1
|
Li C, Li W, Wei W, Chen Q, Gao H, Zhao Y, Zhang L, Ling L, Shen H, Shen Y, Shen Y. Gene expression profiles of endothelium, microglia and oligodendrocytes in hippocampus of post-stroke depression rat at single cell resolution. Mol Psychiatry 2025; 30:1995-2008. [PMID: 39521840 PMCID: PMC12015115 DOI: 10.1038/s41380-024-02810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Post-stroke depression (PSD) is a common but severe mental complication after stroke. However, the cellular and molecular understanding of PSD is still yet to be illustrated. In current study, we prepared PSD rat model (MD) via unilateral middle cerebral artery occlusion (MCAO) and chronic stress stimulation (DEPR), and isolated hippocampal tissues for single cell sequencing of 10x Genomics Chromium. First, we determined the presence of the increased cell population of endothelium and microglia and the compromised oligodendrocytes in MD compared to NC, MCAO and DEPR. The enriched functions of highly variable genes (HVGs) of endothelium and microglia suggested a reinforced blood-brain barrier in MD. Next, cell clusters of endothelium, microglia and oligodendrocytes were individually analyzed, and the subtypes with distinct functions were identified. The presence of expression profiles, intercellular communications and signaling pathways of these three cell populations of PSD displayed a similar but more aggressive appearance with DEPR compared to MCAO and NC. Taken together, this study characterized the specific gene profile of endothelium, microglia and oligodendrocytes of hippocampal PSD by single cell sequencing, emphasizing the crosstalk among them to provide theoretical basis for the in-depth mechanism research and drug therapy of PSD.
Collapse
Affiliation(s)
- Cai Li
- Department of Neurology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| | - Wentao Li
- Department of Neurology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Wenbin Wei
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200013, China
| | - Qili Chen
- School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning, China
| | - Han Gao
- Department of Neurology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yanqing Zhao
- Department of Neurology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Lingling Zhang
- Department of Neurology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Li Ling
- Department of Neurology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Hao Shen
- Clinical laboratory, Suzhou Ninth People's Hospital, Suzhou, 215200, Jiangsu, China.
| | - Yifen Shen
- Central laboratory, Suzhou Ninth People's Hospital, Suzhou, 215200, Jiangsu, China.
| | - Yihang Shen
- Central laboratory, Suzhou Ninth People's Hospital, Suzhou, 215200, Jiangsu, China.
| |
Collapse
|
2
|
D'Incal CP, Van Rossem KE, De Man K, Konings A, Van Dijck A, Rizzuti L, Vitriolo A, Testa G, Gozes I, Vanden Berghe W, Kooy RF. Chromatin remodeler Activity-Dependent Neuroprotective Protein (ADNP) contributes to syndromic autism. Clin Epigenetics 2023; 15:45. [PMID: 36945042 PMCID: PMC10031977 DOI: 10.1186/s13148-023-01450-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/16/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Individuals affected with autism often suffer additional co-morbidities such as intellectual disability. The genes contributing to autism cluster on a relatively limited number of cellular pathways, including chromatin remodeling. However, limited information is available on how mutations in single genes can result in such pleiotropic clinical features in affected individuals. In this review, we summarize available information on one of the most frequently mutated genes in syndromic autism the Activity-Dependent Neuroprotective Protein (ADNP). RESULTS Heterozygous and predicted loss-of-function ADNP mutations in individuals inevitably result in the clinical presentation with the Helsmoortel-Van der Aa syndrome, a frequent form of syndromic autism. ADNP, a zinc finger DNA-binding protein has a role in chromatin remodeling: The protein is associated with the pericentromeric protein HP1, the SWI/SNF core complex protein BRG1, and other members of this chromatin remodeling complex and, in murine stem cells, with the chromodomain helicase CHD4 in a ChAHP complex. ADNP has recently been shown to possess R-loop processing activity. In addition, many additional functions, for instance, in association with cytoskeletal proteins have been linked to ADNP. CONCLUSIONS We here present an integrated evaluation of all current aspects of gene function and evaluate how abnormalities in chromatin remodeling might relate to the pleiotropic clinical presentation in individual"s" with Helsmoortel-Van der Aa syndrome.
