1
|
Li Y, Wei C, Wang W, Li Q, Wang Z. Tropomyosin receptor kinase B (TrkB) signalling: targeted therapy in neurogenic tumours. J Pathol Clin Res 2022; 9:89-99. [PMID: 36533776 PMCID: PMC9896160 DOI: 10.1002/cjp2.307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Tropomyosin receptor kinase B (TrkB), a transmembrane receptor protein, has been found to play a pivotal role in neural development. This protein is encoded by the neurotrophic receptor tyrosine kinase 2 (NTRK2) gene, and its abnormal activation caused by NTRK2 overexpression or fusion can contribute to tumour initiation, progression, and resistance to therapeutics in multiple types of neurogenic tumours. Targeted therapies for this mechanism have been designed and developed in preclinical and clinical studies, including selective TrkB inhibitors and pan-TRK inhibitors. This review describes the gene structure, biological function, abnormal TrkB activation mechanism, and current-related targeted therapies in neurogenic tumours.
Collapse
Affiliation(s)
- Yuehua Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiPR China
| | - Chengjiang Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiPR China
| | - Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiPR China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiPR China
| | - Zhi‐Chao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiPR China
| |
Collapse
|
2
|
Serum Biomarkers of Regeneration and Plasticity are Associated with Functional Outcome in Pediatric Neurocritical Illness: An Exploratory Study. Neurocrit Care 2021; 35:457-467. [PMID: 33665769 PMCID: PMC9344468 DOI: 10.1007/s12028-021-01199-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/23/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND/OBJECTIVE Pediatric neurocritical care survivorship is frequently accompanied by functional impairments. Lack of prognostic biomarkers is a barrier to early identification and management of impairment. We explored the association between blood biomarkers and functional impairment in children with acute acquired brain injury. METHODS This study is a secondary analysis of a randomized control trial evaluating early versus usual care rehabilitation in the pediatric intensive care unit (PICU). Forty-four children (17 [39%] female, median age 11 [interquartile range 6-13] years) with acute acquired brain injury admitted to the PICU were studied. A single center obtained serum samples on admission days 0, 1, 3, 5, and the day closest to hospital discharge. Biomarkers relevant to brain injury (neuron specific enolase [NSE], S100b), inflammation (interleukin [IL-6], C-reactive protein), and regeneration (brain-derived neurotrophic factor [BDNF], vascular endothelial growth factor [VEGF]) were collected. Biomarkers were analyzed using a Luminex® bioassay. Functional status scale (FSS) scores were abstracted from the medical record. New functional impairment was defined as a (worse) FSS score at hospital discharge compared to pre-PICU (baseline). Individual biomarker fluorescence index (FI) values for each sample collection day were correlated with new functional impairment using Spearman rank correlation coefficient (ρ). Trends in repeated measures of biomarker FI over time were explored graphically, and the association between repeated measures of biomarker FI and new functional impairment was analyzed using covariate adjusted linear mixed-effect models. RESULTS Functional impairment was inversely correlated with markers of regeneration and plasticity including BDNF at day 3 (ρ = - 0.404, p = .015), day 5 (ρ = - 0.549, p = 0.005) and hospital discharge (ρ = - 0.420, p = 0.026) and VEGF at day 1 (ρ = - 0.282, p = 0.008) and hospital discharge (ρ = - 0.378, p = 0.047), such that lower levels of both markers at each time point were associated with greater impairment. Similarly, repeated measures of BDNF and VEGF were inversely correlated with new functional impairment (B = - 0.001, p = 0.001 and B = - 0.001, p = 0.003, respectively). NSE, a biomarker of acute brain injury, showed a positive correlation between day 0 levels and new functional impairment (ρ = 0.320, p = 0.044). CONCLUSIONS Blood-based biomarkers of regeneration and plasticity may hold prognostic utility for functional impairment among pediatric patients with neurocritical illness and warrant further investigation.
