1
|
Tenchov R, Sasso JM, Zhou QA. Polyglutamine (PolyQ) Diseases: Navigating the Landscape of Neurodegeneration. ACS Chem Neurosci 2024; 15:2665-2694. [PMID: 38996083 PMCID: PMC11311141 DOI: 10.1021/acschemneuro.4c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/02/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Polyglutamine (polyQ) diseases are a group of inherited neurodegenerative disorders caused by expanded cytosine-adenine-guanine (CAG) repeats encoding proteins with abnormally expanded polyglutamine tract. A total of nine polyQ disorders have been identified, including Huntington's disease, six spinocerebellar ataxias, dentatorubral pallidoluysian atrophy (DRPLA), and spinal and bulbar muscular atrophy (SBMA). The diseases of this class are each considered rare, yet polyQ diseases constitute the largest group of monogenic neurodegenerative disorders. While each subtype of polyQ diseases has its own causative gene, certain pathologic molecular attributes have been implicated in virtually all of the polyQ diseases, including protein aggregation, proteolytic cleavage, neuronal dysfunction, transcription dysregulation, autophagy impairment, and mitochondrial dysfunction. Although animal models of polyQ disease are available helping to understand their pathogenesis and access disease-modifying therapies, there is neither a cure nor prevention for these diseases, with only symptomatic treatments available. In this paper, we analyze data from the CAS Content Collection to summarize the research progress in the class of polyQ diseases. We examine the publication landscape in the area in effort to provide insights into current knowledge advances and developments. We review the most discussed concepts and assess the strategies to combat these diseases. Finally, we inspect clinical applications of products against polyQ diseases with their development pipelines. The objective of this review is to provide a broad overview of the evolving landscape of current knowledge regarding the class of polyQ diseases, to outline challenges, and evaluate growth opportunities to further efforts in combating the diseases.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a division of the American
Chemical Society, Columbus, Ohio 43210, United States
| | - Janet M. Sasso
- CAS, a division of the American
Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
2
|
Prakasam R, Bonadiman A, Andreotti R, Zuccaro E, Dalfovo D, Marchioretti C, Tripathy D, Petris G, Anderson EN, Migazzi A, Tosatto L, Cereseto A, Battaglioli E, Sorarù G, Lim WF, Rinaldi C, Sambataro F, Pourshafie N, Grunseich C, Romanel A, Pandey UB, Contestabile A, Ronzitti G, Basso M, Pennuto M. LSD1/PRMT6-targeting gene therapy to attenuate androgen receptor toxic gain-of-function ameliorates spinobulbar muscular atrophy phenotypes in flies and mice. Nat Commun 2023; 14:603. [PMID: 36746939 PMCID: PMC9902531 DOI: 10.1038/s41467-023-36186-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Spinobulbar muscular atrophy (SBMA) is caused by CAG expansions in the androgen receptor gene. Androgen binding to polyQ-expanded androgen receptor triggers SBMA through a combination of toxic gain-of-function and loss-of-function mechanisms. Leveraging cell lines, mice, and patient-derived specimens, we show that androgen receptor co-regulators lysine-specific demethylase 1 (LSD1) and protein arginine methyltransferase 6 (PRMT6) are overexpressed in an androgen-dependent manner specifically in the skeletal muscle of SBMA patients and mice. LSD1 and PRMT6 cooperatively and synergistically transactivate androgen receptor, and their effect is enhanced by expanded polyQ. Pharmacological and genetic silencing of LSD1 and PRMT6 attenuates polyQ-expanded androgen receptor transactivation in SBMA cells and suppresses toxicity in SBMA flies, and a preclinical approach based on miRNA-mediated silencing of LSD1 and PRMT6 attenuates disease manifestations in SBMA mice. These observations suggest that targeting overexpressed co-regulators can attenuate androgen receptor toxic gain-of-function without exacerbating loss-of-function, highlighting a potential therapeutic strategy for patients with SBMA.
Collapse
Affiliation(s)
- Ramachandran Prakasam
- Dulbecco Telethon Institute at the Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Angela Bonadiman
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Roberta Andreotti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
- Padova Neuroscience Center, Padova, Italy
| | - Emanuela Zuccaro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
- Padova Neuroscience Center, Padova, Italy
| | - Davide Dalfovo
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Caterina Marchioretti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
- Padova Neuroscience Center, Padova, Italy
| | - Debasmita Tripathy
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Gianluca Petris
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Saffron Walden, UK
| | - Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Alice Migazzi
- Dulbecco Telethon Institute at the Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Laura Tosatto
- Dulbecco Telethon Institute at the Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Anna Cereseto
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Elena Battaglioli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Gianni Sorarù
- Padova Neuroscience Center, Padova, Italy
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Wooi Fang Lim
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Carlo Rinaldi
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Fabio Sambataro
- Padova Neuroscience Center, Padova, Italy
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Naemeh Pourshafie
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Grunseich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alessandro Romanel
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Giuseppe Ronzitti
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
- Genethon, 91000, Evry, France
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
| | - Maria Pennuto
- Dulbecco Telethon Institute at the Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Veneto Institute of Molecular Medicine, Padova, Italy.