Collapse
Affiliation(s)
- Claudio Peter D'Incal
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Kirsten Esther Van Rossem
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium
| | - Kevin De Man
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Anthony Konings
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Anke Van Dijck
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium
| | - Ludovico Rizzuti
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, V. Le Rita Levi-Montalcini, 1, 20157, Milan, Italy
| | - Alessandro Vitriolo
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, V. Le Rita Levi-Montalcini, 1, 20157, Milan, Italy
| | - Giuseppe Testa
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, V. Le Rita Levi-Montalcini, 1, 20157, Milan, Italy
| | - Illana Gozes
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Sackler School of Medicine, 727, 69978, Tel Aviv, Israel
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium.
| |
Collapse
|
3
|
Ren J, Zhang Y, Guo W, Feng K, Yuan Y, Huang T, Cai YD. Identification of Genes Associated with the Impairment of Olfactory and Gustatory Functions in COVID-19 via Machine-Learning Methods. Life (Basel) 2023; 13:798. [PMID: 36983953 PMCID: PMC10051382 DOI: 10.3390/life13030798] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), as a severe respiratory disease, affects many parts of the body, and approximately 20-85% of patients exhibit functional impairment of the senses of smell and taste, some of whom even experience the permanent loss of these senses. These symptoms are not life-threatening but severely affect patients' quality of life and increase the risk of depression and anxiety. The pathological mechanisms of these symptoms have not been fully identified. In the current study, we aimed to identify the important biomarkers at the expression level associated with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-mediated loss of taste or olfactory ability, and we have suggested the potential pathogenetic mechanisms of COVID-19 complications. We designed a machine-learning-based approach to analyze the transcriptome of 577 COVID-19 patient samples, including 84 COVID-19 samples with a decreased ability to taste or smell and 493 COVID-19 samples without impairment. Each sample was represented by 58,929 gene expression levels. The features were analyzed and sorted by three feature selection methods (least absolute shrinkage and selection operator, light gradient boosting machine, and Monte Carlo feature selection). The optimal feature sets were obtained through incremental feature selection using two classification algorithms: decision tree (DT) and random forest (RF). The top genes identified by these multiple methods (H3-5, NUDT5, and AOC1) are involved in olfactory and gustatory impairments. Meanwhile, a high-performance RF classifier was developed in this study, and three sets of quantitative rules that describe the impairment of olfactory and gustatory functions were obtained based on the optimal DT classifiers. In summary, this study provides a new computation analysis and suggests the latent biomarkers (genes and rules) for predicting olfactory and gustatory impairment caused by COVID-19 complications.
Collapse
Affiliation(s)
- Jingxin Ren
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yuhang Zhang
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200030, China
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou 510507, China
| | - Ye Yuan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
4
|
Mucke HAM. Drug Repurposing Patent Applications October-December 2020. Assay Drug Dev Technol 2021; 19:209-214. [PMID: 33605782 DOI: 10.1089/adt.2021.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
5
|
Autism-associated miR-873 regulates ARID1B, SHANK3 and NRXN2 involved in neurodevelopment. Transl Psychiatry 2020; 10:418. [PMID: 33262327 PMCID: PMC7708977 DOI: 10.1038/s41398-020-01106-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/21/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorders (ASD) are highly heritable neurodevelopmental disorders with significant genetic heterogeneity. Noncoding microRNAs (miRNAs) are recognised as playing key roles in development of ASD albeit the function of these regulatory genes remains unclear. We previously conducted whole-exome sequencing of Australian families with ASD and identified four novel single nucleotide variations in mature miRNA sequences. A pull-down transcriptome analysis using transfected SH-SY5Y cells proposed a mechanistic model to examine changes in binding affinity associated with a unique mutation found in the conserved 'seed' region of miR-873-5p (rs777143952: T > A). Results suggested several ASD-risk genes were differentially targeted by wild-type and mutant miR-873 variants. In the current study, a dual-luciferase reporter assay confirmed miR-873 variants have a 20-30% inhibition/dysregulation effect on candidate autism risk genes ARID1B, SHANK3 and NRXN2 and also confirmed the affected expression with qPCR. In vitro mouse hippocampal neurons transfected with mutant miR-873 showed less morphological complexity and enhanced sodium currents and excitatory neurotransmission compared to cells transfected with wild-type miR-873. A second in vitro study showed CRISPR/Cas9 miR-873 disrupted SH-SY5Y neuroblastoma cells acquired a neuronal-like morphology and increased expression of ASD important genes ARID1B, SHANK3, ADNP2, ANK2 and CHD8. These results represent the first functional evidence that miR-873 regulates key neural genes involved in development and cell differentiation.
