan GB, Paul ER, Antonioli L, Pilip SA, Nemeth ZH. Hypoxia-inducible-factor-1 in trauma and critical care. J Crit Care 2017; 42:207-212. [PMID: 28779702 DOI: 10.1016/j.jcrc.2017.07.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/19/2017] [Accepted: 07/11/2017] [Indexed: 12/27/2022]
Abstract
HIF-1 is a ubiquitous signaling molecule constantly expressed by the body, but is degraded during normoxic conditions. In hypoxic conditions, it persists and is active. Hypoxia is often associated with trauma due to interrupted blood flow, inflammation or other reasons, causing HIF-1 to be active in signaling and recovery. In this review, the function of HIF-1 is examined, as well as its clinical significance with regard to trauma and critical care. Using this information, we then identify potential points of treatment and intervention.
Collapse
Affiliation(s)
| | | | | | - Balázs Csóka
- Dept. of Surgery, Rutgers-New Jersey Medical School, United States.
| | | | - Elina R Paul
- Dept. of Surgery, Morristown Medical Center, United States.
| | - Luca Antonioli
- Dept. of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | | | - Zoltan H Nemeth
- Dept. of Surgery, Morristown Medical Center, United States; Dept. of Surgery, Rutgers-New Jersey Medical School, United States.
| |
Collapse
|
45
|
Thelin EP, Zeiler FA, Ercole A, Mondello S, Büki A, Bellander BM, Helmy A, Menon DK, Nelson DW. Serial Sampling of Serum Protein Biomarkers for Monitoring Human Traumatic Brain Injury Dynamics: A Systematic Review. Front Neurol 2017; 8:300. [PMID: 28717351 PMCID: PMC5494601 DOI: 10.3389/fneur.2017.00300] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/12/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The proteins S100B, neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), and neurofilament light (NF-L) have been serially sampled in serum of patients suffering from traumatic brain injury (TBI) in order to assess injury severity and tissue fate. We review the current literature of serum level dynamics of these proteins following TBI and used the term "effective half-life" (t1/2) in order to describe the "fall" rate in serum. MATERIALS AND METHODS Through searches on EMBASE, Medline, and Scopus, we looked for articles where these proteins had been serially sampled in serum in human TBI. We excluded animal studies, studies with only one presented sample and studies without neuroradiological examinations. RESULTS Following screening (10,389 papers), n = 122 papers were included. The proteins S100B (n = 66) and NSE (n = 27) were the two most frequent biomarkers that were serially sampled. For S100B in severe TBI, a majority of studies indicate a t1/2 of about 24 h, even if very early sampling in these patients reveals rapid decreases (1-2 h) though possibly of non-cerebral origin. In contrast, the t1/2 for NSE is comparably longer, ranging from 48 to 72 h in severe TBI cases. The protein GFAP (n = 18) appears to have t1/2 of about 24-48 h in severe TBI. The protein UCH-L1 (n = 9) presents a t1/2 around 7 h in mild TBI and about 10 h in severe. Frequent sampling of these proteins revealed different trajectories with persisting high serum levels, or secondary peaks, in patients with unfavorable outcome or in patients developing secondary detrimental events. Finally, NF-L (n = 2) only increased in the few studies available, suggesting a serum availability of >10 days. To date, automated assays are available for S100B and NSE making them faster and more practical to use. CONCLUSION Serial sampling of brain-specific proteins in serum reveals different temporal trajectories that should be acknowledged. Proteins with shorter serum availability, like S100B, may be superior to proteins such as NF-L in detection of secondary harmful events when monitoring patients with TBI.
Collapse
Affiliation(s)
- Eric Peter Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Frederick Adam Zeiler
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Clinician Investigator Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ari Ercole
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - András Büki
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- Department of Neurosurgery, University of Pecs, Pecs, Hungary
- MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
| | | | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - David K. Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - David W. Nelson
- Section of Perioperative Medicine and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
46
|
Thelin EP, Nelson DW, Bellander BM. A review of the clinical utility of serum S100B protein levels in the assessment of traumatic brain injury. Acta Neurochir (Wien) 2017; 159:209-225. [PMID: 27957604 PMCID: PMC5241347 DOI: 10.1007/s00701-016-3046-3] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/28/2016] [Indexed: 12/12/2022]
Abstract
Background In order to improve injury assessment of brain injuries, protein markers of pathophysiological processes and tissue fate have been introduced in the clinic. The most studied protein “biomarker” of cerebral damage in traumatic brain injury (TBI) is the protein S100B. The aim of this narrative review is to thoroughly analyze the properties and capabilities of this biomarker with focus on clinical utility in the assessment of patients suffering from TBI. Results S100B has successfully been implemented in the clinic regionally (1) to screen mild TBI patients evaluating the need to perform a head computerized tomography, (2) to predict outcome in moderate-to-severe TBI patients, (3) to detect secondary injury development in brain-injured patients and (4) to evaluate treatment efficacy. The potential opportunities and pitfalls of S100B in the different areas usually refer to its specificity and sensitivity to detect and assess intracranial injury. Conclusion Given some shortcomings that should be realized, S100B can be used as a versatile screening, monitoring and prediction tool in the management of TBI patients.