- Padova Neuroscience Center, Padova, Italy.
| |
Collapse
|
3
|
Piol D, Tosatto L, Zuccaro E, Anderson EN, Falconieri A, Polanco MJ, Marchioretti C, Lia F, White J, Bregolin E, Minervini G, Parodi S, Salvatella X, Arrigoni G, Ballabio A, La Spada AR, Tosatto SC, Sambataro F, Medina DL, Pandey UB, Basso M, Pennuto M. Antagonistic effect of cyclin-dependent kinases and a calcium-dependent phosphatase on polyglutamine-expanded androgen receptor toxic gain of function. SCIENCE ADVANCES 2023; 9:eade1694. [PMID: 36608116 PMCID: PMC9821870 DOI: 10.1126/sciadv.ade1694] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Spinal and bulbar muscular atrophy is caused by polyglutamine (polyQ) expansions in androgen receptor (AR), generating gain-of-function toxicity that may involve phosphorylation. Using cellular and animal models, we investigated what kinases and phosphatases target polyQ-expanded AR, whether polyQ expansions modify AR phosphorylation, and how this contributes to neurodegeneration. Mass spectrometry showed that polyQ expansions preserve native phosphorylation and increase phosphorylation at conserved sites controlling AR stability and transactivation. In small-molecule screening, we identified that CDC25/CDK2 signaling could enhance AR phosphorylation, and the calcium-sensitive phosphatase calcineurin had opposite effects. Pharmacologic and genetic manipulation of these kinases and phosphatases modified polyQ-expanded AR function and toxicity in cells, flies, and mice. Ablation of CDK2 reduced AR phosphorylation in the brainstem and restored expression of Myc and other genes involved in DNA damage, senescence, and apoptosis, indicating that the cell cycle-regulated kinase plays more than a bystander role in SBMA-vulnerable postmitotic cells.
Collapse
Affiliation(s)
- Diana Piol
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Padova Neuroscience Center, Padova, Italy
- Dulbecco Telethon Institute (DTI), Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Laura Tosatto
- Dulbecco Telethon Institute (DTI), Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Institute of Biophysics, Consiglio Nazionale delle Ricerche (CNR), Trento, Italy
| | - Emanuela Zuccaro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Padova Neuroscience Center, Padova, Italy
| | - Eric N. Anderson
- Division of Child Neurology, Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | | | - Maria J. Polanco
- Dulbecco Telethon Institute (DTI), Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Caterina Marchioretti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Padova Neuroscience Center, Padova, Italy
| | - Federica Lia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Padova Neuroscience Center, Padova, Italy
| | - Joseph White
- Department of Pathology and Laboratory Medicine, Department of Neurology, Department of Biological Chemistry, and the UCI Institute for Neurotherapeutics, University of California, Irvine, CA 92697, USA
| | - Elisa Bregolin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Padova Neuroscience Center, Padova, Italy
| | | | - Sara Parodi
- Istituto Italiano di Tecnologia, Genova, Italy
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- ICREA, Passeig Lluís Companys 23, Barcelona, Spain
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Medical and Translational Science, Federico II University, Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Albert R. La Spada
- Department of Pathology and Laboratory Medicine, Department of Neurology, Department of Biological Chemistry, and the UCI Institute for Neurotherapeutics, University of California, Irvine, CA 92697, USA
| | - Silvio C. E. Tosatto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Padova, Italy
| | - Fabio Sambataro
- Padova Neuroscience Center, Padova, Italy
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Diego L. Medina
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Udai B. Pandey
- Division of Child Neurology, Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Manuela Basso
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Maria Pennuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Padova Neuroscience Center, Padova, Italy
- Dulbecco Telethon Institute (DTI), Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
4
|
Gogia N, Ni L, Olmos V, Haidery F, Luttik K, Lim J. Exploring the Role of Posttranslational Modifications in Spinal and Bulbar Muscular Atrophy. Front Mol Neurosci 2022; 15:931301. [PMID: 35726299 PMCID: PMC9206542 DOI: 10.3389/fnmol.2022.931301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal and Bulbar Muscular Atrophy (SBMA) is an X-linked adult-onset progressive neuromuscular disease that affects the spinal and bulbar motor neurons and skeletal muscles. SBMA is caused by expansion of polymorphic CAG trinucleotide repeats in the Androgen Receptor (AR) gene, resulting in expanded glutamine tract in the AR protein. Polyglutamine (polyQ) expansion renders the mutant AR protein toxic, resulting in the formation of mutant protein aggregates and cell death. This classifies SBMA as one of the nine known polyQ diseases. Like other polyQ disorders, the expansion of the polyQ tract in the AR protein is the main genetic cause of the disease; however, multiple other mechanisms besides the polyQ tract expansion also contribute to the SBMA disease pathophysiology. Posttranslational modifications (PTMs), including phosphorylation, acetylation, methylation, ubiquitination, and SUMOylation are a category of mechanisms by which the functionality of AR has been found to be significantly modulated and can alter the neurotoxicity of SBMA. This review summarizes the different PTMs and their effects in regulating the AR function and discusses their pathogenic or protective roles in context of SBMA. This review also includes the therapeutic approaches that target the PTMs of AR in an effort to reduce the mutant AR-mediated toxicity in SBMA.
