1
|
Wang X, Cheng M, Chen S, Zhang C, Ling R, Qiu S, Chen K, Zhou B, Li Q, Lei W, Chen D. Resistance to anti-LAG-3 plus anti-PD-1 therapy in head and neck cancer is mediated by Sox9+ tumor cells interaction with Fpr1+ neutrophils. Nat Commun 2025; 16:3975. [PMID: 40295483 DOI: 10.1038/s41467-025-59050-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Relatlimab and nivolumab combination therapy shows significant efficacy in treating various types of cancer. Current research on the molecular mechanisms of this treatment is abundant, but in-depth investigations into post-treatment resistance remain notably lacking. In this study, we identify significant enrichment of SRY (sex determining region Y)-box 9 (Sox9)+ tumor cells in resistant samples using single cell RNA sequencing (scRNAseq) in a head and neck squamous cell carcinoma (HNSCC) mouse model. In addition, Sox9 directly regulates the expression of annexin A1 (Anxa1), mediating apoptosis of formyl peptide receptor 1 (Fpr1)+ neutrophils through the Anxa1-Fpr1 axis, which promotes mitochondrial fission, inhibits mitophagy by downregulating BCL2/adenovirus E1B interacting protein 3 (Bnip3) expression and ultimately prevents the accumulation of neutrophils in tumor tissues. The reduction of Fpr1+ neutrophils impairs the infiltration and tumor cell-killing ability of cytotoxic Cd8 T and γδT cells within the tumor microenvironment, thereby leading to the development of resistance to the combination therapy. We further validate these findings using various transgenic mouse models. Overall, this study comprehensively explains the mechanisms underlying resistance to the anti-LAG-3 plus anti-PD-1 combination therapy and identifies potential therapeutic targets to overcome this resistance.
Collapse
Affiliation(s)
- Xiaocheng Wang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Maosheng Cheng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuang Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Caihua Zhang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rongsong Ling
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuqing Qiu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ke Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Qiuli Li
- Department of Head and Neck Surgery, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Wenbin Lei
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Demeng Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
2
|
Al-Ali HN, Crichton SJ, Fabian C, Pepper C, Butcher DR, Dempsey FC, Parris CN. A therapeutic antibody targeting annexin-A1 inhibits cancer cell growth in vitro and in vivo. Oncogene 2024; 43:608-614. [PMID: 38200229 PMCID: PMC10873194 DOI: 10.1038/s41388-023-02919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024]
Abstract
In this study we conducted the first investigation to assess the efficacy of a novel therapeutic antibody developed to target annexin-A1 (ANXA1). ANXA1 is an immunomodulatory protein which has been shown to be overexpressed in, and promote the development and progression of, several cancer types. In particular, high ANXA1 expression levels correlate with poorer overall survival in pancreatic and triple-negative breast cancers, two cancers with considerable unmet clinical need. MDX-124 is a humanised IgG1 monoclonal antibody which specifically binds to ANXA1 disrupting its interaction with formyl peptide receptors 1 and 2 (FPR1/2). Here we show that MDX-124 significantly reduced proliferation (p < 0.013) in a dose-dependent manner across a panel of human cancer cell lines expressing ANXA1. The anti-proliferative effect of MDX-124 is instigated by arresting cell cycle progression with cancer cells accumulating in the G1 phase of the cell cycle. Furthermore, MDX-124 significantly inhibited tumour growth in both the 4T1-luc triple-negative breast and Pan02 pancreatic cancer syngeneic mouse models (p < 0.0001). These findings suggest ANXA1-targeted therapy is a viable and innovative approach to treat tumours which overexpress ANXA1.
Collapse
Affiliation(s)
- Hussein N Al-Ali
- Anglia Ruskin University, School of Life Science, Faculty of Science and Engineering, East Road, Cambridge, CB1 1PT, UK
| | - Scott J Crichton
- Medannex Ltd, 1 Lochrin Square, 92-98 Fountainbridge, Edinburgh, Scotland, EH3 9QA, UK
| | - Charlene Fabian
- Medannex Ltd, 1 Lochrin Square, 92-98 Fountainbridge, Edinburgh, Scotland, EH3 9QA, UK
| | - Chris Pepper
- Brighton and Sussex Medical School, Medical Research Building, Falmer, Brighton, BN1 9PX, UK
| | - David R Butcher
- Anglia Ruskin University, School of Life Science, Faculty of Science and Engineering, East Road, Cambridge, CB1 1PT, UK
| | - Fiona C Dempsey
- Medannex Ltd, 1 Lochrin Square, 92-98 Fountainbridge, Edinburgh, Scotland, EH3 9QA, UK
| | - Christopher N Parris
- Anglia Ruskin University, School of Life Science, Faculty of Science and Engineering, East Road, Cambridge, CB1 1PT, UK.