Collapse
|
3
|
Arituluk ZC, Horne J, Adhikari B, Steltzner J, Mansur S, Ahirwar P, Velu SE, Gray NE, Ciesla LM, Bao Y. Identification of TrkB Binders from Complex Matrices Using a Magnetic Drug Screening Nanoplatform. ACS APPLIED BIO MATERIALS 2021; 4:6244-6255. [PMID: 35006910 DOI: 10.1021/acsabm.1c00552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) and its receptor tyrosine receptor kinase B (TrkB) have been shown to play an important role in numerous neurological disorders, such as Alzheimer's disease. The identification of biologically active compounds interacting with TrkB serves as a drug discovery strategy to identify drug leads for neurological disorders. Here, we report effective immobilization of functional TrkB on magnetic iron oxide nanoclusters, where TrkB receptors behave as "smart baits" to bind compounds from mixtures and magnetic nanoclusters enable rapid isolation through magnetic separation. The presence of the immobilized TrkB was confirmed by specific antibody labeling. Subsequently, the activity of the TrkB on iron oxide nanoclusters was evaluated with ATP/ADP conversion experiments using a known TrkB agonist. The immobilized TrkB receptors can effectively identify binders from mixtures containing known binders, synthetic small molecule mixtures, and Gotu Kola (Centella asiatica) plant extracts. The identified compounds were analyzed by an ultrahigh-performance liquid chromatography system coupled with a quadrupole time-of-flight mass spectrometer. Importantly, some of the identified TrkB binders from Gotu Kola plant extracts matched with compounds previously linked to neuroprotective effects observed for a Gotu Kola extract approved for use in a clinical trial. Our studies suggest that the possible therapeutic effects of the Gotu Kola plant extract in dementia treatment, at least partially, might be associated with compounds interacting with TrkB. The unique feature of this approach is its ability to fast screen potential drug leads using less explored transmembrane targets. This platform works as a drug-screening funnel at early stages of the drug discovery pipeline. Therefore, our approach will not only greatly benefit drug discovery processes using transmembrane proteins as targets but also allow for evaluation and validation of cellular pathways targeted by drug leads.
Collapse
Affiliation(s)
- Zekiye Ceren Arituluk
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States.,Department of Pharmaceutical Botany, Hacettepe University, Ankara 06100, Turkey
| | - Jesse Horne
- Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Bishnu Adhikari
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Jeffrey Steltzner
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Shomit Mansur
- Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Parmanand Ahirwar
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Sadanandan E Velu
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Nora E Gray
- Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Lukasz M Ciesla
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Yuping Bao
- Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
4
|
Guzel T, Mech K, Iwanowska M, Wroński M, Słodkowski M. Brain derived neurotrophic factor declines after complete curative resection in gastrointestinal cancer. PeerJ 2021; 9:e11718. [PMID: 34395067 PMCID: PMC8327966 DOI: 10.7717/peerj.11718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/13/2021] [Indexed: 11/20/2022] Open
Abstract
Background Brain derived neurotrophic factor (BDNF) is a neurotrophin involved in neural and metabolic diseases, but it is also one of the crucial factors in cancer development and metastases. In the current study, we investigated serum BDNF concentrations in patients that underwent surgical treatment for colorectal cancer or pancreatic cancer. Methods Serum BDNF concentrations were measured with standard enzyme-linked immunosorbent assays, before and on the third day after the operation, in 50 consecutive patients with colorectal cancer and 25 patients with pancreatic cancer (tumours in the head of pancreas). We compared pre- and postoperative BDNF levels, according to the subsequent TNM stage, histologic stage, lymph node involvement, neuro- or angio-invasion, and resection range. Results In the pancreatic cancer group, BDNF concentrations fell significantly postoperatively (p = 0.011). In patients that underwent resections, BDNF concentrations fell (p = 0.0098), but not in patients that did not undergo resections (i.e., laparotomy alone). There were significant pre- and postoperative differences in BDNF levels among patients with (p = 0.021) and without (p = 0.034) distant metastases. Significant reductions in BDNF were observed postoperatively in patients with small tumours (i.e., below the median size; p = 0.023), in patients with negative angio- or lymphatic invasion (p = 0.028, p = 0.011, respectively), and in patients with lymph node ratios above 0.17 (p = 0.043). In the colon cancer group, the serum BDNF concentrations significantly fell postoperatively in the entire group (p = 0.0076) and in subgroups of patients with or without resections (p = 0.034, p = 0.0179, respectively). Significant before-after differences were found in subgroups with angioinvasions (p = 0.050) and in those without neuroinvasions (p = 0.049). Considering the TNM stages, the postoperative BDNF concentration fell in groups with (p = 0.0218) and without (p = 0.034) distant metastases and in patients with tumours below the median size (p = 0.018). Conclusion Our results suggested that BDNF might play an important role in gastrointestinal cancer development. BDNF levels were correlated with tumour volume, and with neuro-, angio- and lymphatic invasions. In pancreatic cancer, BDNF concentrations varied according to the surgical procedure and they fell significantly after tumour resections. Thus, BDNF may serve as a potential marker of complete resections in underdiagnosed patients. However, this hypothesis requires further investigation. In contrast, no differences according to the procedure was made in patients with colon cancer.