Collapse
Affiliation(s)
- Neha Gogia
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Luhan Ni
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Victor Olmos
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Fatema Haidery
- Yale College, Yale University, New Haven, CT, United States
| | - Kimberly Luttik
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States
| | - Janghoo Lim
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
5
|
Martinez-Rojas VA, Juarez-Hernandez LJ, Musio C. Ion channels and neuronal excitability in polyglutamine neurodegenerative diseases. Biomol Concepts 2022; 13:183-199. [DOI: 10.1515/bmc-2022-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Polyglutamine (polyQ) diseases are a family composed of nine neurodegenerative inherited disorders (NDDs) caused by pathological expansions of cytosine-adenine-guanine (CAG) trinucleotide repeats which encode a polyQ tract in the corresponding proteins. CAG polyQ repeat expansions produce neurodegeneration via multiple downstream mechanisms; among those the neuronal activity underlying the ion channels is affected directly by specific channelopathies or indirectly by secondary dysregulation. In both cases, the altered excitability underlies to gain- or loss-of-function pathological effects. Here we summarize the repertoire of ion channels in polyQ NDDs emphasizing the biophysical features of neuronal excitability and their pathogenic role. The aim of this review is to point out the value of a deeper understanding of those functional mechanisms and processes as crucial elements for the designing and targeting of novel therapeutic avenues.
Collapse
Affiliation(s)
- Vladimir A. Martinez-Rojas
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) , Via Sommarive 18 , 38123 Trento , Italy
| | - Leon J. Juarez-Hernandez
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) , Via Sommarive 18 , 38123 Trento , Italy
| | - Carlo Musio
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) , Via Sommarive 18 , 38123 Trento , Italy
| |
Collapse
|
6
|
Karwacka M, Olejniczak M. Advances in Modeling Polyglutamine Diseases Using Genome Editing Tools. Cells 2022; 11:cells11030517. [PMID: 35159326 PMCID: PMC8834129 DOI: 10.3390/cells11030517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
Polyglutamine (polyQ) diseases, including Huntington’s disease, are a group of late-onset progressive neurological disorders caused by CAG repeat expansions. Although recently, many studies have investigated the pathological features and development of polyQ diseases, many questions remain unanswered. The advancement of new gene-editing technologies, especially the CRISPR-Cas9 technique, has undeniable value for the generation of relevant polyQ models, which substantially support the research process. Here, we review how these tools have been used to correct disease-causing mutations or create isogenic cell lines with different numbers of CAG repeats. We characterize various cellular models such as HEK 293 cells, patient-derived fibroblasts, human embryonic stem cells (hESCs), induced pluripotent stem cells (iPSCs) and animal models generated with the use of genome-editing technology.
Collapse
|
7
|
Clenbuterol-sensitive delayed outward potassium currents in a cell model of spinal and bulbar muscular atrophy. Pflugers Arch 2021; 473:1213-1227. [PMID: 34021780 DOI: 10.1007/s00424-021-02559-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by polyglutamine (polyQ) expansions in the androgen receptor (AR) gene. SBMA is characterized by selective dysfunction and degeneration of motor neurons in the brainstem and spinal cord through still unclear mechanisms in which ion channel modulation might play a central role as for other neurodegenerative diseases. The beta2-adrenergic agonist clenbuterol was observed to ameliorate the SBMA phenotype in mice and patient-derived myotubes. However, the underlying molecular mechanism has yet to be clarified. Here, we unveil that ionic current alterations induced by the expression of polyQ-expanded AR in motor neuron-derived MN-1 cells are attenuated by the administration of clenbuterol. Our combined electrophysiological and pharmacological approach allowed us to reveal that clenbuterol modifies delayed outward potassium currents. Overall, we demonstrated that the protection provided by clenbuterol restores the normal function through the modulation of KV2-type outward potassium currents, possibly contributing to the protective effect on motor neuron toxicity in SBMA.
Collapse
|
8
|
Martínez-Rojas VA, Jiménez-Garduño AM, Michelatti D, Tosatto L, Marchioretto M, Arosio D, Basso M, Pennuto M, Musio C. ClC-2-like Chloride Current Alterations in a Cell Model of Spinal and Bulbar Muscular Atrophy, a Polyglutamine Disease. J Mol Neurosci 2020; 71:662-674. [PMID: 32856205 DOI: 10.1007/s12031-020-01687-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by expansions of a polyglutamine (polyQ) tract in the androgen receptor (AR) gene. SBMA is associated with the progressive loss of lower motor neurons, together with muscle weakness and atrophy. PolyQ-AR is converted to a toxic species upon binding to its natural ligands, testosterone, and dihydrotestosterone (DHT). Our previous patch-clamp studies on a motor neuron-derived cell model of SBMA showed alterations in voltage-gated ion currents. Here, we identified and characterized chloride currents most likely belonging to the chloride channel-2 (ClC-2) subfamily, which showed significantly increased amplitudes in the SBMA cells. The treatment with the pituitary adenylyl cyclase-activating polypeptide (PACAP), a neuropeptide with a proven protective effect in a mouse model of SBMA, recovered chloride channel current alterations in SBMA cells. These observations suggest that the CIC-2 currents are affected in SBMA, an alteration that may contribute and potentially determine the pathophysiology of the disease.