| |
Collapse
|
3
|
Prates J, Moreli JB, Gimenes AD, Biselli JM, Pires D'Avila SCG, Sandri S, Farsky SHP, Rodrigues-Lisoni FC, Oliani SM. Cisplatin treatment modulates Annexin A1 and inhibitor of differentiation to DNA 1 expression in cervical cancer cells. Biomed Pharmacother 2020; 129:110331. [PMID: 32768930 DOI: 10.1016/j.biopha.2020.110331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/19/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cisplatin (Cis) is a choice chemotherapy approach to cervical cancer by inducing DNA adducts and subsequent apoptosis. We have investigated the effects of Cis on Annexin A1 (ANXA1) and inhibitor of DNA binding 1 (ID1) proteins expression to elucidate further mechanisms of Cis actions. Human cervical tissue samples from twenty-four patients, with Cervical Intraepithelial Neoplasia (CIN, stage I, II and III), were evaluated to quantified ANXA1 and ID1 expressions. In vitro, human epidermoid carcinoma of the cervix (SiHa cell line) were treated with Annexin A1 peptide (ANXA12-26), Cis or Cis + ANXA12-26 to evaluate cell proliferation and migration, cytotoxicity of treatments as well as ANXA1 and ID1 modulations by mRNA and protein expression. Our findings showed expression of ID1 and ANXA1 proteins in tissue samples from Cervical Intraepithelial Neoplasia (CIN) patients, with intense immunological identification of ID1 in the CIN III stage. In SiHa cells, treatments with Cis alone or Cis + ANXA12-26, increase mRNA expressions of the ANXA1 and reduced the ID1. In agreement, Cis + ANXA12-26 enhanced ANXA1 protein expression and Cis or Cis + ANXA12-26 abolished ID1 protein expression. Cell proliferation was reduced after treatment with ANXA12-26 peptide and more significant after Cis or Cis + ANXA12-26 treatments. These two last treatments reduced cell viability, by inducing late apoptosis, and impaired cell migration. Together, our data highlight endogenous ANXA1 is involved in Cis therapy for cervical cancer.
Collapse
Affiliation(s)
- Janesly Prates
- São Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, SP, Brazil
| | - Jusciéle Brogin Moreli
- Universidade Federal de São Paulo - UNIFESP, Post-Graduation in Structural and Functional Biology, SP, Brazil; Faceres School of Medicine, São José do Rio Preto, SP, Brazil
| | - Alexandre Dantas Gimenes
- Universidade Federal de São Paulo - UNIFESP, Post-Graduation in Structural and Functional Biology, SP, Brazil
| | - Joice Matos Biselli
- São Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, SP, Brazil
| | | | - Silvana Sandri
- São Paulo University (USP), Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, São Paulo, Brazil
| | - Sandra Helena Poliselli Farsky
- São Paulo University (USP), Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, São Paulo, Brazil
| | - Flávia Cristina Rodrigues-Lisoni
- São Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, SP, Brazil; São Paulo State University (Unesp), Ilha Solteira School of Engineering (FEIS), Campus Ilha Solteira, SP, Brazil
| | - Sonia Maria Oliani
- São Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, SP, Brazil; Universidade Federal de São Paulo - UNIFESP, Post-Graduation in Structural and Functional Biology, SP, Brazil.
| |
Collapse
|
4
|
Yuzhalin AE, Lim SY, Gordon-Weeks AN, Fischer R, Kessler BM, Yu D, Muschel RJ. Proteomics analysis of the matrisome from MC38 experimental mouse liver metastases. Am J Physiol Gastrointest Liver Physiol 2019; 317:G625-G639. [PMID: 31545917 PMCID: PMC6879896 DOI: 10.1152/ajpgi.00014.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 01/31/2023]
Abstract
Dissemination of primary tumors to distant anatomical sites has a substantial negative impact on patient prognosis. The liver is a common site for metastases from colorectal cancer, and patients with hepatic metastases have generally much shorter survival, raising a need to develop and implement novel strategies for targeting metastatic disease. The extracellular matrix (ECM) is a meshwork of highly crosslinked, insoluble high-molecular-mass proteins maintaining tissue integrity and establishing cell-cell interactions. Emerging evidence identifies the importance of the ECM in cancer cell migration, invasion, intravasation, and metastasis. Here, we isolated the ECM from MC38 mouse liver metastases using our optimized method of mild detergent solubilization followed by biochemical enrichment. The matrices were subjected to label-free quantitative mass spectrometry analysis, revealing proteins highly abundant in the metastatic matrisome. The resulting list of proteins upregulated in the ECM significantly predicted survival in patients with colorectal cancer but not other cancers with strong involvement of the ECM component. One of the proteins upregulated in liver metastatic ECM, annexin A1, was not previously studied in the context of cancer-associated matrisome. Here, we show that annexin A1 was markedly upregulated in colon cancer cell lines compared with cancer cells of other origin and also over-represented in human primary colorectal lesions, as well as hepatic metastases, compared with their adjacent healthy tissue counterparts. In conclusion, our study provides a comprehensive ECM characterization of MC38 experimental liver metastases and proposes annexin A1 as a putative target for this disease.NEW & NOTEWORTHY Here, the authors provide an extensive proteomics characterization of murine colorectal cancer liver metastasis matrisome (the ensemble of all extracellular matrix molecules). The findings presented in this study may enable identification of therapeutic targets or biomarkers of hepatic metastases.
