1
|
Klocke B, Britzolaki A, Saurine J, Ott H, Krone K, Bahamonde K, Thelen C, Tzimas C, Sanoudou D, Kranias EG, Pitychoutis PM. A novel role for phospholamban in the thalamic reticular nucleus. Sci Rep 2024; 14:6376. [PMID: 38493225 PMCID: PMC10944534 DOI: 10.1038/s41598-024-56447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
The thalamic reticular nucleus (TRN) is a brain region that influences vital neurobehavioral processes, including executive functioning and the generation of sleep rhythms. TRN dysfunction underlies hyperactivity, attention deficits, and sleep disturbances observed across various neurodevelopmental disorders. A specialized sarco-endoplasmic reticulum calcium (Ca2+) ATPase 2 (SERCA2)-dependent Ca2+ signaling network operates in the dendrites of TRN neurons to regulate their bursting activity. Phospholamban (PLN) is a prominent regulator of SERCA2 with an established role in myocardial Ca2+-cycling. Our findings suggest that the role of PLN extends beyond the cardiovascular system to impact brain function. Specifically, we found PLN to be expressed in TRN neurons of the adult mouse brain, and utilized global constitutive and innovative conditional genetic knockout mouse models in concert with electroencephalography (EEG)-based somnography and the 5-choice serial reaction time task (5-CSRTT) to investigate the role of PLN in sleep and executive functioning, two complex behaviors that map onto thalamic reticular circuits. The results of the present study indicate that perturbed PLN function in the TRN results in aberrant TRN-dependent phenotypes in mice (i.e., hyperactivity, impulsivity and sleep deficits) and support a novel role for PLN as a critical regulator of SERCA2 in the TRN neurocircuitry.
Collapse
Affiliation(s)
- Benjamin Klocke
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Aikaterini Britzolaki
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Joseph Saurine
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Hayden Ott
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Kylie Krone
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Kiara Bahamonde
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Connor Thelen
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Christos Tzimas
- Molecular Biology Department, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
| | - Despina Sanoudou
- Molecular Biology Department, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, "Attikon" Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Evangelia G Kranias
- Molecular Biology Department, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Pothitos M Pitychoutis
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA.
| |
Collapse
|
2
|
Klocke B, Britzolaki A, Saurine J, Ott H, Krone K, Bahamonde K, Thelen C, Tzimas C, Sanoudou D, Kranias EG, Pitychoutis PM. A Novel Role for Phospholamban in the Thalamic Reticular Nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568306. [PMID: 38045420 PMCID: PMC10690257 DOI: 10.1101/2023.11.22.568306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The thalamic reticular nucleus (TRN) is a critical brain region that greatly influences vital neurobehavioral processes, including executive functioning and the generation of sleep rhythms. Recently, TRN dysfunction was suggested to underlie hyperactivity, attention deficits, and sleep disturbances observed across various devastating neurodevelopmental disorders, including autism, schizophrenia and attention-deficit/hyperactivity disorder (ADHD). Notably, a highly specialized sarco- endoplasmic reticulum calcium (Ca 2+ ) ATPase 2 (SERCA2)-dependent Ca 2+ signaling network operates in the dendrites of TRN neurons to regulate their high-frequency bursting activity. Phospholamban (PLN) is a prominent regulator of the SERCA2 with an established role in maintaining Ca 2+ homeostasis in the heart; although the interaction of PLN with SERCA2 has been largely regarded as cardiac-specific, our findings challenge this view and suggest that the role of PLN extends beyond the cardiovascular system to impact brain function. Specifically, we found PLN to be expressed in the TRN neurons of the adult mouse brain and utilized global constitutive and innovative conditional genetic mouse models, in combination with 5-choice serial reaction time task (5-CSRTT) and electroencephalography (EEG)-based somnography to assess the role of PLN in regulating executive functioning and sleep, two complex behaviors that map onto thalamic reticular circuits. Overall, the results of the present study show that perturbed PLN function in the TRN results in aberrant thalamic reticular behavioral phenotypes in mice (i.e., hyperactivity, impulsivity and sleep deficits) and support a novel role for PLN as a critical regulator of the SERCA2 in the thalamic reticular neurocircuitry.