Collapse
Affiliation(s)
- Vladimir A Martínez-Rojas
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) & LabSSAH, Bruno Kessler Foundation (FBK), Trento, Italy
| | - Aura M Jiménez-Garduño
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) & LabSSAH, Bruno Kessler Foundation (FBK), Trento, Italy.,Departamento de Ciencias de la Salud, Escuela de Ciencias, Universidad de las Américas Puebla (UDLAP), San Andrés Cholula, Puebla, Mexico
| | - Daniela Michelatti
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) & LabSSAH, Bruno Kessler Foundation (FBK), Trento, Italy.,CIBIO Department, Laboratory of Chromatin Biology and Epigenetics, University of Trento, Trento, Italy
| | - Laura Tosatto
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) & LabSSAH, Bruno Kessler Foundation (FBK), Trento, Italy
| | - Marta Marchioretto
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) & LabSSAH, Bruno Kessler Foundation (FBK), Trento, Italy
| | - Daniele Arosio
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) & LabSSAH, Bruno Kessler Foundation (FBK), Trento, Italy
| | - Manuela Basso
- CIBIO Department, Laboratory of Transcriptional Neurobiology, University of Trento, Trento, Italy
| | - Maria Pennuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.,Veneto Institute of Molecular Medicine, Padova, Italy
| | - Carlo Musio
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) & LabSSAH, Bruno Kessler Foundation (FBK), Trento, Italy.
| |
Collapse
|
9
|
Chivet M, Marchioretti C, Pirazzini M, Piol D, Scaramuzzino C, Polanco MJ, Romanello V, Zuccaro E, Parodi S, D’Antonio M, Rinaldi C, Sambataro F, Pegoraro E, Soraru G, Pandey UB, Sandri M, Basso M, Pennuto M. Polyglutamine-Expanded Androgen Receptor Alteration of Skeletal Muscle Homeostasis and Myonuclear Aggregation Are Affected by Sex, Age and Muscle Metabolism. Cells 2020; 9:cells9020325. [PMID: 32019272 PMCID: PMC7072234 DOI: 10.3390/cells9020325] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/18/2022] Open
Abstract
Polyglutamine (polyQ) expansions in the androgen receptor (AR) gene cause spinal and bulbar muscular atrophy (SBMA), a neuromuscular disease characterized by lower motor neuron (MN) loss and skeletal muscle atrophy, with an unknown mechanism. We generated new mouse models of SBMA for constitutive and inducible expression of mutant AR and performed biochemical, histological and functional analyses of phenotype. We show that polyQ-expanded AR causes motor dysfunction, premature death, IIb-to-IIa/IIx fiber-type change, glycolytic-to-oxidative fiber-type switching, upregulation of atrogenes and autophagy genes and mitochondrial dysfunction in skeletal muscle, together with signs of muscle denervation at late stage of disease. PolyQ expansions in the AR resulted in nuclear enrichment. Within the nucleus, mutant AR formed 2% sodium dodecyl sulfate (SDS)-resistant aggregates and inclusion bodies in myofibers, but not spinal cord and brainstem, in a process exacerbated by age and sex. Finally, we found that two-week induction of expression of polyQ-expanded AR in adult mice was sufficient to cause premature death, body weight loss and muscle atrophy, but not aggregation, metabolic alterations, motor coordination and fiber-type switch, indicating that expression of the disease protein in the adulthood is sufficient to recapitulate several, but not all SBMA manifestations in mice. These results imply that chronic expression of polyQ-expanded AR, i.e. during development and prepuberty, is key to induce the full SBMA muscle pathology observed in patients. Our data support a model whereby chronic expression of polyQ-expanded AR triggers muscle atrophy through toxic (neomorphic) gain of function mechanisms distinct from normal (hypermorphic) gain of function mechanisms.
Collapse
Affiliation(s)
- Mathilde Chivet
- Dulbecco Telethon Institute, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy; (M.C.); (D.P.); (M.J.P.)
| | - Caterina Marchioretti
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (M.P.); (V.R.); (E.Z.); (M.S.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Marco Pirazzini
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (M.P.); (V.R.); (E.Z.); (M.S.)
- Myology Center (Cir-Myo), University of Padova, 35129 Padova, Italy; (E.P.); (G.S.)
| | - Diana Piol
- Dulbecco Telethon Institute, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy; (M.C.); (D.P.); (M.J.P.)
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (M.P.); (V.R.); (E.Z.); (M.S.)
| | - Chiara Scaramuzzino
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy; (C.S.); (S.P.)
| | - Maria Josè Polanco
- Dulbecco Telethon Institute, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy; (M.C.); (D.P.); (M.J.P.)
| | - Vanina Romanello
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (M.P.); (V.R.); (E.Z.); (M.S.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
- Myology Center (Cir-Myo), University of Padova, 35129 Padova, Italy; (E.P.); (G.S.)
| | - Emanuela Zuccaro
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (M.P.); (V.R.); (E.Z.); (M.S.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Sara Parodi
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy; (C.S.); (S.P.)
| | - Maurizio D’Antonio
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Carlo Rinaldi
- Department of Paediatrics, University of Oxford, OX1 3QX Oxford, UK;
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, 35128 Padova, Italy;
- Padova Neuroscience Center (PNC), 35100 Padova, Italy
| | - Elena Pegoraro
- Myology Center (Cir-Myo), University of Padova, 35129 Padova, Italy; (E.P.); (G.S.)
- Department of Neuroscience (DNS), University of Padova, 35128 Padova, Italy;
- Padova Neuroscience Center (PNC), 35100 Padova, Italy
| | - Gianni Soraru
- Myology Center (Cir-Myo), University of Padova, 35129 Padova, Italy; (E.P.); (G.S.)