Collapse
Affiliation(s)
- Tomasz Guzel
- Department of General, Gastroenterology and Oncologic Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Mech
- Department of General, Gastroenterology and Oncologic Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Marzena Iwanowska
- Department of Laboratory Diagnostics, Medical University of Warsaw, Warsaw, Poland
| | - Marek Wroński
- Department of General, Gastroenterology and Oncologic Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Słodkowski
- Department of General, Gastroenterology and Oncologic Surgery, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Ribeiro JT, Thieme S, Zettermann P, Leite AA, Zanella VG, Pilar EFS, Fonseca FP, Mesquita RA, Vargas PA, Dos Santos JN, Martins MD. Immunoexpression of BDNF, TrkB, and p75NTR receptors in peripheral neural lesions of the head and neck. J Oral Pathol Med 2020; 50:492-501. [PMID: 33222311 DOI: 10.1111/jop.13145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/20/2020] [Accepted: 11/11/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) and neurotrophin receptors have been recognized as fundamental regulators of normal brain development, homeostasis, and plasticity. They have also been studied in the behavior of central nervous system tumors. Here, we studied the pattern of BDNF, TrkB and p75NTR immunoexpression in peripheral benign and malignant neural lesions in head and neck. METHODS This cross-sectional analytical study included 79 cases of head and neck neural lesions. Nineteen cases of traumatic neuromas (TN), 20 cases of granular cell tumors (GCT), 16 cases of neurofibromas (NF), 20 cases of schwannomas (SC), and 4 malignant peripheral nerve sheath tumor (MPNST) were submitted to immunohistochemistry with BDNF, TrkB, and p75NTR antibodies. A semi-quantitative analysis was performed. RESULTS The analysis of BDNF demonstrated a high percentage of positive cells in TN, GCT and SC with a decrease in cases of NF and MPNST. TrkB presented a lower significant immunoexpression in GCT in relation to the TN, NF, SC, and MPNST (P < .0001); and TN showed less percentage of positive cell compared to SC (P = .0017). Regarding p75NTR, the percentage of positive cell was significantly reduced in MPNST compared GCT (P = .009), NF (P = .0138) and SC (P = .0069). Also, a decrease in TN compared to GCT (P = .007) was observed. CONCLUSIONS Our results showed the immunoreactivity of BDNF, TrkB, and p75NTR in head and neck peripheral neural lesions. Reduction of BDNF and p75NTR in MPNST might suggest down-regulation during the acquisition of malignant phenotype.
Collapse
Affiliation(s)
- Julia Turra Ribeiro
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Stéfanie Thieme
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Paula Zettermann
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Amanda Almeida Leite
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Virgilio Gonzales Zanella
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Head and Neck Surgery Department, Hospital Santa Rita, Complexo Hospitalar Santa Casa, Porto Alegre, Brazil
| | - Emily Ferreira Salles Pilar
- Experimental Pathology Unit, Clinics Hospital of Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Alves Mesquita
- Department of Oral Surgery and Pathology, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Pablo Agustin Vargas
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Jean Nunes Dos Santos
- Department of Oral Pathology, School of Dentistry, Federal University of Bahia, Salvador, Brazil
| | - Manoela Domingues Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Head and Neck Surgery Department, Hospital Santa Rita, Complexo Hospitalar Santa Casa, Porto Alegre, Brazil.,Department of Oral Medicine, Porto Alegre Clinics Hospital (HCPA/UFRGS), Porto Alegre, Brazil
| |
Collapse
|
6
|
Thomaz A, Jaeger M, Brunetto AL, Brunetto AT, Gregianin L, de Farias CB, Ramaswamy V, Nör C, Taylor MD, Roesler R. Neurotrophin Signaling in Medulloblastoma. Cancers (Basel) 2020; 12:E2542. [PMID: 32906676 PMCID: PMC7564905 DOI: 10.3390/cancers12092542] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 12/11/2022] Open
Abstract
Neurotrophins are a family of secreted proteins that act by binding to tropomyosin receptor kinase (Trk) or p75NTR receptors to regulate nervous system development and plasticity. Increasing evidence indicates that neurotrophins and their receptors in cancer cells play a role in tumor growth and resistance to treatment. In this review, we summarize evidence indicating that neurotrophin signaling influences medulloblastoma (MB), the most common type of malignant brain cancer afflicting children. We discuss the potential of neurotrophin receptors as new therapeutic targets for the treatment of MB. Overall, activation of TrkA and TrkC types of receptors seem to promote cell death, whereas TrkB might stimulate MB growth, and TrkB inhibition displays antitumor effects. Importantly, we show analyses of the gene expression profile of neurotrophins and their receptors in MB primary tumors, which indicate, among other findings, that higher levels of NTRK1 or NTRK2 are associated with reduced overall survival (OS) of patients with SHH MB tumors.
