1
|
Weant KA, Gregory H. Updates on the Use of Osmotherapy in the Emergency Department. Adv Emerg Nurs J 2025; 47:96-102. [PMID: 40106783 DOI: 10.1097/tme.0000000000000559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Elevated intracranial pressure (ICP) is a critical condition associated with significant morbidity and mortality, requiring prompt and effective management. Mannitol and hypertonic saline (HTS) are the two most widely used hyperosmolar agents in clinical practice for ICP reduction, each with distinct pharmacologic properties, efficacy profiles, and safety considerations. This review aims to provide a comprehensive assessment of the mechanisms, clinical efficacy, safety, practical considerations, and guideline recommendations associated with the use of mannitol and HTS for the management of elevated ICP. Current available data does not clearly support one hyperosmolar agent over another and both agents are considered equivalent. Consensus recommendations vary, but the most recent recommendations seem to support the use of HTS over mannitol, mostly due to potential pharmacodynamic advantages that have been shown in smaller investigations. Further research is warranted to refine dosing strategies, clarify administration concerns, and address knowledge gaps in comparative efficacy and safety.
Collapse
Affiliation(s)
- Kyle A Weant
- Author Affiliations: Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (Dr Weant); and Department of Pharmacy, University of North Carolina Health, Chapel Hill, North Carolina (Dr Gregory)
| | | |
Collapse
|
2
|
Brasil S, Ben-Hur I, Cardim D, Czosnyka M, Paiva WS, Frigieri G. Validation of a Noninvasive Approach for Cerebrospinal Compliance Monitoring. Neurocrit Care 2025:10.1007/s12028-024-02205-w. [PMID: 39920544 DOI: 10.1007/s12028-024-02205-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/24/2024] [Indexed: 02/09/2025]
Abstract
BACKGROUND Intracranial pressure (ICP) monitoring is a cornerstone of neurointensive care. However, some limitations of invasive techniques for ICP monitoring to acknowledge are the risk for complications and the lack of robust evidence supporting individualized ICP safety thresholds. Cerebrospinal compliance (CSC) may serve as a more reliable indicator of brain health than ICP alone. Previously, intracranial compliance (Ci), was described as a mathematical model from invasive ICP to assess CSC, using ICP waveform amplitudes and cerebral arterial blood volume (CaBV) waveform amplitudes via transcranial Doppler (TCD). This study aimed to compare Ci with a surrogate parameter based on CaBV waveform amplitudes and pulsatile micrometric skull waveforms (Skw) amplitudes. This noninvasive parameter was named Bcomp. METHODS Neurocritical patients undergoing ICP monitoring were evaluated using TCD and the skull micrometric deformation sensor (B4C). ICP waveform (from invasive ICP probes) and Skw (from noninvasive B4C) were analyzed to extract pulse amplitudes, whereas TCD provided cerebral blood velocities from the middle cerebral arteries for CaBV calculation. CSC was measured using the volume/pressure relationship, with CaBV amplitude serving as the volume surrogate, and ICP and B4C pulse amplitudes as surrogates for ICP values. Agreement and correlation analysis was calculated between Ci and Bcomp. RESULTS Data from 71 patients were analyzed, with 68% of the sample having suffered traumatic brain injury. Maximum CaBV was significantly delayed in patients with poor CSC (p < 0.001). Ci and Bcomp showed strong agreement and linear correlation (mean difference of - 0.28 and Spearman correlation of 0.88, p < 0.001). CONCLUSIONS Using CaBV, which reflects changes in arterial blood volume during the cardiac cycle and Skw pulse amplitudes, Bcomp demonstrated high agreement and correlation with Ci, defined as the product of CaBV and ICP pulse amplitude. The observed shift in CaBV among patients with poor CSC suggests that this vascular marker is influenced by intracranial resistance. These findings are promising for the real-time, noninvasive assessment of CSC in clinical settings and warrant further research.
Collapse
Affiliation(s)
- Sérgio Brasil
- Division of Neurosurgery, Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil.
| | | | | | | | - Wellingson S Paiva
- Division of Neurosurgery, Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | - Gustavo Frigieri
- Brain4care, São Paulo, Brazil
- Medical Investigation Laboratory 62, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
3
|
Frigieri G, Brasil S, Cardim D, Czosnyka M, Ferreira M, Paiva WS, Hu X. Machine learning approach for noninvasive intracranial pressure estimation using pulsatile cranial expansion waveforms. NPJ Digit Med 2025; 8:57. [PMID: 39865121 PMCID: PMC11770073 DOI: 10.1038/s41746-025-01463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/15/2025] [Indexed: 01/28/2025] Open
Abstract
Noninvasive methods for intracranial pressure (ICP) monitoring have emerged, but none has successfully replaced invasive techniques. This observational study developed and tested a machine learning (ML) model to estimate ICP using waveforms from a cranial extensometer device (brain4care [B4C] System). The model explored multiple waveform parameters to optimize mean ICP estimation. Data from 112 neurocritical patients with acute brain injuries were used, with 92 patients randomly assigned to training and testing, and 20 reserved for independent validation. The ML model achieved a mean absolute error of 3.00 mmHg, with a 95% confidence interval within ±7.5 mmHg. Approximately 72% of estimates from the validation sample were within 0-4 mmHg of invasive ICP values. This proof-of-concept study demonstrates that noninvasive ICP estimation via the B4C System and ML is feasible. Prospective studies are needed to validate the model's clinical utility across diverse settings.
Collapse
Affiliation(s)
- Gustavo Frigieri
- brain4care, Johns Creek, GA, USA
- Division of Neurosurgery, Department of Neurology, School of Medicine University of São Paulo, Sao Paulo, Brazil
| | - Sérgio Brasil
- Division of Neurosurgery, Department of Neurology, School of Medicine University of São Paulo, Sao Paulo, Brazil
| | | | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | | | - Wellingson S Paiva
- Division of Neurosurgery, Department of Neurology, School of Medicine University of São Paulo, Sao Paulo, Brazil
| | - Xiao Hu
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA.
- Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA.