- Department of Neuroscience (DNS), University of Padova, 35128 Padova, Italy;
- Padova Neuroscience Center (PNC), 35100 Padova, Italy
| | - Udai Bhan Pandey
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA;
- Division of Child Neurology, Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Marco Sandri
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (M.P.); (V.R.); (E.Z.); (M.S.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
- Myology Center (Cir-Myo), University of Padova, 35129 Padova, Italy; (E.P.); (G.S.)
| | - Manuela Basso
- Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy;
| | - Maria Pennuto
- Dulbecco Telethon Institute, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy; (M.C.); (D.P.); (M.J.P.)
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (M.P.); (V.R.); (E.Z.); (M.S.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
- Myology Center (Cir-Myo), University of Padova, 35129 Padova, Italy; (E.P.); (G.S.)
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy; (C.S.); (S.P.)
- Padova Neuroscience Center (PNC), 35100 Padova, Italy
- Correspondence: ; Tel.: +39 049 8276069
| |
Collapse
|
10
|
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by a polyglutamine (polyQ) expansion in the androgen receptor (AR). Despite the fact that the monogenic cause of SBMA has been known for nearly 3 decades, there is no effective treatment for this disease, underscoring the complexity of the pathogenic mechanisms that lead to a loss of motor neurons and muscle in SBMA patients. In the current review, we provide an overview of the system-wide clinical features of SBMA, summarize the structure and function of the AR, discuss both gain-of-function and loss-of-function mechanisms of toxicity caused by polyQ-expanded AR, and describe the cell and animal models utilized in the study of SBMA. Additionally, we summarize previously conducted clinical trials which, despite being based on positive results from preclinical studies, proved to be largely ineffective in the treatment of SBMA; nonetheless, these studies provide important insights as researchers develop the next generation of therapies.
Collapse
Affiliation(s)
- Frederick J Arnold
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 411E Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, Pennsylvania, 19107, USA
| | - Diane E Merry
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 411E Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, Pennsylvania, 19107, USA.
| |
Collapse
|
11
|
Kondo N, Tohnai G, Sahashi K, Iida M, Kataoka M, Nakatsuji H, Tsutsumi Y, Hashizume A, Adachi H, Koike H, Shinjo K, Kondo Y, Sobue G, Katsuno M. DNA methylation inhibitor attenuates polyglutamine-induced neurodegeneration by regulating Hes5. EMBO Mol Med 2019; 11:e8547. [PMID: 30940675 PMCID: PMC6505579 DOI: 10.15252/emmm.201708547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/18/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a polyglutamine-mediated neuromuscular disease caused by a CAG repeat expansion in the androgen receptor (AR) gene. While transcriptional dysregulation is known to play a critical role in the pathogenesis of SBMA, the underlying molecular pathomechanisms remain unclear. DNA methylation is a fundamental epigenetic modification that silences the transcription of various genes that have a CpG-rich promoter. Here, we showed that DNA methyltransferase 1 (Dnmt1) is highly expressed in the spinal motor neurons of an SBMA mouse model and in patients with SBMA. Both genetic Dnmt1 depletion and treatment with RG108, a DNA methylation inhibitor, ameliorated the viability of SBMA model cells. Furthermore, a continuous intracerebroventricular injection of RG108 mitigated the phenotype of SBMA mice. DNA methylation array analysis identified hairy and enhancer of split 5 (Hes5) as having a CpG island with hyper-methylation in the promoter region, and the Hes5 expression was strongly silenced in SBMA. Moreover, Hes5 over-expression rescued the SBMA cells possibly by inducing Smad2 phosphorylation. Our findings suggest DNA hyper-methylation underlies the neurodegeneration in SBMA.
Collapse
Affiliation(s)
- Naohide Kondo
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Genki Tohnai
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kentaro Sahashi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Madoka Iida
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mayumi Kataoka
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideaki Nakatsuji
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yutaka Tsutsumi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Hashizume
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Adachi
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Haruki Koike
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Shinjo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
12
|
Abstract
Resistance to steroid hormones presents a serious problem with respect to their mass use in therapy. It may be caused genetically by mutation of genes involved in hormonal signaling, not only steroid receptors, but also other players in the signaling cascade as co-regulators and other nuclear factors, mediating the hormone-born signal. Another possibility is acquired resistance which may develop under long-term steroid treatment, of which a particular case is down regulation of the receptors. In the review recent knowledge is summarized on the mechanism of main steroid hormone action, pointing to already proven or potential sites causing steroid resistance. We have attempted to address following questions: 1) What does stay behind differences among patients as to their response to the (anti)steroid treatment? 2) Why do various tissues/cells respond differently to the same steroid hormone though they contain the same receptors? 3) Are such differences genetically dependent? The main attention was devoted to glucocorticoids as the most frequently used steroid therapeutics. Further, androgen insensitivity is discussed with a particular attention to acquired resistance to androgen deprivation therapy of prostate cancer. Finally the potential causes are outlined of breast and related cancer(s) resistance to antiestrogen therapy.