Collapse
Affiliation(s)
- Amanda Thomaz
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil
| | - Mariane Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - Algemir L. Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - André T. Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - Lauro Gregianin
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Department of Pediatrics, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Pediatric Oncology Service, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON 17-9702, Canada; (V.R.); (C.N.); (M.D.T.)
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Carolina Nör
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON 17-9702, Canada; (V.R.); (C.N.); (M.D.T.)
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Michael D. Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON 17-9702, Canada; (V.R.); (C.N.); (M.D.T.)
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil
| |
Collapse
|
7
|
Pinheiro KV, Thomaz A, Souza BK, Metcalfe VA, Freire NH, Brunetto AT, de Farias CB, Jaeger M, Bambini V, Smith CGS, Shaw L, Roesler R. Expression and pharmacological inhibition of TrkB and EGFR in glioblastoma. Mol Biol Rep 2020; 47:6817-6828. [PMID: 32862352 DOI: 10.1007/s11033-020-05739-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
A member of the Trk family of neurotrophin receptors, tropomyosin receptor kinase B (TrkB, encoded by the NTRK2 gene) is an increasingly important target in various cancer types, including glioblastoma (GBM). EGFR is among the most frequently altered oncogenes in GBM, and EGFR inhibition has been tested as an experimental therapy. Functional interactions between EGFR and TrkB have been demonstrated. In the present study, we investigated the role of TrkB and EGFR, and their interactions, in GBM. Analyses of NTRK2 and EGFR gene expression from The Cancer Genome Atlas (TCGA) datasets showed an increase in NTRK2 expression in the proneural subtype of GBM, and a strong correlation between NTRK2 and EGFR expression in glioma CpG island methylator phenotype (G-CIMP+) samples. We showed that when TrkB and EGFR inhibitors were combined, the inhibitory effect on A172 human GBM cells was more pronounced than when either inhibitor was given alone. When U87MG GBM cells were xenografted into the flank of nude mice, tumor growth was delayed by treatment with TrkB and EGFR inhibitors, given alone or combined, only at specific time points. Intracranial GBM growth in mice was not significantly affected by drug treatments. Our findings indicate that correlations between NTRK2 and EGFR expression occur in specific GBM subgroups. Also, our results using cultured cells suggest for the first time the potential of combining TrkB and EGFR inhibition for the treatment of GBM.
Collapse
Affiliation(s)
- Kelly V Pinheiro
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), Porto Alegre, RS, 90050-170, Brazil
| | - Amanda Thomaz
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), Porto Alegre, RS, 90050-170, Brazil.,Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA 4YG, UK
| | - Bárbara Kunzler Souza
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), Porto Alegre, RS, 90050-170, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Victoria Anne Metcalfe
- Faculty of Clinical and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Natália Hogetop Freire
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - André Tesainer Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Mariane Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Victorio Bambini
- Faculty of Clinical and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Christopher G S Smith
- Faculty of Clinical and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Lisa Shaw
- Faculty of Clinical and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil. .,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
8
|
Molinari C, Morsanuto V, Ruga S, Notte F, Farghali M, Galla R, Uberti F. The Role of BDNF on Aging-Modulation Markers. Brain Sci 2020; 10:E285. [PMID: 32397504 PMCID: PMC7287884 DOI: 10.3390/brainsci10050285] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
An important link between brain aging and a class of growth/survival factors called neurotrophins has recently been demonstrated. In particular, brain-derived neurotrophic factor (BDNF) plays a fundamental role during age-related synaptic loss, preventing cerebral atrophy and cognitive decline. The aim of the present study was to investigate whether the use of low dose BDNF sequentially kinetic activated (SKA) was able to counteract some mechanisms underlying the degeneration and aging of nervous tissue by increasing endogenous protection mechanisms. Both in vitro and in vivo experiments were performed to assess the ability of BDNF SKA to protect and regenerate survival-related molecular pathways, studying intestinal absorption in vitro and brain function in vivo. Our pioneering results show that BDNF SKA is able to induce the endogenous production of BDNF, using its receptor TrkB and influencing the apolipoprotein E expression. Moreover, BDNF SKA exerted effects on β-Amyloid and Sirtuin 1 proteins, confirming the hypothesis of a fine endogenous regulatory effect exerted by BDNF SKA in maintaining the health of both neurons and astrocytes. For this reason, a change in BDNF turnover is considered as a positive factor against brain aging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesca Uberti
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.M.); (V.M.); (S.R.); (F.N.); (M.F.); (R.G.)