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
4
|
Netteland DF, Aarhus M, Sandset EC, Sorteberg A, Padayachy L, Helseth E, Brekken R. Real-Time Automated Measurements of Optic Nerve Sheath Diameter for Noninvasive Assessment of Intracranial Pressure in Aneurysmal Subarachnoid Hemorrhage. Neurocrit Care 2025:10.1007/s12028-024-02194-w. [PMID: 39776344 DOI: 10.1007/s12028-024-02194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Optic nerve sheath diameter (ONSD) is a promising noninvasive parameter for intracranial pressure (ICP) assessment. However, in the setting of aneurysmal subarachnoid hemorrhage (aSAH), several previous studies have reported no association between ultrasonically measured ONSD and ICP. In this study, we evaluate ONSD in patients with aSAH using a novel method of automated real-time ultrasonographic measurements and explore whether factors such as having undergone surgery affects its association to ICP. METHODS We prospectively included adult patients with aSAH undergoing invasive ICP monitoring. ONSD was obtained using a prototype ultrasound machine with software for real-time automated measurements at the bedside. Correlation between ONSD and ICP was explored, and the ability of ONSD to discriminate dichotomized ICP was evaluated. Abovementioned analyses were performed for the whole cohort and repeated for subgroups by whether the basal cisterns had been surgically entered before ultrasound examination. RESULTS Twenty-six ultrasound examinations were performed in 20 patients. There was a positive correlation between ONSD and ICP (R = 0.43; p = 0.03). In the subgroup where the basal cisterns had not been surgically entered before ultrasound examination, there was a stronger correlation (R = 0.55; p = 0.01), whereas no correlation was seen in the subgroup where the basal cisterns had been surgically entered (R = - 0.16; p = 0.70). ONSD displayed an ability to discriminate ICP dichotomized at ≥ 15 mm Hg (area under the curve [AUC] = 0.84, 95% confidence interval [CI] 0.65-0.96). Subgroup analysis revealed a perfect discriminatory ability (AUC = 1, 95% CI 0.81-1) where the basal cisterns had not been surgically entered and no discriminatory ability (AUC = 0.47, 95% CI 0.16-0.84) where the basal cisterns had been surgically entered before ultrasound examination. CONCLUSIONS Automatically measured ONSD correlated well with ICP and displayed a perfect discriminatory ability in patients with aSAH in whom the basal cisterns had not been entered surgically before ultrasound examination, and may be a clinically valuable noninvasive marker of ICP in these patients. Caution should be exercised in using ONSD in patients in whom the basal cisterns have been entered surgically before ONSD measurements, as no association was observed in this subgroup.
Collapse
Affiliation(s)
- Dag Ferner Netteland
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway.
- Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Mads Aarhus
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Else Charlotte Sandset
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- The Norwegian Air Ambulance Foundation, Oslo, Norway
| | - Angelika Sorteberg
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Llewellyn Padayachy
- Department of Neurosurgery, Faculty of Health Sciences, University of Pretoria, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Eirik Helseth
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Reidar Brekken
- Department of Health Research, Medical Technology, SINTEF, Trondheim, Norway
| |
Collapse
|
5
|
Brasil S, Godoy DA, Videtta W, Rubiano AM, Solla D, Taccone FS, Robba C, Rasulo F, Aries M, Smielewski P, Meyfroidt G, Battaglini D, Hirzallah MI, Amorim R, Sampaio G, Moulin F, Deana C, Picetti E, Kolias A, Hutchinson P, Hawryluk GW, Czosnyka M, Panerai RB, Shutter LA, Park S, Rynkowski C, Paranhos J, Silva THS, Malbouisson LMS, Paiva WS. A Comprehensive Perspective on Intracranial Pressure Monitoring and Individualized Management in Neurocritical Care: Results of a Survey with Global Experts. Neurocrit Care 2024; 41:880-892. [PMID: 38811514 PMCID: PMC11599332 DOI: 10.1007/s12028-024-02008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Numerous trials have addressed intracranial pressure (ICP) management in neurocritical care. However, identifying its harmful thresholds and controlling ICP remain challenging in terms of improving outcomes. Evidence suggests that an individualized approach is necessary for establishing tolerance limits for ICP, incorporating factors such as ICP waveform (ICPW) or pulse morphology along with additional data provided by other invasive (e.g., brain oximetry) and noninvasive monitoring (NIM) methods (e.g., transcranial Doppler, optic nerve sheath diameter ultrasound, and pupillometry). This study aims to assess current ICP monitoring practices among experienced clinicians and explore whether guidelines should incorporate ancillary parameters from NIM and ICPW in future updates. METHODS We conducted a survey among experienced professionals involved in researching and managing patients with severe injury across low-middle-income countries (LMICs) and high-income countries (HICs). We sought their insights on ICP monitoring, particularly focusing on the impact of NIM and ICPW in various clinical scenarios. RESULTS From October to December 2023, 109 professionals from the Americas and Europe participated in the survey, evenly distributed between LMIC and HIC. When ICP ranged from 22 to 25 mm Hg, 62.3% of respondents were open to considering additional information, such as ICPW and other monitoring techniques, before adjusting therapy intensity levels. Moreover, 77% of respondents were inclined to reassess patients with ICP in the 18-22 mm Hg range, potentially escalating therapy intensity levels with the support of ICPW and NIM. Differences emerged between LMIC and HIC participants, with more LMIC respondents preferring arterial blood pressure transducer leveling at the heart and endorsing the use of NIM techniques and ICPW as ancillary information. CONCLUSIONS Experienced clinicians tend to personalize ICP management, emphasizing the importance of considering various monitoring techniques. ICPW and noninvasive techniques, particularly in LMIC settings, warrant further exploration and could potentially enhance individualized patient care. The study suggests updating guidelines to include these additional components for a more personalized approach to ICP management.
Collapse
Affiliation(s)
- Sérgio Brasil
- Division of Neurosurgery, Department of Neurology, School of Medicine University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil.