Collapse
Affiliation(s)
- R Hampl
- Institute of Endocrinology, Prague, Czech Republic.
| | | |
Collapse
|
13
|
X-Linked Spinal and Bulbar Muscular Atrophy: From Clinical Genetic Features and Molecular Pathology to Mechanisms Underlying Disease Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:103-133. [PMID: 29427100 DOI: 10.1007/978-3-319-71779-1_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spinal and Bulbar Muscular Atrophy (SBMA) is an inherited neuromuscular disorder caused by a CAG-polyglutamine (polyQ) repeat expansion in the androgen receptor (AR) gene. Unlike other polyQ diseases, where the function of the native causative protein is unknown, the biology of AR is well understood, and this knowledge has informed our understanding of how native AR function interfaces with polyQ-AR dysfunction. Furthermore, ligand-dependent activation of AR has been linked to SBMA disease pathogenesis, and has led to a thorough study of androgen-mediated effects on polyQ-AR stability, degradation, and post-translational modifications, as well as their roles in the disease process. Transcriptional dysregulation, proteostasis dysfunction, and mitochondrial abnormalities are central to polyQ-AR neurotoxicity, most likely via a 'change-of-function' mechanism. Intriguingly, recent work has demonstrated a principal role for skeletal muscle in SBMA disease pathogenesis, indicating that polyQ-AR toxicity initiates in skeletal muscle and results in secondary motor neuron demise. The existence of robust animal models for SBMA has permitted a variety of preclinical trials, driven by recent discoveries of altered cellular processes, and some of this preclinical work has led to human clinical trials. In this chapter, we review SBMA clinical features and disease biology, discuss our current understanding of the cellular and molecular basis of SBMA pathogenesis, and highlight ongoing efforts toward therapy development.
Collapse
|
14
|
Borgia D, Malena A, Spinazzi M, Desbats MA, Salviati L, Russell AP, Miotto G, Tosatto L, Pegoraro E, Sorarù G, Pennuto M, Vergani L. Increased mitophagy in the skeletal muscle of spinal and bulbar muscular atrophy patients. Hum Mol Genet 2017; 26:1087-1103. [PMID: 28087734 PMCID: PMC5409076 DOI: 10.1093/hmg/ddx019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/21/2016] [Indexed: 12/13/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disorder caused by polyglutamine expansion in the androgen receptor (AR) and characterized by the loss of lower motor neurons. Here we investigated pathological processes occurring in muscle biopsy specimens derived from SBMA patients and, as controls, age-matched healthy subjects and patients suffering from amyotrophic lateral sclerosis (ALS) and neurogenic atrophy. We detected atrophic fibers in the muscle of SBMA, ALS and neurogenic atrophy patients. In addition, SBMA muscle was characterized by the presence of a large number of hypertrophic fibers, with oxidative fibers having a larger size compared with glycolytic fibers. Polyglutamine-expanded AR expression was decreased in whole muscle, yet enriched in the nucleus, and localized to mitochondria. Ultrastructural analysis revealed myofibrillar disorganization and streaming in zones lacking mitochondria and degenerating mitochondria. Using molecular (mtDNA copy number), biochemical (citrate synthase and respiratory chain enzymes) and morphological (dark blue area in nicotinamide adenine dinucleotide-stained muscle cross-sections) analyses, we found a depletion of the mitochondria associated with enhanced mitophagy. Mass spectrometry analysis revealed an increase of phosphatidylethanolamines and phosphatidylserines in mitochondria isolated from SBMA muscles, as well as a 50% depletion of cardiolipin associated with decreased expression of the cardiolipin synthase gene. These observations suggest a causative link between nuclear polyglutamine-expanded AR accumulation, depletion of mitochondrial mass, increased mitophagy and altered mitochondrial membrane composition in SBMA muscle patients. Given the central role of mitochondria in cell bioenergetics, therapeutic approaches toward improving the mitochondrial network are worth considering to support SBMA patients.
Collapse
Affiliation(s)
- Doriana Borgia
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Adriana Malena
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Marco Spinazzi
- VIB Center for the Biology of Disease, KU Leuven Center for Human Genetics, Leuven, Belgium
| | - Maria Andrea Desbats
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Padova, Italy, and IRP Città della Speranza, Padova, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Padova, Italy, and IRP Città della Speranza, Padova, Italy
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Giovanni Miotto
- Department of Molecular Medicine, University of Padova, Padova, Italy.,Proteomic Center of Padova University, VIMM and Padova University Hospital, Padova, Italy
| | - Laura Tosatto
- Dulbecco Telethon Institute, Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Gianni Sorarù
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Maria Pennuto
- Dulbecco Telethon Institute, Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Lodovica Vergani
- Department of Neurosciences, University of Padova, Padova, Italy
| |
Collapse
|
15
|
Altered ionic currents and amelioration by IGF-1 and PACAP in motoneuron-derived cells modelling SBMA. Biophys Chem 2017; 229:68-76. [PMID: 28511915 DOI: 10.1016/j.bpc.2017.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/07/2017] [Indexed: 12/31/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA), also known as Kennedy's disease, is a motor neuron disease caused by the expansion of a polymorphic CAG tandem repeat encoding a polyglutamine (polyQ) tract in the androgen receptor (AR) gene. SBMA is triggered by the binding of mutant AR to its natural ligands, testosterone and dihydrotestosterone (DHT). To investigate the neuronal alterations of motor neuron cell models of SBMA, we applied patch-clamp methods to verify how polyQ expansions in the AR alter cell ionic currents. We used mouse motoneuron-derived MN-1 cells expressing normal AR (MN24Q) and mutant AR (MN100Q treated cells with vehicle EtOH and DHT). We observed a reduction of the current flux mainly at depolarizing potentials in the DHT-treated cells, while the dissection of macroscopic currents showed single different cationic currents belonging to voltage-gated channels. Also, we treated the cells with IGF-1 and PACAP, which have previously been shown to protect MN-1 cells from the toxicity of mutant AR, and we found an amelioration of the altered currents. Our results suggest that the electrophysiological correlate of SBMA is a suitable reference point for the identification of disease symptoms and for future therapeutic targets.