Collapse
Affiliation(s)
- Arseniy E Yuzhalin
- Cancer Research United Kingdom/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Su Yin Lim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Alex N Gordon-Weeks
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ruth J Muschel
- Cancer Research United Kingdom/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Zhuang C, Wang P, Sun T, Zheng L, Ming L. Expression levels and prognostic values of annexins in liver cancer. Oncol Lett 2019; 18:6657-6669. [PMID: 31807177 PMCID: PMC6876331 DOI: 10.3892/ol.2019.11025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023] Open
Abstract
Annexins are a superfamily of calcium-dependent phospholipid-binding proteins that are implicated in a wide range of biological processes. The annexin superfamily comprises 13 members in humans (ANXAs), the majority of which are frequently dysregulated in cancer. However, the expression patterns and prognostic values of ANXAs in liver cancer are currently largely unknown. The present study aimed to analyze the expression levels of ANXAs and survival data in patients with liver cancer from the Oncomine, GEPIA, Kaplan-Meier plotter and cBioPortal for Cancer Genomics databases. The results demonstrated that ANXA1, A2, A3, A4 and A5 were upregulated, whereas ANXA10 was downregulated in liver cancer compared with normal liver tissues. The expression of ANXA10 was associated with pathological stage. High expression levels of ANXA2 and A5 were significantly associated with poor overall survival (OS) rate whereas ANXA7 and A10 were associated with increased OS. The prognostic values of ANXAs in liver cancer were determined based on sex and clinical stage, which revealed that ANXA2, A5, A7 and A10 were associated with OS in male, but not in female patients. In addition, the potential biological functions of ANXAs were identified by Gene Ontology functional annotation and Kyoto Encyclopedia of Genes Genomes pathway analysis; the results demonstrated that ANXAs may serve a role in liver cancer through the neuroactive ligand-receptor interaction pathway. In conclusion, the results of the present study suggested that ANXA1, A2, A3, A4, A5 and A10 may be potential therapeutic targets for liver cancer treatment, and that ANXA2, A5, A7 and A10 may be potential prognostic biomarkers of liver cancer.
Collapse
Affiliation(s)
- Chunbo Zhuang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Pei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ting Sun
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lei Zheng
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Liang Ming
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
6
|
Cai T, Guan X, Wang H, Fang Y, Long J, Xie X, Zhang Y. MicroRNA-26a regulates ANXA1, rather than DAL-1, in the development of lung cancer. Oncol Lett 2018; 15:5893-5902. [PMID: 29552220 DOI: 10.3892/ol.2018.8048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/26/2018] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to investigate the expression and role of microRNA-26a (miR-26a) in lung cancer, and to verify whether differentially expressed in adenocarcinoma of the lung (DAL-1) is the target protein of miR-26a. mRNA expression levels of miR-26a and DAL-1 were detected using reverse transcription-quantitative polymerase chain reaction. Protein expression levels of DAL-1 and annexin A1 (ANXA1) were evaluated by western blot analysis. Cell Counting Kit-8, Transwell and wound scratch healing assays were used to characterize the function of miR-26a in lung cancer cells. The association of DAL-1 with miR-26a or ANXA1 was determined by dual-luciferase reporter or two-dimensional gel electrophoresis assays. miR-26a revealed decreased expression levels in lung cancer tissues compared with normal lung tissues, and decreased expression levels in lung cancer cells compared with 16HBE cells. Inhibition of miR-26a promoted lung cancer cell growth, migration and invasion. The DAL-1 protein exhibited downregulated expression levels in lung cancer tissues. DAL-1 was not the direct target gene of miR-26a. The two-dimensional gel electrophoresis assay confirmed that DAL-1 and ANXA1 were associated proteins. Expression levels of the ANXA1 protein were increased following DAL-1 gene silencing. The altered expression level of miR-26a affected the expression of ANXA1, and not of DAL-1. miR-26a demonstrated decreased expression levels in lung cancer cells, and it has an important effect on the biological function of lung cancer cells. However, DAL-1 was not a target gene of miR-26a. As a DAL-1 associated protein, ANXA1 was regulated by miR-26a.