Collapse
|
3
|
Targeted Sequencing Analysis of the Leptin Receptor Gene Identifies Variants Associated with Obstructive Sleep Apnoea in Chinese Han Population. Lung 2019; 197:577-584. [PMID: 31372721 PMCID: PMC6778532 DOI: 10.1007/s00408-019-00254-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Obstructive sleep apnea (OSA) is a common sleep disorder that is influenced by various environmental and genetic factors. The potential associations of leptin and leptin receptor (LEPR) polymorphisms with OSA have been studied in different populations; however, the results remain inconclusive. The aim of this study was to examine the association between LEPR gene polymorphisms and OSA risk. METHODS A total of 322 samples were used, including 226 OSA subjects and 96 controls. Targeted sequencing of the entire LEPR gene was performed in all subjects. Polysomnography was used to diagnose obstructive sleep apnea. The associations between variants and OSA were determined by multivariate regression analyses. RESULTS Four single-nucleotide polymorphisms of LEPR were identified in all subjects. The genotype frequency of locus rs3790435 was significantly different between the OSA and control groups. Specifically, the variant genotype rs3790435 CC in LEPR was associated with a lower risk of OSA (OR 0.462, 95% CI 0.250-0.854, p = 0.014) in a recessive model after controlling for potential confounders. After BMI stratification, obese patients with this variant genotype were found to have a lower risk of developing OSA. Moreover, subjects with the rs3790435 CC genotype were found to have a statistically lower apnea-hypopnea index (AHI) and higher nadir oxygen saturation than the TT/CC genotypes without differences in plasma leptin levels. CONCLUSIONS Our study identified a novel variant of LEPR in patients with OSA, and specifically found an association between rs3790435 polymorphisms and OSA risk in Chinese Han subjects.
Collapse
|
4
|
Abstract
Leptin is a peptide hormone produced mainly in white adipose tissue. It is known to regulate energy homeostasis, inflammation, metabolism, and sympathetic nerve activity. Increasing evidence suggests it has a role in ventilatory function and upper airway obstruction. Leptin levels correlate positively with measurements of adiposity and can potentially provide important insights into the pathophysiology of diseases associated with obesity. Obesity is a strong risk factor for obstructive sleep apnea, a disease characterized by periodic upper airway occlusion during sleep. The neuromuscular activity that maintains upper airway patency during sleep and the anatomy of upper airway are key factors involved in its pathogenesis. Experimental studies using animal models of a low leptin state such as leptin deficiency have shown that leptin regulates sleep architecture, upper airway patency, ventilatory function, and hypercapnic ventilatory response. However, findings from human studies do not consistently support the data from the animal models. The effect of leptin on the pathophysiology of obstructive sleep apnea is being investigated, but the results of studies have been confounded by leptin's diurnal variation and the short-term effects of feeding, adiposity, age, and sex. Improved study design and methods of assessing functional leptin levels, specifically their central versus peripheral effects, will improve understanding of the role of leptin in sleep apnea.
Collapse
|
5
|
Abstract
Sleep and its disorders are known to affect the functions of essential organs and systems in the body. However, very little is known about how the blood-brain barrier (BBB) is regulated. A few years ago, we launched a project to determine the impact of sleep fragmentation and chronic sleep restriction on BBB functions, including permeability to fluorescent tracers, tight junction protein expression and distribution, glucose and other solute transporter activities, and mediation of cellular mechanisms. Recent publications and relevant literature allow us to summarize here the sleep-BBB interactions in five sections: (1) the structural basis enabling the BBB to serve as a huge regulatory interface; (2) BBB transport and permeation of substances participating in sleep-wake regulation; (3) the circadian rhythm of BBB function; (4) the effect of experimental sleep disruption maneuvers on BBB activities, including regional heterogeneity, possible threshold effect, and reversibility; and (5) implications of sleep disruption-induced BBB dysfunction in neurodegeneration and CNS autoimmune diseases. After reading the review, the general audience should be convinced that the BBB is an important mediating interface for sleep-wake regulation and a crucial relay station of mind-body crosstalk. The pharmaceutical industry should take into consideration that sleep disruption alters the pharmacokinetics of BBB permeation and CNS drug delivery, being attentive to the chrono timing and activation of co-transporters in subjects with sleep disorders.