| | | | - Walter Videtta
- Intensive Care Unit, Hospital Posadas, Buenos Aires, Argentina
| | | | - Davi Solla
- Division of Neurosurgery, Department of Neurology, School of Medicine University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Chiara Robba
- Anesthesia and Intensive Care, Scientific Institute for Research, Hospitalization and Healthcare, Policlínico San Martino, Genoa, Italy
| | - Frank Rasulo
- Neuroanesthesia, Neurocritical and Postoperative Care, Spedali Civili University Affiliated Hospital of Brescia, Brescia, Italy
| | - Marcel Aries
- Department of Intensive Care, Maastricht University Medical Center, Maastricht, The Netherlands
- School of Mental Health and Neurosciences, University Maastricht, Maastricht, The Netherlands
| | - Peter Smielewski
- Department of Clinical Neurosciences, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Geert Meyfroidt
- Department and Laboratory of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Denise Battaglini
- Anesthesia and Intensive Care, Scientific Institute for Research, Hospitalization and Healthcare, Policlínico San Martino, Genoa, Italy
| | - Mohammad I Hirzallah
- Departments of Neurology, Neurosurgery, and Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Robson Amorim
- Division of Neurosurgery, Department of Neurology, School of Medicine University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| | - Gisele Sampaio
- Neurology Department, São Paulo Federal University Medical School, São Paulo, Brazil
| | - Fabiano Moulin
- Neurology Department, São Paulo Federal University Medical School, São Paulo, Brazil
| | - Cristian Deana
- Department of Anesthesia and Intensive Care, Health Integrated Agency of Friuli Centrale, Udine, Italy
| | - Edoardo Picetti
- Department of Anesthesia and Intensive Care, Parma University Hospital, Parma, Italy
| | | | | | - Gregory W Hawryluk
- Cleveland Clinic Neurological Institute, Akron General Hospital, Fairlawn, OH, USA
- Uniformed Services University, Bethesda, USA
- Brain Trauma Foundation, New York, USA
| | - Marek Czosnyka
- Division of Neurosurgery, Addenbrooke's Hospital, Cambridge, UK
| | - Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Lori A Shutter
- Departments of Critical Care Medicine, Neurology and Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Soojin Park
- Departments of Neurology and Biomedical Informatics, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian Hospital, New York, NY, USA
| | - Carla Rynkowski
- Department of Urgency and Trauma, Medical Faculty, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Jorge Paranhos
- Intensive Care and Neuroemergency, Santa Casa de Misericórdia, São João del Rei, Brazil
| | - Thiago H S Silva
- Department of Intensive Care, School of Medicine University of São Paulo, São Paulo, Brazil
| | - Luiz M S Malbouisson
- Department of Intensive Care, School of Medicine University of São Paulo, São Paulo, Brazil
| | - Wellingson S Paiva
- Division of Neurosurgery, Department of Neurology, School of Medicine University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| |
Collapse
|
6
|
Netteland DF, Aarhus M, Sandset EC, Padayachy L, Helseth E, Brekken R. Noninvasive Assessment of Intracranial Pressure: Deformability Index as an Adjunct to Optic Nerve Sheath Diameter to Increase Diagnostic Ability. Neurocrit Care 2024; 41:479-488. [PMID: 38448744 PMCID: PMC11377659 DOI: 10.1007/s12028-024-01955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Today, invasive intracranial pressure (ICP) measurement remains the standard, but its invasiveness limits availability. Here, we evaluate a novel ultrasound-based optic nerve sheath parameter called the deformability index (DI) and its ability to assess ICP noninvasively. Furthermore, we ask whether combining DI with optic nerve sheath diameter (ONSD), a more established parameter, results in increased diagnostic ability, as compared to using ONSD alone. METHODS We prospectively included adult patients with traumatic brain injury with invasive ICP monitoring, which served as the reference measurement. Ultrasound images and videos of the optic nerve sheath were acquired. ONSD was measured at the bedside, whereas DI was calculated by semiautomated postprocessing of ultrasound videos. Correlations of ONSD and DI to ICP were explored, and a linear regression model combining ONSD and DI was compared to a linear regression model using ONSD alone. Ability of the noninvasive parameters to distinguish dichotomized ICP was evaluated using receiver operating characteristic curves, and a logistic regression model combining ONSD and DI was compared to a logistic regression model using ONSD alone. RESULTS Forty-four ultrasound examinations were performed in 26 patients. Both DI (R = - 0.28; 95% confidence interval [CI] R < - 0.03; p = 0.03) and ONSD (R = 0.45; 95% CI R > 0.23; p < 0.01) correlated with ICP. When including both parameters in a combined model, the estimated correlation coefficient increased (R = 0.51; 95% CI R > 0.30; p < 0.01), compared to using ONSD alone, but the model improvement did not reach statistical significance (p = 0.09). Both DI (area under the curve [AUC] 0.69, 95% CI 0.53-0.83) and ONSD (AUC 0.72, 95% CI 0.56-0.86) displayed ability to distinguish ICP dichotomized at ICP ≥ 15 mm Hg. When using both parameters in a combined model, AUC increased (0.80, 95% CI 0.63-0.90), and the model improvement was statistically significant (p = 0.02). CONCLUSIONS Combining ONSD with DI holds the potential of increasing the ability of optic nerve sheath parameters in the noninvasive assessment of ICP, compared to using ONSD alone, and further study of DI is warranted.
Collapse
Affiliation(s)
- Dag Ferner Netteland
- Department of Neurosurgery, Oslo University Hospital, Pb 4956 Nydalen, 0424, Oslo, Norway.
- Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Mads Aarhus
- Department of Neurosurgery, Oslo University Hospital, Pb 4956 Nydalen, 0424, Oslo, Norway
| | - Else Charlotte Sandset
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- The Norwegian Air Ambulance Foundation, Oslo, Norway
| | - Llewellyn Padayachy
- Department of Neurosurgery, School of Medicine, Faculty of Health Sciences, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Eirik Helseth
- Department of Neurosurgery, Oslo University Hospital, Pb 4956 Nydalen, 0424, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Reidar Brekken
- Department of Health Research, Medical Technology, SINTEF, Trondheim, Norway
| |
Collapse
|
7
|
Gulamali F, Jayaraman P, Sawant AS, Desman J, Fox B, Chang A, Soong BY, Arivazagan N, Reynolds AS, Duong SQ, Vaid A, Kovatch P, Freeman R, Hofer IS, Sakhuja A, Dangayach NS, Reich DS, Charney AW, Nadkarni GN. Derivation, external and clinical validation of a deep learning approach for detecting intracranial hypertension. NPJ Digit Med 2024; 7:233. [PMID: 39237755 PMCID: PMC11377429 DOI: 10.1038/s41746-024-01227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Increased intracranial pressure (ICP) ≥15 mmHg is associated with adverse neurological outcomes, but needs invasive intracranial monitoring. Using the publicly available MIMIC-III Waveform Database (2000-2013) from Boston, we developed an artificial intelligence-derived biomarker for elevated ICP (aICP) for adult patients. aICP uses routinely collected extracranial waveform data as input, reducing the need for invasive monitoring. We externally validated aICP with an independent dataset from the Mount Sinai Hospital (2020-2022) in New York City. The AUROC, accuracy, sensitivity, and specificity on the external validation dataset were 0.80 (95% CI, 0.80-0.80), 73.8% (95% CI, 72.0-75.6%), 73.5% (95% CI 72.5-74.5%), and 73.0% (95% CI, 72.0-74.0%), respectively. We also present an exploratory analysis showing aICP predictions are associated with clinical phenotypes. A ten-percentile increment was associated with brain malignancy (OR = 1.68; 95% CI, 1.09-2.60), intracerebral hemorrhage (OR = 1.18; 95% CI, 1.07-1.32), and craniotomy (OR = 1.43; 95% CI, 1.12-1.84; P < 0.05 for all).