Collapse
|
6
|
Tauopathy in the young autistic brain: novel biomarker and therapeutic target. Transl Psychiatry 2020; 10:228. [PMID: 32661233 PMCID: PMC7359319 DOI: 10.1038/s41398-020-00904-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 01/20/2023] Open
Abstract
Given our recent discovery of somatic mutations in autism spectrum disorder (ASD)/intellectual disability (ID) genes in postmortem aged Alzheimer's disease brains correlating with increasing tauopathy, it is important to decipher if tauopathy is underlying brain imaging results of atrophy in ASD/ID children. We concentrated on activity-dependent neuroprotective protein (ADNP), a prevalent autism gene. The unique availability of multiple postmortem brain sections of a 7-year-old male, heterozygous for ADNP de novo mutation c.2244Adup/p.His559Glnfs*3 allowed exploration of tauopathy, reflecting on a general unexplored mechanism. The tested subject exhibited autism, fine motor delays, severe intellectual disability and seizures. The patient died after multiple organ failure following liver transplantation. To compare to other ADNP syndrome mutations, immortalized lymphoblastoid cell lines from three different patients (including ADNP p.Arg216*, p.Lys408Valfs*31, and p.Tyr719* heterozygous dominant mutations) and a control were subjected to RNA-seq. Immunohistochemistry, high-throughput gene expression profiles in numerous postmortem tissues followed. Comparisons to a control brain and to extensive datasets were used. Live cell imaging investigated Tau-microtubule interaction, protecting against tauopathy. Extensive child brain tauopathy paralleled by multiple gene expression changes was discovered. Tauopathy was explained by direct mutation effects on Tau-microtubule interaction and correction by the ADNP active snippet NAP. Significant pathway changes (empirical P value < 0.05) included over 100 genes encompassing neuroactive ligand-receptor and cytokine-cytokine receptor interaction, MAPK and calcium signaling, axon guidance and Wnt signaling pathways. Changes were also seen in steroid biosynthesis genes, suggesting sex differences. Selecting the most affected genes by the ADNP mutations for gene expression analysis, in multiple postmortem tissues, identified Tau (MAPT)-gene-related expression changes compared with extensive normal gene expression (RNA-seq) databases. ADNP showed relatively reduced expression in the ADNP syndrome cerebellum, which was also observed for 25 additional genes (representing >50% of the tested genes), including NLGN1, NLGN2, PAX6, SMARCA4, and SNAP25, converging on nervous system development and tauopathy. NAP provided protection against mutated ADNP disrupted Tau-microtubule association. In conclusion, tauopathy may explain brain-imaging findings in ADNP syndrome children and may provide a new direction for the development of tauopathy protecting drug candidates like NAP in ASD/ID.
Collapse
|
7
|
Al-Naama N, Mackeh R, Kino T. C 2H 2-Type Zinc Finger Proteins in Brain Development, Neurodevelopmental, and Other Neuropsychiatric Disorders: Systematic Literature-Based Analysis. Front Neurol 2020; 11:32. [PMID: 32117005 PMCID: PMC7034409 DOI: 10.3389/fneur.2020.00032] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are multifaceted pathologic conditions manifested with intellectual disability, autistic features, psychiatric problems, motor dysfunction, and/or genetic/chromosomal abnormalities. They are associated with skewed neurogenesis and brain development, in part through dysfunction of the neural stem cells (NSCs) where abnormal transcriptional regulation on key genes play significant roles. Recent accumulated evidence highlights C2H2-type zinc finger proteins (C2H2-ZNFs), the largest transcription factor family in humans, as important targets for the pathologic processes associated with NDDs. In this review, we identified their significant accumulation (74 C2H2-ZNFs: ~10% of all human member proteins) in brain physiology and pathology. Specifically, we discuss their physiologic contribution to brain development, particularly focusing on their actions in NSCs. We then explain their pathologic implications in various forms of NDDs, such as morphological brain abnormalities, intellectual disabilities, and psychiatric disorders. We found an important tendency that poly-ZNFs and KRAB-ZNFs tend to be involved in the diseases that compromise gross brain structure and human-specific higher-order functions, respectively. This may be consistent with their characteristic appearance in the course of species evolution and corresponding contribution to these brain activities.