Collapse
Affiliation(s)
- Tonghui Cai
- Department of Pathology, Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China.,Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xiaoying Guan
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Hongyan Wang
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Ying Fang
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jie Long
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xiaobin Xie
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Yajie Zhang
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| |
Collapse
|
7
|
Annexin A13 promotes tumor cell invasion in vitro and is associated with metastasis in human colorectal cancer. Oncotarget 2017; 8:21663-21673. [PMID: 28423508 PMCID: PMC5400614 DOI: 10.18632/oncotarget.15523] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 01/27/2017] [Indexed: 01/16/2023] Open
Abstract
Purpose Aberrantly upregulated expression of selected members of annexin, a group of calcium- and membrane-binding proteins, have been found to be associated with metastasis, poor prognosis, and other clinical characteristics in colorectal cancer (CRC), the third most diagnosed cancer. However, ANXA13 (encoding protein annexin A13), the original founder gene of the annexin A family, has not been studied carefully as a potential prognostic biomarker in CRC. Methods The protein level of annexin A13 was determined by western blot in a panel of CRC cell lines. Tumor cell invasion was determined by a Matrigel in vitro invasion assay in selected CRC cells with either upregulated (via plasmid transfection) or downregulated (via siRNA treatment) expression of ANXA13. The clinicopathological features and prognostic values associated with ANXA13 expression were also evaluated in a group of 125 CRC patients. Results ANXA13 was expressed at a high level in HCT116 and HT29 cells but undetected or at a lower level in SW620, SW48, and Rko cells. CRC cell invasion was promoted by ANXA13 overexpression in SW620 or Rko cells and was reduced by ANXA13 downregulation in HCT116 or HT29 cells. In CRC patients, ANXA13 expression levels correlated with lymph node metastasis and were associated with poor overall survival. Conclusions ANXA13 is associated with CRC cell invasion in vitro, and with lymph node metastasis and poor survival in CRC patients. Our results indicate that ANXA13 can be exploited as a biomarker for its diagnostic and prognostic values.
Collapse
|
8
|
Onozawa H, Saito M, Saito K, Kanke Y, Watanabe Y, Hayase S, Sakamoto W, Ishigame T, Momma T, Ohki S, Takenoshita S. Annexin A1 is involved in resistance to 5-FU in colon cancer cells. Oncol Rep 2016; 37:235-240. [PMID: 27840982 DOI: 10.3892/or.2016.5234] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/24/2016] [Indexed: 11/06/2022] Open
Abstract
Resistance to 5-fluorouracil (5‑FU), a key drug in the treatment of colorectal cancer, is one of the major reasons for poor patient prognosis during cancer treatment. Annexin A1 (ANXA1) is a calcium‑dependent phospholipid‑linked protein that is associated with drug resistance, anti‑inflammatory effects, regulation of cellular differentiation, proliferation and apoptosis. Although there have been several studies investigating ANXA1 expression in drug resistant cells, the role of ANXA1 is yet to be fully understood. We therefore, in this study, generated SW480 cells resistant to 5‑FU (SW480/5‑FU) to evaluate ANXA1 expression. When compared to the control cells, ANXA1 expression was significantly induced in the SW480/5‑FU cells. We then revealed the role of ANXA1 expression in 5‑FU resistance by using overexpression and knockdown methods in colon cancer cells. Overexpression of ANXA1 induced a significant increase of cell viability to 5‑FU, whereas ANXA1 knockdown induced a significant decrease of cell viability to 5‑FU. Further experiments revealed that ANXA1 expression was induced by hypoxia in colon cancer cells. These results suggest that ANXA1 expression may play a critical role in 5‑FU resistance and may be induced by hypoxia during cancer progression. Our results provide a possible strategy to overcome 5‑FU resistance by modulating ANXA1 expression.
Collapse
Affiliation(s)
- Hisashi Onozawa
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Motonobu Saito
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Katsuharu Saito
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Yasuyuki Kanke
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Yohei Watanabe
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Suguru Hayase
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Wataru Sakamoto
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Teruhide Ishigame
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Tomoyuki Momma
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Shinji Ohki
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Seiichi Takenoshita
- Department of Organ Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| |
Collapse
|