Collapse
|
16
|
Milioto C, Malena A, Maino E, Polanco MJ, Marchioretti C, Borgia D, Pereira MG, Blaauw B, Lieberman AP, Venturini R, Plebani M, Sambataro F, Vergani L, Pegoraro E, Sorarù G, Pennuto M. Beta-agonist stimulation ameliorates the phenotype of spinal and bulbar muscular atrophy mice and patient-derived myotubes. Sci Rep 2017; 7:41046. [PMID: 28117338 PMCID: PMC5259768 DOI: 10.1038/srep41046] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/15/2016] [Indexed: 02/02/2023] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease characterized by the loss of lower motor neurons. SBMA is caused by expansions of a polyglutamine tract in the gene coding for androgen receptor (AR). Expression of polyglutamine-expanded AR causes damage to motor neurons and skeletal muscle cells. Here we investigated the effect of β-agonist stimulation in SBMA myotube cells derived from mice and patients, and in knock-in mice. We show that treatment of myotubes expressing polyglutamine-expanded AR with the β-agonist clenbuterol increases their size. Clenbuterol activated the phosphatidylinositol-3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) pathway and decreased the accumulation of polyglutamine-expanded AR. Treatment of SBMA knock-in mice with clenbuterol, which was started at disease onset, ameliorated motor function and extended survival. Clenbuterol improved muscle pathology, attenuated the glycolytic-to-oxidative metabolic alterations occurring in SBMA muscles and induced hypertrophy of both glycolytic and oxidative fibers. These results indicate that β-agonist stimulation is a novel therapeutic strategy for SBMA.
Collapse
Affiliation(s)
- Carmelo Milioto
- Dulbecco Telethon Institute, Centre for Integrative Biology, University of Trento, 38123 Trento, Italy.,Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy.,Dipartimento di Medicina Sperimentale, University of Genova, 16100 Genova, Italy
| | - Adriana Malena
- Department of Neurosciences, University of Padova, 35100 Padova, Italy
| | - Eleonora Maino
- Dulbecco Telethon Institute, Centre for Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Maria J Polanco
- Dulbecco Telethon Institute, Centre for Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Caterina Marchioretti
- Dulbecco Telethon Institute, Centre for Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Doriana Borgia
- Department of Neurosciences, University of Padova, 35100 Padova, Italy
| | - Marcelo Gomes Pereira
- Venetian Institute of Molecular Medicine, Department of Biomedical Science, University of Padova, 35100 Padova, Italy
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine, Department of Biomedical Science, University of Padova, 35100 Padova, Italy
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Roberta Venturini
- Department of Laboratory Medicine, University Hospital of Padova, 35100 Padova, Italy
| | - Mario Plebani
- Department of Laboratory Medicine, University Hospital of Padova, 35100 Padova, Italy
| | - Fabio Sambataro
- Department of Experimental &Clinical Medical Sciences (DISM), University of Udine, 33100 Udine, Italy
| | - Lodovica Vergani
- Department of Neurosciences, University of Padova, 35100 Padova, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padova, 35100 Padova, Italy
| | - Gianni Sorarù
- Department of Neurosciences, University of Padova, 35100 Padova, Italy
| | - Maria Pennuto
- Dulbecco Telethon Institute, Centre for Integrative Biology, University of Trento, 38123 Trento, Italy
| |
Collapse
|
17
|
Polanco MJ, Parodi S, Piol D, Stack C, Chivet M, Contestabile A, Miranda HC, Lievens PMJ, Espinoza S, Jochum T, Rocchi A, Grunseich C, Gainetdinov RR, Cato ACB, Lieberman AP, La Spada AR, Sambataro F, Fischbeck KH, Gozes I, Pennuto M. Adenylyl cyclase activating polypeptide reduces phosphorylation and toxicity of the polyglutamine-expanded androgen receptor in spinobulbar muscular atrophy. Sci Transl Med 2016; 8:370ra181. [PMID: 28003546 PMCID: PMC11349029 DOI: 10.1126/scitranslmed.aaf9526] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 05/02/2016] [Accepted: 12/01/2016] [Indexed: 12/16/2022]
Abstract
Spinobulbar muscular atrophy (SBMA) is an X-linked neuromuscular disease caused by polyglutamine (polyQ) expansion in the androgen receptor (AR) gene. SBMA belongs to the family of polyQ diseases, which are fatal neurodegenerative disorders mainly caused by protein-mediated toxic gain-of-function mechanisms and characterized by deposition of misfolded proteins in the form of aggregates. The neurotoxicity of the polyQ proteins can be modified by phosphorylation at specific sites, thereby providing the rationale for the development of disease-specific treatments. We sought to identify signaling pathways that modulate polyQ-AR phosphorylation for therapy development. We report that cyclin-dependent kinase 2 (CDK2) phosphorylates polyQ-AR specifically at Ser96 Phosphorylation of polyQ-AR by CDK2 increased protein stabilization and toxicity and is negatively regulated by the adenylyl cyclase (AC)/protein kinase A (PKA) signaling pathway. To translate these findings into therapy, we developed an analog of pituitary adenylyl cyclase activating polypeptide (PACAP), a potent activator of the AC/PKA pathway. Chronic intranasal administration of the PACAP analog to knock-in SBMA mice reduced Ser96 phosphorylation, promoted polyQ-AR degradation, and ameliorated disease outcome. These results provide proof of principle that noninvasive therapy based on the use of PACAP analogs is a therapeutic option for SBMA.