| |
Collapse
|
9
|
Moraes JKD, Wagner VP, Fonseca FP, Amaral‐Silva GKD, de Farias CB, Pilar EFS, Gregianin L, Roesler R, Vargas PA, Martins MD. Activation of BDNF/TrkB/Akt pathway is associated with aggressiveness and unfavorable survival in oral squamous cell carcinoma. Oral Dis 2019; 25:1925-1936. [DOI: 10.1111/odi.13190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/14/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Juliana Kern de Moraes
- Department of Oral Diagnosis Piracicaba Dental School University of Campinas Piracicaba Brazil
| | - Vivian Petersen Wagner
- Department of Oral Diagnosis Piracicaba Dental School University of Campinas Piracicaba Brazil
| | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology School of Dentistry Federal University of Minas Gerais Belo Horizonte Brazil
| | | | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory Experimental Research Center Porto Alegre Clinical Hospital Federal University of Rio Grande do Sul Porto Alegre Brazil
- Children’s Cancer Institute Porto Alegre Brazil
| | - Emily Ferreira Salles Pilar
- Experimental Pathology Unit Clinics Hospital of Porto Alegre Federal University of Rio Grande do Sul Porto Alegre Brazil
| | - Lauro Gregianin
- Children’s Cancer Institute Porto Alegre Brazil
- Pediatric Oncology Service Clinical Hospital Federal University of Rio Grande do Sul Porto Alegre Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory Experimental Research Center Porto Alegre Clinical Hospital Federal University of Rio Grande do Sul Porto Alegre Brazil
- Children’s Cancer Institute Porto Alegre Brazil
- Department of Pharmacology Institute for Basic Health Sciences Federal University of Rio Grande do Sul Porto Alegre Brazil
| | - Pablo Agustin Vargas
- Department of Oral Diagnosis Piracicaba Dental School University of Campinas Piracicaba Brazil
| | - Manoela Domingues Martins
- Department of Oral Diagnosis Piracicaba Dental School University of Campinas Piracicaba Brazil
- Experimental Pathology Unit Clinics Hospital of Porto Alegre Federal University of Rio Grande do Sul Porto Alegre Brazil
- Department of Oral Pathology School of Dentistry Federal University of Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
10
|
Thomaz A, Pinheiro KDV, Souza BK, Gregianin L, Brunetto AL, Brunetto AT, de Farias CB, Jaeger MDC, Ramaswamy V, Nör C, Taylor MD, Roesler R. Antitumor Activities and Cellular Changes Induced by TrkB Inhibition in Medulloblastoma. Front Pharmacol 2019; 10:698. [PMID: 31297057 PMCID: PMC6606946 DOI: 10.3389/fphar.2019.00698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022] Open
Abstract
Neurotrophins are critically involved in regulating normal neural development and plasticity. Brain-derived neurotrophic factor (BDNF), a neurotrophin that acts by binding to the tropomyosin receptor kinase B (TrkB) receptor, has also been implicated in the progression of several types of cancer. However, its role in medulloblastoma (MB), the most common type of malignant brain tumor afflicting children, remains unclear. Here we show that selective TrkB inhibition with the small molecule compound ANA-12 impaired proliferation and viability of human UW228 and D283 MB cells, and slowed the growth of MB tumors xenografted into nude mice. These effects were accompanied by increased apoptosis, reduced extracellular-regulated kinase (ERK) activity, increased expression of signal transducer and activator of transcription 3 (STAT3), and differential modulation of p21 expression dependent on the cell line. In addition, MB cells treated with ANA-12 showed morphological alterations consistent with differentiation, increased levels of the neural differentiation marker β-III Tubulin (TUBB3), and reduced expression of the stemness marker Nestin. These findings are consistent with the possibility that selective TrkB inhibition can display consistent anticancer effects in MB, possibly by modulating intracellular signaling and gene expression related to tumor progression, apoptosis, and differentiation.