Collapse
Affiliation(s)
- Njoud Al-Naama
- Laboratory of Molecular and Genomic Endocrinology, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Rafah Mackeh
- Laboratory of Molecular and Genomic Endocrinology, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Tomoshige Kino
- Laboratory of Molecular and Genomic Endocrinology, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| |
Collapse
|
8
|
Kapitansky O, Gozes I. ADNP differentially interact with genes/proteins in correlation with aging: a novel marker for muscle aging. GeroScience 2019; 41:321-340. [PMID: 31264075 DOI: 10.1007/s11357-019-00079-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/10/2019] [Indexed: 12/25/2022] Open
Abstract
Activity-dependent neuroprotective protein (ADNP) is essential for embryonic development with ADNP mutations leading to syndromic autism, coupled with intellectual disabilities and motor developmental delays. Here, mining human muscle gene-expression databases, we have investigated the association of ADNP transcripts with muscle aging. We discovered increased ADNP and its paralogue ADNP2 expression in the vastus lateralis muscle of aged compared to young subjects, as well as altered expression of the ADNP and the ADNP2 genes in bicep brachii muscle of elderly people, in a sex-dependent manner. Prolonged exercise resulted in decreased ADNP expression, and increased ADNP2 expression in an age-dependent manner in the vastus lateralis muscle. ADNP expression level was further correlated with 49 genes showing age-dependent changes in muscle transcript expression. A high degree of correlation with ADNP was discovered for 24 genes with the leading gene/protein being NMNAT1 (nicotinamide nucleotide adenylyl transferase 1). Looking at correlations differentiating the young and the old muscles and comparing protein interactions revealed an association of ADNP with the cell division cycle 5-like protein (CDC5L), and an aging-muscle-related interactive pathway in the vastus lateralis. In the bicep brachii, very high correlation was detected with genes associated with immune functions as well as mitochondrial structure and function among others. Taken together, the results suggest a direct association of ADNP with muscle strength and implicate ADNP fortification in the protection against age-associated muscle wasting.
Collapse
Affiliation(s)
- Oxana Kapitansky
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors; The Elton Laboratory for Neuroendocrinology; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Illana Gozes
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors; The Elton Laboratory for Neuroendocrinology; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
9
|
Van Dijck A, Vulto-van Silfhout AT, Cappuyns E, van der Werf IM, Mancini GM, Tzschach A, Bernier R, Gozes I, Eichler EE, Romano C, Lindstrand A, Nordgren A, Kvarnung M, Kleefstra T, de Vries BBA, Küry S, Rosenfeld JA, Meuwissen ME, Vandeweyer G, Kooy RF. Clinical Presentation of a Complex Neurodevelopmental Disorder Caused by Mutations in ADNP. Biol Psychiatry 2019; 85:287-297. [PMID: 29724491 PMCID: PMC6139063 DOI: 10.1016/j.biopsych.2018.02.1173] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND In genome-wide screening studies for de novo mutations underlying autism and intellectual disability, mutations in the ADNP gene are consistently reported among the most frequent. ADNP mutations have been identified in children with autism spectrum disorder comorbid with intellectual disability, distinctive facial features, and deficits in multiple organ systems. However, a comprehensive clinical description of the Helsmoortel-Van der Aa syndrome is lacking. METHODS We identified a worldwide cohort of 78 individuals with likely disruptive mutations in ADNP from January 2014 to October 2016 through systematic literature search, by contacting collaborators, and through direct interaction with parents. Clinicians filled in a structured questionnaire on genetic and clinical findings to enable correlations between genotype and phenotype. Clinical photographs and specialist reports were gathered. Parents were interviewed to complement the written questionnaires. RESULTS We report on the detailed clinical characterization of a large cohort of individuals with an ADNP mutation and demonstrate a distinctive combination of clinical features, including mild to severe intellectual disability, autism, severe speech and motor delay, and common facial characteristics. Brain abnormalities, behavioral problems, sleep disturbance, epilepsy, hypotonia, visual problems, congenital heart defects, gastrointestinal problems, short stature, and hormonal deficiencies are common comorbidities. Strikingly, individuals with the recurrent p.Tyr719* mutation were more severely affected. CONCLUSIONS This overview defines the full clinical spectrum of individuals with ADNP mutations, a specific autism subtype. We show that individuals with mutations in ADNP have many overlapping clinical features that are distinctive from those of other autism and/or intellectual disability syndromes. In addition, our data show preliminary evidence of a correlation between genotype and phenotype.