Collapse
Affiliation(s)
- Faris Gulamali
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Division of Data Driven and Digital Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pushkala Jayaraman
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Division of Data Driven and Digital Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashwin S Sawant
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Division of Data Driven and Digital Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jacob Desman
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Division of Data Driven and Digital Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin Fox
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Division of Data Driven and Digital Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Annette Chang
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Division of Data Driven and Digital Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian Y Soong
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Naveen Arivazagan
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra S Reynolds
- Department of Neurosurgery and Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Son Q Duong
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Division of Data Driven and Digital Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Akhil Vaid
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Division of Data Driven and Digital Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patricia Kovatch
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Freeman
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ira S Hofer
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Division of Data Driven and Digital Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ankit Sakhuja
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Division of Data Driven and Digital Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Neha S Dangayach
- Department of Neurosurgery and Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David S Reich
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander W Charney
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Girish N Nadkarni
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Division of Data Driven and Digital Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Brasil S, Romeijn H, Haspels EK, Paiva W, Schaafsma A. Improved Transcranial Doppler Waveform Analysis for Intracranial Hypertension Assessment in Patients with Traumatic Brain Injury. Neurocrit Care 2024; 40:931-940. [PMID: 37932509 DOI: 10.1007/s12028-023-01849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/28/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Transcranial Doppler (TCD) is a noninvasive bedside tool for cerebral hemodynamic assessments in multiple clinical scenarios. TCD, by means of measuring systolic and diastolic blood velocities, allows the calculation of the pulsatility index (PI), a parameter that is correlated with intracranial pressure (ICP). Nevertheless, the predictive value of the PI for raised ICP appears to be low, as it is subjected to several, often confounding, factors not related to ICP. Recently, the pulsatile apparent resistance (PaR) index was developed as a PI corrected for arterial blood pressure, reducing some of the confounding factors influencing PI. This study compares the predictive value of PaR versus PI for intracranial hypertension (IH) (ICP > 20 mm Hg) in patients with traumatic brain injury. METHODS Patients with traumatic brain injury admitted to the neurocritical care unit who required invasive ICP monitoring were included prospectively within 5 days of admission. TCD measurements were performed in both middle cerebral arteries, allowing calculations of the PI and PaR. The optimal cutoff, discriminative power of these parameters for ICP ≥ 20 mm Hg, was assessed by calculating the area under the receiver operator characteristics curve (AUC). RESULTS In total, 93 patients were included. A total of 20 (22%) patients experienced IH during the recording sessions. The discriminative power was low for PI (AUC 0.63) but slightly higher for PaR (AUC 0.77). Nonparametric analysis indicated significant difference for PaR when comparing patients with (median 0.169) and without IH (median - 0.052, p = 0.001), whereas PI medians for patients with and without IH were 0.86 and 0.77, respectively (p = 0.041). Regarding subanalyses, the discriminative power of these parameters increased after exclusion of patients who had undergone a neurosurgical procedure. This was especially true for the PaR (AUC 0.89) and PI (AUC 0.72). Among these patients, a PaR cutoff value of - 0.023 had 100% sensitivity and 52.9% specificity. CONCLUSIONS In the present study, discriminative power of the PaR for discriminating IH was superior to the PI. The PaR seems to be a reliable noninvasive parameter for detecting IH. Further studies are warranted to define its clinical application, especially in aiding neurosurgical decision making, following up in intensive care units, and defining its ability to indicate responses according to the therapies administered.
Collapse
Affiliation(s)
- Sérgio Brasil
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil.
| | - Hannah Romeijn
- Intensive Care Department, Martini General Hospital, Groningen, The Netherlands
| | - Esther K Haspels
- Intensive Care Department, Martini General Hospital, Groningen, The Netherlands
| | - Wellingson Paiva
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| | - Arjen Schaafsma
- Department of Clinical Neurophysiology, Martini General Hospital, Groningen, The Netherlands
| |
Collapse
|
9
|
Panni P, Simionato F, Cao R, Pedicelli A, Marchese E, Caricato A, Alexandre A, Feletti A, Testa M, Zanatta P, Gitti N, Piva S, Mardighian D, Semeraro V, Nardin G, Lozupone E, Paiano G, Picetti E, Montanaro V, Petranca M, Bortolotti C, Scibilia A, Cirillo L, Aspide R, Lanterna AL, Ambrosi A, Mortini P, Azzolini ML, Calvi MR, Falini A. Hemorrhage Volume Drives Early Brain Injury and Outcome in Poor-Grade Aneurysmal SAH. AJNR Am J Neuroradiol 2024; 45:393-399. [PMID: 38453415 PMCID: PMC11288567 DOI: 10.3174/ajnr.a8135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/06/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND AND PURPOSE Early brain injury is a major determinant of clinical outcome in poor-grade (World Federation of Neurosurgical Societies [WFNS] IV-V) aneurysmal SAH and is radiologically defined by global cerebral edema. Little is known, though, about the effect of global intracranial hemorrhage volume on early brain injury development and clinical outcome. MATERIALS AND METHODS Data from the multicentric prospective Poor-Grade Aneurysmal Subarachnoid Hemorrhage (POGASH) Registry of consecutive patients with poor-grade aneurysmal SAH admitted from January 1, 2015, to August 31, 2022, was retrospectively evaluated. Poor grade was defined according to the worst-pretreatment WFNS grade. Global intracranial hemorrhage volume as well as the volumes of intracerebral hemorrhage, intraventricular hemorrhage, and SAH were calculated by means of analytic software in a semiautomated setting. Outcomes included severe global cerebral edema (defined by Subarachnoid Hemorrhage Early Brain Edema Score grades 3-4), in-hospital mortality (mRS 6), and functional independence (mRS 0-2) at follow-up. RESULTS Among 400 patients (median global intracranial hemorrhage volume of 91 mL; interquartile range, 59-128), severe global cerebral edema was detected in 218/400 (54.5%) patients. One hundred twenty-three (30.8%) patients died during the acute phase of hospitalization. One hundred fifty-five (38.8%) patients achieved mRS 0-2 at a median of 13 (interquartile range, 3-26) months of follow-up. Multivariable analyses showed global intracranial hemorrhage volume as independently associated with severe global cerebral edema (adjusted OR, 1.009; 95% CI, 1.004-1.014; P < .001), mortality (adjusted OR, 1.006; 95% CI, 1.001-1.01; P = .018) and worse clinical outcome (adjusted OR, 0.992; 95% CI, 0.98-0.996; P < .010). The effect of global intracranial hemorrhage volume on clinical-radiologic outcomes changed significantly according to different age groups (younger than 50, 50-70, older than 70 year of age). Volumes of intracerebral hemorrhage, intraventricular hemorrhage, and SAH affected the 3 predefined outcomes differently. Intracerebral hemorrhage volume independently predicted global cerebral edema and long-term outcome, intraventricular hemorrhage volume predicted mortality and long-term outcome, and SAH volume predicted long-term clinical outcome. CONCLUSIONS Global intracranial hemorrhage volume plays a pivotal role in global cerebral edema development and emerged as an independent predictor of both mortality and long-term clinical outcome. Aging emerged as a reducing predictor in the relationship between global intracranial hemorrhage volume and global cerebral edema.