Collapse
Affiliation(s)
- Maria Josè Polanco
- Dulbecco Telethon Institute, Centre for Integrative Biology, University of Trento, 38123 Trento, Italy
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Sara Parodi
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diana Piol
- Dulbecco Telethon Institute, Centre for Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Conor Stack
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mathilde Chivet
- Dulbecco Telethon Institute, Centre for Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Andrea Contestabile
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Helen C Miranda
- Departments of Cellular and Molecular Medicine, Pediatrics, and Neurosciences, and Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Patricia M-J Lievens
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, 37134 Verona, Italy
| | - Stefano Espinoza
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Tobias Jochum
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, and abcr GmbH, Karlsruhe, Germany
| | - Anna Rocchi
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Christopher Grunseich
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, 143025 Moscow, Russia
| | - Andrew C B Cato
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Albert R La Spada
- Departments of Cellular and Molecular Medicine, Pediatrics, and Neurosciences, and Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fabio Sambataro
- Department of Experimental and Clinical Medical Sciences (DISM), University of Udine, 33100 Udine, Italy
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Illana Gozes
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 69978, Israel
| | - Maria Pennuto
- Dulbecco Telethon Institute, Centre for Integrative Biology, University of Trento, 38123 Trento, Italy.
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| |
Collapse
|
18
|
Glycolytic-to-oxidative fiber-type switch and mTOR signaling activation are early-onset features of SBMA muscle modified by high-fat diet. Acta Neuropathol 2016; 132:127-44. [PMID: 26971100 PMCID: PMC4911374 DOI: 10.1007/s00401-016-1550-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 12/13/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by the expansion of a polyglutamine tract in the androgen receptor (AR). The mechanism by which expansion of polyglutamine in AR causes muscle atrophy is unknown. Here, we investigated pathological pathways underlying muscle atrophy in SBMA knock-in mice and patients. We show that glycolytic muscles were more severely affected than oxidative muscles in SBMA knock-in mice. Muscle atrophy was associated with early-onset, progressive glycolytic-to-oxidative fiber-type switch. Whole genome microarray and untargeted lipidomic analyses revealed enhanced lipid metabolism and impaired glycolysis selectively in muscle. These metabolic changes occurred before denervation and were associated with a concurrent enhancement of mechanistic target of rapamycin (mTOR) signaling, which induced peroxisome proliferator-activated receptor γ coactivator 1 alpha (PGC1α) expression. At later stages of disease, we detected mitochondrial membrane depolarization, enhanced transcription factor EB (TFEB) expression and autophagy, and mTOR-induced protein synthesis. Several of these abnormalities were detected in the muscle of SBMA patients. Feeding knock-in mice a high-fat diet (HFD) restored mTOR activation, decreased the expression of PGC1α, TFEB, and genes involved in oxidative metabolism, reduced mitochondrial abnormalities, ameliorated muscle pathology, and extended survival. These findings show early-onset and intrinsic metabolic alterations in SBMA muscle and link lipid/glucose metabolism to pathogenesis. Moreover, our results highlight an HFD regime as a promising approach to support SBMA patients.
Collapse
|
19
|
Pennuto M, Gozes I. Introduction to the Special Issue on Spinal and Bulbar Muscular Atrophy. J Mol Neurosci 2016; 58:313-6. [PMID: 26875173 DOI: 10.1007/s12031-016-0720-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 11/28/2022]
Abstract
This special issue is dedicated to spinal and bulbar muscular atrophy (SBMA) and is based on the conference sponsored by the European Neuromuscular Centre (ENMC) held in March 2015. SBMA, also known as Kennedy's disease, is a neurodegenerative disease caused by an expansion of a repeat of the trinucleotide CAG encoding glutamine in the gene encoding androgen receptor (AR). Expansion of polyglutamine in the AR results in selective lower motor neuron degeneration and skeletal muscle atrophy. SBMA belongs to the family of polyglutamine diseases, which also includes Huntington's disease, dentatorubral-pallidoluysian atrophy, and spinocerebellar ataxia (SCA) types 1, 2, 3, 6, 7, and 17. Within the family of polyglutamine diseases, SBMA is unique in its gender-specificity, with full disease manifestation restricted to males. Since the disease is ligand (androgen)-dependent, SBMA manifests primarily in males which have high levels of circulating androgens in the serum; females are usually asymptomatic. Indeed, the polyglutamine-expanded AR is converted to a neurotoxic species upon binding to androgens. The mechanisms through which androgen binding triggers the disease are under investigation. Although several therapeutic strategies have been proposed to date, there is currently no effective therapy to arrest or delay disease progression in patients.
Collapse
Affiliation(s)
- Maria Pennuto
- Dulbecco Telethon Institute Lab of Neurodegenerative Diseases, Centre for Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy.
| | - Illana Gozes
- Lily and Avraham Gildor Chair for the Investigation of Growth Factors, Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|