Collapse
Affiliation(s)
- Anke Van Dijck
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium; Department of Neurology, University Hospital Antwerp, Antwerp, Belgium.
| | | | - Elisa Cappuyns
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | | | - Grazia M Mancini
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Andreas Tzschach
- Institute für Klinische Genetik, Technische Universität Dresden, Dresden, Germany
| | - Raphael Bernier
- Department of Psychiatry, University of Washington, Seattle, Washington
| | - Illana Gozes
- Elton Laboratory for Molecular Neuroendocrinology, Tel Aviv University, Tel Aviv, Israel; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, Washington; Howard Hughes Medical Institute, University of Washington, Seattle, Washington
| | - Corrado Romano
- Unit of Pediatrics and Medical Genetics, Istituto di Ricovero e Cura a Carattere Scientifico Associazione Oasi Maria Santissima, Troina, Italy
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Malin Kvarnung
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sébastien Küry
- Service de Génétique Médicale, Centre Hospitalier Universitaire Nantes, Nantes, France
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Geert Vandeweyer
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
10
|
Ivashko-Pachima Y, Sayas CL, Malishkevich A, Gozes I. ADNP/NAP dramatically increase microtubule end-binding protein-Tau interaction: a novel avenue for protection against tauopathy. Mol Psychiatry 2017; 22:1335-1344. [PMID: 28115743 DOI: 10.1038/mp.2016.255] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/20/2016] [Accepted: 12/06/2016] [Indexed: 12/30/2022]
Abstract
Activity-dependent neuroprotective protein (ADNP), vital for brain formation and cognitive function, is mutated in autism and linked to neurodegenerative/psychiatric diseases. An eight-amino-acid peptide snippet of ADNP, NAP (NAPVSIPQ), identified as a smallest active fragment, includes the SxIP microtubule (MT) end-binding protein (EB) association motif, and enhances ADNP-EB3 interaction. Depletion of EB1 or EB3 abolishes NAP protection against zinc intoxication. Furthermore, NAP enhances Tau-MT interaction, and Tau regulates the localization and function of EB1 and EB3 in developing neuronal cells. Here, we asked how NAP (ADNP) enhances Tau-MT interactions and whether this is mediated by EBs. We showed, for we believe the first time, that NAP augmented endogenous EB1 comet density in the N1E-115 neuroblastoma neuronal model. This finding was substantiated by cell transfection with fluorescent EB1 and live cell imaging. NAP increased comet amounts, length and speed. At the molecular level, NAP enhanced EB3 homodimer formation, while decreasing EB1-EB3 heterodimer content and driving EB1- and EB3-Tau interactions (dramatic 20-fold increases), leading to recruitment of EB1/EB3 and Tau to MTs under zinc intoxication. Our previous results showed that while NAP protected neuronal-like cells against oxidative stress, it did not protect NIH3T3 fibroblasts. Here, NAP did not protect NIH3T3 cells against zinc intoxication, unless these cells were transfected with Tau. Interestingly, other MT associated proteins (MAPs) may replace Tau, thus, EB-Tau (MAPs) interaction is identified as a novel target for endogenous ADNP neuroprotection, and a future target for drug development, with NAP as a prototype.