Collapse
Affiliation(s)
- Amanda Thomaz
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Kelly de Vargas Pinheiro
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Bárbara Kunzler Souza
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Lauro Gregianin
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pediatrics, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Pediatric Oncology Service, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Algemir L Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Children's Cancer Institute, Porto Alegre, Brazil
| | - André T Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Children's Cancer Institute, Porto Alegre, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Children's Cancer Institute, Porto Alegre, Brazil
| | - Mariane da Cunha Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Children's Cancer Institute, Porto Alegre, Brazil
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.,Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Carolina Nör
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.,Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
11
|
Antunes LCM, Cartell A, de Farias CB, Bakos RM, Roesler R, Schwartsmann G. Tropomyosin-Related Kinase Receptor and Neurotrophin Expression in Cutaneous Melanoma Is Associated with a Poor Prognosis and Decreased Survival. Oncology 2019; 97:26-37. [PMID: 31071716 DOI: 10.1159/000499384] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/05/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Normally, activation of tropomyosin-related kinase (TRK) receptors by neurotrophins (NTs) stimulates intracellular pathways involved in cell survival and proliferation. Dysregulation of NT/TRK signaling may affect neoplasm prognosis. Data on NT and TRK expression in melanomas are limited, and it is unclear whether NT/TRK signaling pathways are involved in the origin and progression of this neoplasm. METHODS We examined whether NT/TRK expression differs across different cutaneous melanoma grades and subtypes, and whether it is associated with melanoma prognosis and survival. A cross-sectional study was performed in which the expression of TrkA, TrkB, nerve growth factor (NGF), and brain-derived neurotrophic factor (BDNF) was analyzed by immunohistochemistry of 154 melanoma samples. We investigated NT/TRK expression associations with prognostic factors for melanoma, relapse-free survival (RFS), and overall survival (OS). RESULTS Of the 154 melanoma samples, 77 (55.4%) were TrkA immunopositive, 81 (58.3%) were TrkB immunopositive, 113 (81.3%) were BDNF immunopositive, and 104 (75.4%) were NGF immunopositive. We found NT/TRK expression associated strongly with several clinical prognostic factors, including the tumor-node-metastasis stage (p < 0.001), histological subtype (p < 0.001), and Clark level (p < 0.05), as well as with a worse OS (p < 0.05 for all, except TrkB) and RFS (p < 0.05 for all). CONCLUSIONS Our results show strong associations of NT/TRK expression with melanoma stage progression and a poor prognosis.
Collapse
Affiliation(s)
- Luís Carlos Moreira Antunes
- Graduate Program in Medical Sciences, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil,
- Hematology and Oncology Service, Santa Maria University Hospital, Federal University of Santa Maria, Santa Maria, Brazil,
| | - André Cartell
- Department of Pathology, Porto Alegre Clinical Hospital, Porto Alegre, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Porto Alegre Clinical Hospital, Porto Alegre, Brazil
| | - Renato Marchiori Bakos
- Graduate Program in Medical Sciences, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Department of Dermatology, Porto Alegre Clinical Hospital, Porto Alegre, Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Porto Alegre Clinical Hospital, Porto Alegre, Brazil
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Gilberto Schwartsmann
- Graduate Program in Medical Sciences, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Porto Alegre Clinical Hospital, Porto Alegre, Brazil
- Department of Internal Medicine, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
12
|
Wu Y, Si R, Yang S, Xia S, He Z, Wang L, He Z, Wang Q, Tang H. Depression induces poor prognosis associates with the down-regulation brain derived neurotrophic factor of serum in advanced small cell lung cancer. Oncotarget 2018; 7:85975-85986. [PMID: 27852063 PMCID: PMC5349890 DOI: 10.18632/oncotarget.13291] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/07/2016] [Indexed: 12/28/2022] Open
Abstract
Patients with lung cancer often experience a state of depression, and these conditions may severely affect their quality of life (QoL) and prescription compliance. The current study was conducted to delineate the complex links between depression and the prognosis of patients with small cell lung cancer (SCLC) and the underlying mechanism was also explored.186 patients who received platinum-based chemotherapy for newly diagnosed stage III or stage IV SCLC were enrolled. The Self-Rating Depression Scale (SDS) questionnaire was completed the day before the start of chemotherapy to assess the depression status of the patients. Patients with stage IV SCLC or lower BMI have higher depression scores. In terms of the adverse effects of chemotherapy, depression severely decreases patient tolerance to chemotherapy and their QoL score (R2 = 0.2385) and is also associated with severe vomiting (P < 0.001), leukopenia (R2 = 0.2332), and prolonged hospital stay (R2 = 0.1961). More importantly, severe depression reduces the PFS (R2 = 0.1943) and OS (P < 0.01) of the patients. We found that patients with severe depression displayed a downregulated level of serum BDNF and that the level of serum BDNF was highly correlated with the OS of the patients (R2 = 0.2292). Using the MTT cell viability assay in vitro, we observed that cotreatment with BDNF clearly enhanced the chemosensitivity of NCI-H69 tumor cells to Cisplatin and induced the downregulation of ABCG2.Based on this evidence, it appears that a relationship does exist between depression and prognosis in SCLC and that the mechanism by which depression affects prognosis is achieved via the downregulation of BDNF expression.