Collapse
Affiliation(s)
- Pietro Panni
- From the Department of Neuroradiology (P.P., F.S., R.C., A. Falini), Division of Interventional Neuroradiology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
- Department of Neurosurgery (P.P., P.M.), IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Franco Simionato
- From the Department of Neuroradiology (P.P., F.S., R.C., A. Falini), Division of Interventional Neuroradiology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Roberta Cao
- From the Department of Neuroradiology (P.P., F.S., R.C., A. Falini), Division of Interventional Neuroradiology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Pedicelli
- Institute of Radiological Sciences (A.P., A. Alexandre). Policlinico Universitario A.Gemelli IRCCS Catholic University of Rome, Rome, Italy
| | - Enrico Marchese
- Department of Neurosurgery (E.M.), Policlinico Universitario A.Gemelli IRCCS Catholic University of Rome, Rome, Italy
| | - Anselmo Caricato
- Department of Anesthesia and Critical Care Medicine (A.C.), Fondazione Policlinico Universitario A. Gemelli IRCCS Catholic University of Rome, Rome, Italy
| | - Andrea Alexandre
- Institute of Radiological Sciences (A.P., A. Alexandre). Policlinico Universitario A.Gemelli IRCCS Catholic University of Rome, Rome, Italy
| | - Alberto Feletti
- Institute of Neurosurgery (A. Feletti, M.T), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mattia Testa
- Institute of Neurosurgery (A. Feletti, M.T), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Paolo Zanatta
- Anesthesia and Intensive Care A (P.Z.), Integrated University Hospital, Verona, Italy
| | - Nicola Gitti
- Department of Anesthesia, Critical Care and Emergency (N.G., S.P.), Spedali Civili University Hospital, Brescia, Italy
| | - Simone Piva
- Department of Anesthesia, Critical Care and Emergency (N.G., S.P.), Spedali Civili University Hospital, Brescia, Italy
| | - Dikran Mardighian
- Department of Neuroradiology (D.M.), Spedali Civili University Hospital, Brescia, Italy
| | - Vittorio Semeraro
- Department of Radiology (V.S.), SS Annunziata Hospital, Taranto, Italy
| | - Giordano Nardin
- Department of Critical Care (G.N.), SS Annunziata Hospital, Taranto, Italy
| | - Emilio Lozupone
- Department of Neuroradiology (E.L.), Vito-Fazzi Hospital, Lecce, Italy
| | - Giafranco Paiano
- Department of Anaesthesia and Critical Care (G.P.), Vito-Fazzi Hospital, Lecce, Italy
| | - Edoardo Picetti
- Department of Anesthesia and Intensive Care (E.P., V.M., M.P), Parma University Hospital, Parma, Italy
| | - Vito Montanaro
- Department of Anesthesia and Intensive Care (E.P., V.M., M.P), Parma University Hospital, Parma, Italy
| | - Massimo Petranca
- Department of Anesthesia and Intensive Care (E.P., V.M., M.P), Parma University Hospital, Parma, Italy
| | - Carlo Bortolotti
- Department of Neurosurgery (C.B., A.S.), IRCCS Institute of Neurological Sciences "Bellaria," Bologna, Italy
| | - Antonino Scibilia
- Department of Neurosurgery (C.B., A.S.), IRCCS Institute of Neurological Sciences "Bellaria," Bologna, Italy
| | - Luigi Cirillo
- Department of Neuroradiology (L.C.), IRCCS Institute of Neurological Sciences "Bellaria," Bologna, Italy
| | - Raffaele Aspide
- Department of Neurointensive Care (R.A.), IRCCS Institute of Neurological Sciences "Bellaria," Bologna, Italy
| | | | - Alessandro Ambrosi
- Biostatistics, School of Medicine (A. Ambrosi), Vita-Salute San Raffaele University, Milan, Italy
| | - Pietro Mortini
- Department of Neurosurgery (P.P., P.M.), IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Luisa Azzolini
- Deparment of Neurocritical Care (M.L.A., M.R.C.), San Raffaele University Hospital, Milan, Italy
| | - Maria Rosa Calvi
- Deparment of Neurocritical Care (M.L.A., M.R.C.), San Raffaele University Hospital, Milan, Italy
| | - Andrea Falini
- From the Department of Neuroradiology (P.P., F.S., R.C., A. Falini), Division of Interventional Neuroradiology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
10
|
Riparbelli AC, Capion T, Møller K, Mathiesen TI, Olsen MH, Forsse A. Critical ICP thresholds in relation to outcome: Is 22 mmHg really the answer? Acta Neurochir (Wien) 2024; 166:63. [PMID: 38315234 PMCID: PMC10844356 DOI: 10.1007/s00701-024-05929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024]
Abstract
PURPOSE Intensive care for patients with traumatic brain injury (TBI) aims, among other tasks, at avoiding high intracranial pressure (ICP), which is perceived to worsen motor and cognitive deficits and increase mortality. International recommendations for threshold values for ICP were increased from 20 to 22 mmHg in 2016 following the findings in a study by Sorrentino et al., which were based on an observational study of patients with TBI of averaged ICP values. We aimed to reproduce their approach and validate the findings in a separate cohort. METHODS Three hundred thirty-one patients with TBI were included and categorised according to survival/death and favourable/unfavourable outcome at 6 months (based on Glasgow Outcome Score-Extended of 6-8 and 1-5, respectively). Repeated chi-square tests of survival and death (or favourable and unfavourable outcome) vs. high and low ICP were conducted with discrimination between high and low ICP sets at increasing values (integers) between 10 and 35 mmHg, using the average ICP for the entire monitoring period. The ICP limit returning the highest chi-square score was assumed to be the threshold with best discriminative ability. This approach was repeated after stratification by sex, age, and initial Glasgow Coma Score (GCS). RESULTS An ICP limit of 18 mmHg was found for both mortality and unfavourable outcome for the entire cohort. The female and the low GCS subgroups both had threshold values of 18 mmHg; for all other subgroups, the threshold varied between 16 and 30 mmHg. According to a multiple logistic regression analysis, age, initial GCS, and average ICP are independently associated with mortality and outcome. CONCLUSIONS Using identical methods and closely comparable cohorts, the critical thresholds for ICP found in the study by Sorrentino et al. could not be reproduced.