Collapse
Affiliation(s)
- Weihong Pan
- 1 Biopotentials Sleep Center, Baton Rouge, LA 70809
| | - Abba J Kastin
- 2 Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| |
Collapse
|
6
|
Role of Astrocytes in Leptin Signaling. J Mol Neurosci 2015; 56:829-839. [PMID: 25687329 DOI: 10.1007/s12031-015-0518-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 02/04/2015] [Indexed: 12/11/2022]
Abstract
To test the hypothesis that astrocytic leptin signaling induces an overall potentiation of the neuronal response to leptin, we generated a new line of astrocyte-specific leptin receptor knockout (ALKO-Δ1) mice in which no leptin receptor is expressed in astrocytes. Corresponding to cell-specific Cre recombinase expression in hypothalamic astrocytes but not neurons, this new strain of ALKO mice had attenuated pSTAT3 signaling in the arcuate nucleus of the hypothalamus 30 min after intracerebroventricular delivery of leptin. In response to high-fat diet for 2 months, the ALKO mice showed a greater increase of percent fat and blood leptin concentration. This coincided with a mild reactive gliosis in the hypothalamus. Overall, the absence of leptin receptors in astrocytes attenuated hypothalamic pSTAT3 signaling, induced a mild reactive morphology, and promoted the development of diet-induced obesity. We conclude that leptin signaling in astrocytes is essential for the homeostasis of neuroendocrine regulation in obesity.
Collapse
|
7
|
Abstract
The blood-brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new procedure of sleep disruption in mice by a week of consecutive sleep recording. We then tested the hypothesis that CSR compromises microvascular function. CSR not only diminished endothelial and inducible nitric oxide synthase, endothelin1, and glucose transporter expression in cerebral microvessels of the BBB, but it also decreased 2-deoxy-glucose uptake by the brain. The expression of several tight junction proteins also was decreased, whereas the level of cyclooxygenase-2 increased. This coincided with an increase of paracellular permeability of the BBB to the small tracers sodium fluorescein and biotin. CSR for 6 d was sufficient to impair BBB structure and function, although the increase of paracellular permeability returned to baseline after 24 h of recovery sleep. This merits attention not only in neuroscience research but also in public health policy and clinical practice.
Collapse
|
8
|
Feng P, Hu Y, Vurbic D, Akladious A, Strohl KP. Chromosome 1 replacement increases brain orexins and antidepressive measures without increasing locomotor activity. J Psychiatr Res 2014; 59:140-7. [PMID: 25190041 DOI: 10.1016/j.jpsychires.2014.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/08/2014] [Accepted: 08/14/2014] [Indexed: 12/31/2022]
Abstract
Decreased orexin level has been well demonstrated in patients suffering from narcolepsy, depression accompanied with suicide attempt; obstructive sleep apnea and comorbidity were also demonstrated in these diseases. As C57BL/6J (B6) mice are more "depressed" and have lower brain orexins than A/J mice, B6 mice having chromosome 1 replacement (B6A1 mice) might have restored orexin levels and less depressive behavior. We studied the behavior of 4-6 month old B6, A/J and B6A1 mice with forced swim, tail suspension, and locomotor activity tests. The animals were then sacrificed and hypothalamus and medullas dissected from brain tissue. Orexins-A and -B were determined by radioimmunoassay. Compared with A/J mice, B6 mice displayed several signs of depression, including increased immobility, increased locomotors activity, and decreased orexin A and -B levels in both the hypothalamus and medulla. Compared to B6 mice, B6A1 mice exhibited significantly higher levels of orexins-A and -B in both brain regions. B6A1 mice also exhibited antidepressive features in most of measured variables, including decreased locomotor activity, decreased immobility and increased swim in tail suspension test; compared with B6 mice, however. B6A1 mice also reversed immobility in the early phase of the swim test. In summary, B6 mice exhibited depressive attributes compared with A/J mice, including increased locomotor activity, greater immobility, and decreased brain orexins, these were largely reversed in B6A1 mice. We conclude that orexin levels modulate these B6 behaviors, likely due to expression of A/J alleles on Chromosome 1.