Collapse
Affiliation(s)
- Y Ivashko-Pachima
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, Dr. Diana and Zelman Elton (Elbaum) Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| | - C Laura Sayas
- Centre for Biomedical Research of the Canary Islands (CIBICAN), Institute for Biomedical Technologies (ITB), University of La Laguna (ULL), Tenerife, Spain
| | - A Malishkevich
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, Dr. Diana and Zelman Elton (Elbaum) Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| | - I Gozes
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, Dr. Diana and Zelman Elton (Elbaum) Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Zhang S, Zhang Y, Yu P, Hu Y, Zhou H, Guo L, Xu X, Zhu X, Waqas M, Qi J, Zhang X, Liu Y, Chen F, Tang M, Qian X, Shi H, Gao X, Chai R. Characterization of Lgr5+ Progenitor Cell Transcriptomes after Neomycin Injury in the Neonatal Mouse Cochlea. Front Mol Neurosci 2017; 10:213. [PMID: 28725177 PMCID: PMC5496572 DOI: 10.3389/fnmol.2017.00213] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/16/2017] [Indexed: 12/17/2022] Open
Abstract
Lgr5+ supporting cells (SCs) are enriched hair cell (HC) progenitors in the cochlea. Both in vitro and in vivo studies have shown that HC injury can spontaneously activate Lgr5+ progenitors to regenerate HCs in the neonatal mouse cochlea. Promoting HC regeneration requires the understanding of the mechanism of HC regeneration, and this requires knowledge of the key genes involved in HC injury-induced self-repair responses that promote the proliferation and differentiation of Lgr5+ progenitors. Here, as expected, we found that neomycin-treated Lgr5+ progenitors (NLPs) had significantly greater HC regeneration ability, and greater but not significant proliferation ability compared to untreated Lgr5+ progenitors (ULPs) in response to neomycin exposure. Next, we used RNA-seq analysis to determine the differences in the gene-expression profiles between the transcriptomes of NLPs and ULPs from the neonatal mouse cochlea. We first analyzed the genes that were enriched and differentially expressed in NLPs and ULPs and then analyzed the cell cycle genes, the transcription factors, and the signaling pathway genes that might regulate the proliferation and differentiation of Lgr5+ progenitors. We found 9 cell cycle genes, 88 transcription factors, 8 microRNAs, and 16 cell-signaling pathway genes that were significantly upregulated or downregulated after neomycin injury in NLPs. Lastly, we constructed a protein-protein interaction network to show the interaction and connections of genes that are differentially expressed in NLPs and ULPs. This study has identified the genes that might regulate the proliferation and HC regeneration of Lgr5+ progenitors after neomycin injury, and investigations into the roles and mechanisms of these genes in the cochlea should be performed in the future to identify potential therapeutic targets for HC regeneration.
Collapse
Affiliation(s)
- Shasha Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China.,Research Institute of OtolaryngologyNanjing, China.,Co-innovation Center of Neuroregeneration, Nantong UniversityNantong, China
| | - Yuan Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Pengfei Yu
- Bioinformatics Department, Admera Health LLCSouth Plainfield, NJ, United States
| | - Yao Hu
- School of Pharmacy, Institute for Stem Cell and Neural Regeneration, Nanjing Medical UniversityNanjing, China
| | - Han Zhou
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing, China
| | - Lingna Guo
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Xiaochen Xu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Xiaocheng Zhu
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing, China
| | - Muhammad Waqas
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China.,Department of Biotechnology, Federal Urdu University of Arts, Science and TechnologyKarachi, Pakistan
| | - Jieyu Qi
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Xiaoli Zhang
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing, China
| | - Yan Liu
- School of Pharmacy, Institute for Stem Cell and Neural Regeneration, Nanjing Medical UniversityNanjing, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and TechnologyShenzhen, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Xiaoyun Qian
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing, China
| | - Haibo Shi
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong UniversityShanghai, China
| | - Xia Gao
- Research Institute of OtolaryngologyNanjing, China.,Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China.,Research Institute of OtolaryngologyNanjing, China.,Co-innovation Center of Neuroregeneration, Nantong UniversityNantong, China
| |
Collapse
|