Collapse
Affiliation(s)
- Agnes C Riparbelli
- Department of Neurosurgery, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| | - Tenna Capion
- Department of Neurosurgery, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Kirsten Møller
- Department of Neuroanesthesiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences SUND, University of Copenhagen, Copenhagen, Denmark
| | - Tiit I Mathiesen
- Department of Neurosurgery, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences SUND, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Markus H Olsen
- Department of Neuroanesthesiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Axel Forsse
- Department of Neurosurgery, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
11
|
Gulamali F, Jayaraman P, Sawant AS, Desman J, Fox B, Chang A, Soong BY, Arivazaghan N, Reynolds AS, Duong SQ, Vaid A, Kovatch P, Freeman R, Hofer IS, Sakhuja A, Dangayach NS, Reich DS, Charney AW, Nadkarni GN. Derivation, External Validation and Clinical Implications of a deep learning approach for intracranial pressure estimation using non-cranial waveform measurements. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.30.24301974. [PMID: 38352556 PMCID: PMC10863000 DOI: 10.1101/2024.01.30.24301974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Importance Increased intracranial pressure (ICP) is associated with adverse neurological outcomes, but needs invasive monitoring. Objective Development and validation of an AI approach for detecting increased ICP (aICP) using only non-invasive extracranial physiological waveform data. Design Retrospective diagnostic study of AI-assisted detection of increased ICP. We developed an AI model using exclusively extracranial waveforms, externally validated it and assessed associations with clinical outcomes. Setting MIMIC-III Waveform Database (2000-2013), a database derived from patients admitted to an ICU in an academic Boston hospital, was used for development of the aICP model, and to report association with neurologic outcomes. Data from Mount Sinai Hospital (2020-2022) in New York City was used for external validation. Participants Patients were included if they were older than 18 years, and were monitored with electrocardiograms, arterial blood pressure, respiratory impedance plethysmography and pulse oximetry. Patients who additionally had intracranial pressure monitoring were used for development (N=157) and external validation (N=56). Patients without intracranial monitors were used for association with outcomes (N=1694). Exposures Extracranial waveforms including electrocardiogram, arterial blood pressure, plethysmography and SpO2. Main Outcomes and Measures Intracranial pressure > 15 mmHg. Measures were Area under receiver operating characteristic curves (AUROCs), sensitivity, specificity, and accuracy at threshold of 0.5. We calculated odds ratios and p-values for phenotype association. Results The AUROC was 0.91 (95% CI, 0.90-0.91) on testing and 0.80 (95% CI, 0.80-0.80) on external validation. aICP had accuracy, sensitivity, and specificity of 73.8% (95% CI, 72.0%-75.6%), 99.5% (95% CI 99.3%-99.6%), and 76.9% (95% CI, 74.0-79.8%) on external validation. A ten-percentile increment was associated with stroke (OR=2.12; 95% CI, 1.27-3.13), brain malignancy (OR=1.68; 95% CI, 1.09-2.60), subdural hemorrhage (OR=1.66; 95% CI, 1.07-2.57), intracerebral hemorrhage (OR=1.18; 95% CI, 1.07-1.32), and procedures like percutaneous brain biopsy (OR=1.58; 95% CI, 1.15-2.18) and craniotomy (OR = 1.43; 95% CI, 1.12-1.84; P < 0.05 for all). Conclusions and Relevance aICP provides accurate, non-invasive estimation of increased ICP, and is associated with neurological outcomes and neurosurgical procedures in patients without intracranial monitoring.
Collapse
Affiliation(s)
- Faris Gulamali
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- The Division of Data Driven and Digital Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Pushkala Jayaraman
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- The Division of Data Driven and Digital Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ashwin S. Sawant
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- The Division of Data Driven and Digital Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jacob Desman
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- The Division of Data Driven and Digital Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Benjamin Fox
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- The Division of Data Driven and Digital Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Annie Chang
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- The Division of Data Driven and Digital Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Brian Y. Soong
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Naveen Arivazaghan
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexandra S. Reynolds
- Department of Neurosurgery and Neurology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Son Q Duong
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- The Division of Data Driven and Digital Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Akhil Vaid
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- The Division of Data Driven and Digital Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Patricia Kovatch
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Robert Freeman
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ira S. Hofer
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- The Division of Data Driven and Digital Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ankit Sakhuja
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- The Division of Data Driven and Digital Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Neha S. Dangayach
- Department of Neurosurgery and Neurology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - David S. Reich
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexander W Charney
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Girish N. Nadkarni
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- The Division of Data Driven and Digital Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
12
|
Autio AH, Paavola J, Tervonen J, Lång M, Huuskonen TJ, Huttunen J, Kärkkäinen V, von Und Zu Fraunberg M, Lindgren AE, Koivisto T, Kurola J, Jääskeläinen JE, Kämäräinen OP. Should individual timeline and serial CT/MRI panels of all patients be presented in acute brain insult cohorts? A pilot study of 45 patients with decompressive craniectomy after aneurysmal subarachnoid hemorrhage. Acta Neurochir (Wien) 2023; 165:3299-3323. [PMID: 36715752 PMCID: PMC10624760 DOI: 10.1007/s00701-022-05473-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/20/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE Our review of acute brain insult articles indicated that the patients' individual (i) timeline panels with the defined time points since the emergency call and (ii) serial brain CT/MRI slice panels through the neurointensive care until death or final brain tissue outcome at 12 months or later are not presented. METHODS We retrospectively constructed such panels for the 45 aneurysmal subarachnoid hemorrhage (aSAH) patients with a secondary decompressive craniectomy (DC) after the acute admission to neurointensive care at Kuopio University Hospital (KUH) from a defined population from 2005 to 2018. The patients were indicated by numbers (1.-45.) in the pseudonymized panels, tables, results, and discussion. The timelines contained up to ten defined time points on a logarithmic time axis until death ([Formula: see text]; 56%) or 3 years ([Formula: see text]; 44%). The brain CT/MRI panels contained a representative slice from the following time points: SAH diagnosis, after aneurysm closure, after DC, at about 12 months (20 survivors). RESULTS The timelines indicated re-bleeds and allowed to compare the times elapsed between any two time points, in terms of workflow swiftness. The serial CT/MRI slices illustrated the presence and course of intracerebral hemorrhage (ICH), perihematomal edema, intraventricular hemorrhage (IVH), hydrocephalus, delayed brain injury, and, in the 20 (44%) survivors, the brain tissue outcome. CONCLUSIONS The pseudonymized timeline panels and serial brain imaging panels, indicating the patients by numbers, allowed the presentation and comparison of individual clinical courses. An obvious application would be the quality control in acute or elective medicine for timely and equal access to clinical care.