Collapse
Affiliation(s)
- Pingfu Feng
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
| | - Yufen Hu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Drina Vurbic
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Afaf Akladious
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Kingman P Strohl
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| |
Collapse
|
9
|
He J, Kastin AJ, Wang Y, Pan W. Sleep fragmentation has differential effects on obese and lean mice. J Mol Neurosci 2014; 55:644-52. [PMID: 25152064 DOI: 10.1007/s12031-014-0403-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/13/2014] [Indexed: 12/16/2022]
Abstract
Chronic sleep fragmentation (SF), common in patients with sleep apnea, correlates with the development of obesity. We hypothesized that SF differentially affects neurobehavior in lean wild-type (WT) and obese pan-leptin receptor knockout (POKO) mice fed the same normal diet. First, we established an SF paradigm by interrupting sleep every 2 min during the inactive light span. The maneuver was effective in decreasing sleep duration and bout length, and in increasing sleep state transition and waking, without significant rebound sleep in the dark span. Changes of sleep architecture were evident in the light span and consistent across days 1-10 of SF. There was reduced NREM, shortened sleep latency, and increased state transitions. During the light span of the first day of SF, there also was reduction of REM and increased delta power of slow-wave sleep. Potential effects of SF on thermal pain threshold, locomotor activity, and anxiety were then tested. POKO mice had a lower circadian amplitude of pain latency than WT mice in the hot plate test, and both groups had lowest tolerance at 4 pm (zeitgeber time (ZT) 10) and longest latency at 4 am (ZT 22). SF increased the pain threshold in WT but not in POKO mice when tested at 8 a.m. (ZT 2). Both the POKO mutation and SF resulted in reduced physical activity and increased anxiety, but there was no additive effect of these two factors. Overall, SF and the POKO mutation differentially regulate mouse behavior. The results suggest that obesity can blunt neurobehavioral responses to SF.
Collapse
Affiliation(s)
- Junyun He
- Blood Brain Barrier Group, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | | | | | | |
Collapse
|
10
|
He J, Wang Y, Kastin AJ, Pan W. Increased sleep fragmentation in experimental autoimmune encephalomyelitis. Brain Behav Immun 2014; 38:53-8. [PMID: 24566387 DOI: 10.1016/j.bbi.2014.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/09/2014] [Accepted: 02/09/2014] [Indexed: 01/23/2023] Open
Abstract
Sleep disturbance in patients with multiple sclerosis is prevalent and has multifactorial causes. In mice with experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis, we determined the dynamic changes of sleep architecture and the interactions between sleep changes and EAE symptoms. The changes of sleep patterns were mainly reflected by altered sleep stage distribution and increased sleep fragmentation. Increased waking and decreased non-rapid eye movement sleep occurred after EAE onset and persisted through the symptomatic phase. There also was increased sleep state transition, indicating a reduction of sleep cohesiveness. Furthermore, the extent of sleep fragmentation correlated with the severity of disease. This is the first study of sleep characteristics in EAE mice demarcating specific changes related to the autoimmune disorder without confounding factors such as psychosocial impact and treatment effects. The reduction of sleep efficiency and cohesiveness supports the notion that enhancing sleep might facilitate the recovery of mice from EAE, pertinent to the multimodality treatment of multiple sclerosis.
Collapse
Affiliation(s)
- Junyun He
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Yuping Wang
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Abba J Kastin
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Weihong Pan
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| |
Collapse
|