Collapse
Affiliation(s)
- Eric Peter Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Neurosurgical Research Laboratory, Karolinska University Hospital, Building R2:02, S-171 76, Stockholm, Sweden.
| | - David W Nelson
- Division of Perioperative Medicine and Intensive Care (PMI), Section Neuro, Karolinska University Hospital, Stockholm, Sweden
- Department of Physiology and Pharmacology, Section of Anesthesiology and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Bo-Michael Bellander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
47
|
Lee HH, Lee WH, Seo HG, Han D, Kim Y, Oh BM. Current State and Prospects of Development of Blood-based Biomarkers for Mild Traumatic Brain Injury. BRAIN & NEUROREHABILITATION 2017. [DOI: 10.12786/bn.2017.10.e3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Hyun Haeng Lee
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Woo Hyung Lee
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Youngsoo Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
48
|
Thelin EP, Nelson DW, Bellander BM. A review of the clinical utility of serum S100B protein levels in the assessment of traumatic brain injury. Acta Neurochir (Wien) 2017; 159. [PMID: 27957604 PMCID: PMC5241347 DOI: 10.1007/s00701-016-3046-3;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND In order to improve injury assessment of brain injuries, protein markers of pathophysiological processes and tissue fate have been introduced in the clinic. The most studied protein "biomarker" of cerebral damage in traumatic brain injury (TBI) is the protein S100B. The aim of this narrative review is to thoroughly analyze the properties and capabilities of this biomarker with focus on clinical utility in the assessment of patients suffering from TBI. RESULTS S100B has successfully been implemented in the clinic regionally (1) to screen mild TBI patients evaluating the need to perform a head computerized tomography, (2) to predict outcome in moderate-to-severe TBI patients, (3) to detect secondary injury development in brain-injured patients and (4) to evaluate treatment efficacy. The potential opportunities and pitfalls of S100B in the different areas usually refer to its specificity and sensitivity to detect and assess intracranial injury. CONCLUSION Given some shortcomings that should be realized, S100B can be used as a versatile screening, monitoring and prediction tool in the management of TBI patients.
Collapse
Affiliation(s)
- Eric Peter Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Neurosurgical Research Laboratory, Karolinska University Hospital, Building R2:02, S-171 76, Stockholm, Sweden.
| | - David W Nelson
- Division of Perioperative Medicine and Intensive Care (PMI), Section Neuro, Karolinska University Hospital, Stockholm, Sweden
- Department of Physiology and Pharmacology, Section of Anesthesiology and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Bo-Michael Bellander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
49
|
Biomarkers of Traumatic Brain Injury: Temporal Changes in Body Fluids. eNeuro 2016; 3:eN-REV-0294-16. [PMID: 28032118 PMCID: PMC5175263 DOI: 10.1523/eneuro.0294-16.2016] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/17/2016] [Accepted: 11/28/2016] [Indexed: 12/31/2022] Open
Abstract
Traumatic brain injuries (TBIs) are caused by a hit to the head or a sudden acceleration/deceleration movement of the head. Mild TBIs (mTBIs) and concussions are difficult to diagnose. Imaging techniques often fail to find alterations in the brain, and computed tomography exposes the patient to radiation. Brain-specific biomolecules that are released upon cellular damage serve as another means of diagnosing TBI and assessing the severity of injury. These biomarkers can be detected from samples of body fluids using laboratory tests. Dozens of TBI biomarkers have been studied, and research related to them is increasing. We reviewed the recent literature and selected 12 biomarkers relevant to rapid and accurate diagnostics of TBI for further evaluation. The objective was especially to get a view of the temporal profiles of the biomarkers’ rise and decline after a TBI event. Most biomarkers are rapidly elevated after injury, and they serve as diagnostics tools for some days. Some biomarkers are elevated for months after injury, although the literature on long-term biomarkers is scarce. Clinical utilization of TBI biomarkers is still at a very early phase despite years of active research.
Collapse
|
50
|
Rodríguez-Rodríguez A, Egea-Guerrero JJ. The utility of biomarkers in traumatic brain injury clinical management. Crit Care 2016; 20:376. [PMID: 27855696 PMCID: PMC5114747 DOI: 10.1186/s13054-016-1545-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/26/2016] [Indexed: 11/23/2022] Open
Affiliation(s)
- Ana Rodríguez-Rodríguez
- Emergency Department, Virgen del Rocío University Hospital, IBIS/CSIC/University of Seville, Seville, Spain
| | - Juan José Egea-Guerrero
- NeuroCritical Care Unit, Virgen del Rocío University Hospital, IBIS/CSIC/University of Seville, Avda. Manuel Siurot s/n, 41013, Seville, Spain.
| |
Collapse
|