Collapse
Affiliation(s)
- Anniina H Autio
- Neurosurgery, NeuroCenter, Kuopio University Hospital, PL 100, 70029, Kuopio, Finland.
- Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Juho Paavola
- Neurosurgery, NeuroCenter, Kuopio University Hospital, PL 100, 70029, Kuopio, Finland
- Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Joona Tervonen
- Neurosurgery, NeuroCenter, Kuopio University Hospital, PL 100, 70029, Kuopio, Finland
- Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maarit Lång
- Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Neurointensive Care Unit, Kuopio University Hospital, Kuopio, Finland
| | - Terhi J Huuskonen
- Neurosurgery, NeuroCenter, Kuopio University Hospital, PL 100, 70029, Kuopio, Finland
- Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jukka Huttunen
- Neurosurgery, NeuroCenter, Kuopio University Hospital, PL 100, 70029, Kuopio, Finland
- Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Virve Kärkkäinen
- Neurosurgery, NeuroCenter, Kuopio University Hospital, PL 100, 70029, Kuopio, Finland
| | - Mikael von Und Zu Fraunberg
- Neurosurgery, NeuroCenter, Kuopio University Hospital, PL 100, 70029, Kuopio, Finland
- Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Neurosurgery, Oulu University Hospital, Oulu, Finland
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
| | - Antti E Lindgren
- Neurosurgery, NeuroCenter, Kuopio University Hospital, PL 100, 70029, Kuopio, Finland
- Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Timo Koivisto
- Neurosurgery, NeuroCenter, Kuopio University Hospital, PL 100, 70029, Kuopio, Finland
- Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jouni Kurola
- Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Center for Prehospital Emergency Care, Kuopio University Hospital, Kuopio, Finland
| | - Juha E Jääskeläinen
- Neurosurgery, NeuroCenter, Kuopio University Hospital, PL 100, 70029, Kuopio, Finland
- Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Olli-Pekka Kämäräinen
- Neurosurgery, NeuroCenter, Kuopio University Hospital, PL 100, 70029, Kuopio, Finland
- Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
13
|
Brasil S, de Carvalho Nogueira R, Salinet ÂSM, Yoshikawa MH, Teixeira MJ, Paiva W, Malbouisson LMS, Bor-Seng-Shu E, Panerai RB. Critical Closing Pressure and Cerebrovascular Resistance Responses to Intracranial Pressure Variations in Neurocritical Patients. Neurocrit Care 2023; 39:399-410. [PMID: 36869208 PMCID: PMC10541829 DOI: 10.1007/s12028-023-01691-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/31/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Critical closing pressure (CrCP) and resistance-area product (RAP) have been conceived as compasses to optimize cerebral perfusion pressure (CPP) and monitor cerebrovascular resistance, respectively. However, for patients with acute brain injury (ABI), the impact of intracranial pressure (ICP) variability on these variables is poorly understood. The present study evaluates the effects of a controlled ICP variation on CrCP and RAP among patients with ABI. METHODS Consecutive neurocritical patients with ICP monitoring were included along with transcranial Doppler and invasive arterial blood pressure monitoring. Internal jugular veins compression was performed for 60 s for the elevation of intracranial blood volume and ICP. Patients were separated in groups according to previous intracranial hypertension severity, with either no skull opening (Sk1), neurosurgical mass lesions evacuation, or decompressive craniectomy (DC) (patients with DC [Sk3]). RESULTS Among 98 included patients, the correlation between change (Δ) in ICP and the corresponding ΔCrCP was strong (group Sk1 r = 0.643 [p = 0.0007], group with neurosurgical mass lesions evacuation r = 0.732 [p < 0.0001], and group Sk3 r = 0.580 [p = 0.003], respectively). Patients from group Sk3 presented a significantly higher ΔRAP (p = 0.005); however, for this group, a higher response in mean arterial pressure (change in mean arterial pressure p = 0.034) was observed. Exclusively, group Sk1 disclosed reduction in ICP before internal jugular veins compression withholding. CONCLUSIONS This study elucidates that CrCP reliably changes in accordance with ICP, being useful to indicate ideal CPP in neurocritical settings. In the early days after DC, cerebrovascular resistance seems to remain elevated, despite exacerbated arterial blood pressure responses in efforts to maintain CPP stable. Patients with ABI with no need of surgical procedures appear to remain with more effective ICP compensatory mechanisms when compared with those who underwent neurosurgical interventions.
Collapse
Affiliation(s)
- Sérgio Brasil
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil.
| | - Ricardo de Carvalho Nogueira
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| | - Ângela Salomão Macedo Salinet
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| | - Márcia Harumy Yoshikawa
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| | - Manoel Jacobsen Teixeira
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| | - Wellingson Paiva
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| | | | - Edson Bor-Seng-Shu
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, School of Life Sciences, University of Leicester, Leicester, UK
- National Institute for Health and Care Research, Cardiovascular Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
| |
Collapse
|
14
|
Brasil S, Godoy DA, Paiva WS. Doing More with Less on Intracranial Pressure Monitoring. World Neurosurg 2023; 178:93-95. [PMID: 37482089 DOI: 10.1016/j.wneu.2023.07.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Intracranial pressure (ICP) management based on predetermined thresholds is not accurate in light of recent research on cerebrovascular physiology. Interpersonal and intrapersonal variations will lead ICP elevations to reach individualized thresholds for intracranial compliance impairment from one subject to another. Therefore reuniting the modern techniques of neuromonitoring besides ICP enables practitioners to have a more whole picture in anticipating neuro worsening and improving timing in decision making. METHODS Brief literature review. RESULTS For the severely brain-injured patient, current evidence indicates a personalized and physiology-based multimodal monitoring care to be required rather than decision making according to ICP predetermined cut-offs. CONCLUSIONS The authors' point of view is of particular importance for regions with resource heterogeneity and scarcity, where ICP monitoring is not available for all those in need and noninvasive techniques may provide a surrogate approach. If physicians who deal with acute-brain-injured patients in lower-resource areas understand that several tools besides ICP may improve their practice, it is possible to reduce acute brain injury morbimortality.
Collapse
Affiliation(s)
- Sérgio Brasil
- Division of Neurosurgery, Department of Neurology, School of Medicine University of São Paulo, São Paulo, Brazil.
| | - Daniel A Godoy
- Medical Director of Neurointensive Care Unit, Sanatório Pasteur, Catamarca, Argentina
| | - Wellingson S Paiva
- Division of Neurosurgery, Department of Neurology, School of Medicine University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Brasil S, Godoy DA. A new noninvasive method can effectively assess intracranial compliance. Letter to the Editor. Acta Neurochir (Wien) 2023; 165:2213-2214. [PMID: 37217760 PMCID: PMC10409651 DOI: 10.1007/s00701-023-05644-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023]
Affiliation(s)
- Sérgio Brasil
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil.
| | | |
Collapse
|
16
|
Godoy DA, Brasil S, Iaccarino C, Paiva W, Rubiano AM. The intracranial compartmental syndrome: a proposed model for acute brain injury monitoring and management. Crit Care 2023; 27:137. [PMID: 37038236 PMCID: PMC10088257 DOI: 10.1186/s13054-023-04427-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/02/2023] [Indexed: 04/12/2023] Open
Abstract
For decades, one of the main targets in the management of severe acute brain injury (ABI) has been intracranial hypertension (IH) control. However, the determination of IH has suffered variations in its thresholds over time without clear evidence for it. Meanwhile, progress in the understanding of intracranial content (brain, blood and cerebrospinal fluid) dynamics and recent development in monitoring techniques suggest that targeting intracranial compliance (ICC) could be a more reliable approach rather than guiding actions by predetermined intracranial pressure values. It is known that ICC impairment forecasts IH, as intracranial volume may rapidly increase inside the skull, a closed bony box with derisory expansibility. Therefore, an intracranial compartmental syndrome (ICCS) can occur with deleterious brain effects, precipitating a reduction in brain perfusion, thereby inducing brain ischemia. The present perspective review aims to discuss the ICCS concept and suggest an integrative model for the combination of modern invasive and noninvasive techniques for IH and ICC assessment. The theory and logic suggest that the combination of multiple ancillary methods may enhance ICC impairment prediction, pointing proactive actions and improving patient outcomes.
Collapse
Affiliation(s)
| | - Sérgio Brasil
- Experimental Surgery Laboratory and Division of Neurological Surgery, University of São Paulo Medical School, Av. Eneas de Carvalho Aguiar 255, Sao Paulo, Brazil.
| | - Corrado Iaccarino
- Department of Biomedical, Metabolic and Neural Sciences, University Modena and Reggio Emilia, Modena, Italy
- Department of Neurosurgery, University Hospital of Modena, Modena, Italy
- Emergency Neurosurgery, AUSLRE IRCCS, Reggio Emilia, Italy
| | - Wellingson Paiva
- Experimental Surgery Laboratory and Division of Neurological Surgery, University of São Paulo Medical School, Av. Eneas de Carvalho Aguiar 255, Sao Paulo, Brazil
| | - Andres M Rubiano
- Universidad El Bosque. Bogotá, Bogotá, Colombia
- MEDITECH Foundation, Cali, Colombia
| |
Collapse
|
17
|
Brasil S, Frigieri G, Taccone FS, Robba C, Solla DJF, de Carvalho Nogueira R, Yoshikawa MH, Teixeira MJ, Malbouisson LMS, Paiva WS. Noninvasive intracranial pressure waveforms for estimation of intracranial hypertension and outcome prediction in acute brain-injured patients. J Clin Monit Comput 2022; 37:753-760. [PMID: 36399214 PMCID: PMC9673225 DOI: 10.1007/s10877-022-00941-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022]
Abstract
Analysis of intracranial pressure waveforms (ICPW) provides information on intracranial compliance. We aimed to assess the correlation between noninvasive ICPW (NICPW) and invasively measured intracranial pressure (ICP) and to assess the NICPW prognostic value in this population. In this cohort, acute brain-injured (ABI) patients were included within 5 days from admission in six Intensive Care Units. Mean ICP (mICP) values and the P2/P1 ratio derived from NICPW were analyzed and correlated with outcome, which was defined as: (a) early death (ED); survivors on spontaneous breathing (SB) or survivors on mechanical ventilation (MV) at 7 days from inclusion. Intracranial hypertension (IHT) was defined by ICP > 20 mmHg. A total of 72 patients were included (mean age 39, 68% TBI). mICP and P2/P1 values were significantly correlated (r = 0.49, p < 0.001). P2/P1 ratio was significantly higher in patients with IHT and had an area under the receiving operator curve (AUROC) to predict IHT of 0.88 (95% CI 0.78–0.98). mICP and P2/P1 ratio was also significantly higher for ED group (n = 10) than the other groups. The AUROC of P2/P1 to predict ED was 0.71 [95% CI 0.53–0.87], and the threshold P2/P1 > 1.2 showed a sensitivity of 60% [95% CI 31–83%] and a specificity of 69% [95% CI 57–79%]. Similar results were observed when decompressive craniectomy patients were excluded. In this study, P2/P1 derived from noninvasive ICPW assessment was well correlated with IHT. This information seems to be as associated with ABI patients outcomes as ICP. Trial registration: NCT03144219, Registered 01 May 2017 Retrospectively registered, https://www.clinicaltrials.gov/ct2/show/NCT03144219.
Collapse
Affiliation(s)
- Sérgio Brasil
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, 255 Enéas Aguiar Street, São Paulo, 05403000 Brazil
| | - Gustavo Frigieri
- Medical Investigation Laboratory 62, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hôpital, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Chiara Robba
- Department of Intensive Care, Universitá degli Studi di Genoa, Genoa, Italy
| | - Davi Jorge Fontoura Solla
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, 255 Enéas Aguiar Street, São Paulo, 05403000 Brazil
| | - Ricardo de Carvalho Nogueira
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, 255 Enéas Aguiar Street, São Paulo, 05403000 Brazil
| | - Marcia Harumy Yoshikawa
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, 255 Enéas Aguiar Street, São Paulo, 05403000 Brazil
| | - Manoel Jacobsen Teixeira
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, 255 Enéas Aguiar Street, São Paulo, 05403000 Brazil
| | | | - Wellingson Silva Paiva
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, 255 Enéas Aguiar Street, São Paulo, 05403000 Brazil
| |
Collapse
|
18
|
Brasil S. Intracranial pressure pulse morphology: the missing link? Intensive Care Med 2022; 48:1667-1669. [PMID: 36038714 PMCID: PMC9592648 DOI: 10.1007/s00134-022-06855-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Sérgio Brasil
- Division of Neurosurgery, Department of Neurology, University of São Paulo School of Medicine, 255 Enéas Aguiar Street, São Paulo, 05403000, Brazil.
| |
Collapse
|