Collapse
Affiliation(s)
- Yufeng Wu
- Department of Internal Medicine, Affiliated cancer hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450008, P. R. China
| | - Ruirui Si
- Department of Health Center, Henan Airport Group Co., Ltd., Henan, 450000, P. R. China
| | - Sen Yang
- Department of Internal Medicine, Affiliated cancer hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450008, P. R. China
| | - Suhua Xia
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Zelai He
- Department of Oncology, The 2nd Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Lili Wang
- Department of Internal Medicine, Affiliated cancer hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450008, P. R. China
| | - Zhen He
- Department of Internal Medicine, Affiliated cancer hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450008, P. R. China
| | - Qiming Wang
- Department of Internal Medicine, Affiliated cancer hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450008, P. R. China
| | - Hong Tang
- Department of Internal Medicine, Affiliated cancer hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450008, P. R. China
| |
Collapse
|
13
|
de Moraes JK, Wagner VP, Fonseca FP, Vargas PA, de Farias CB, Roesler R, Martins MD. Uncovering the role of brain-derived neurotrophic factor/tyrosine kinase receptor B signaling in head and neck malignancies. J Oral Pathol Med 2017. [PMID: 28650560 DOI: 10.1111/jop.12611] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors that was first known as responsible for sustain the growth, function, and plasticity of neural cells. BDNF exerts its effects by binding to the tyrosine kinase receptor B (TrkB). The BDNF/TrkB axis has been reported to be overexpressed in several neurogenic and non-neurogenic tumors. Its higher expression was associated with a poor prognosis to patients affected by different human malignancies, tumor growth, invasion, and metastasis; epithelial-mesenchymal transition and resistance to chemotherapy. BDNF/TrkB represent promising targets to the development of novel anticancer therapies. Some clinical trials are currently evaluating the efficacy of Trk protein-target drugs in different types of solid tumors. To date, few groups have evaluated the DNF/TrkB pathway in head and neck malignancies. The aims of this study were to review the literature concerning the role of BDNF/TrkB activation in head and neck squamous cell carcinoma and malignant salivary gland tumors and to discuss future perspectives of BDNF/TrkB-target therapy.
Collapse
Affiliation(s)
- Juliana Kern de Moraes
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Vivian Petersen Wagner
- Department of Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pablo Agustin Vargas
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Porto Alegre Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Children's Cancer Institute, Porto Alegre, Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Porto Alegre Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Manoela Domingues Martins
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil.,Department of Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Experimental Pathology Unit, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
14
|
Venkatesh H, Monje M. Neuronal Activity in Ontogeny and Oncology. Trends Cancer 2017; 3:89-112. [PMID: 28718448 DOI: 10.1016/j.trecan.2016.12.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 01/06/2023]
Abstract
The nervous system plays a central role in regulating the stem cell niche in many organs, and thereby pivotally modulates development, homeostasis, and plasticity. A similarly powerful role for neural regulation of the cancer microenvironment is emerging. Neurons promote the growth of cancers of the brain, skin, prostate, pancreas, and stomach. Parallel mechanisms shared in development and cancer suggest that neural modulation of the tumor microenvironment may prove a universal theme, although the mechanistic details of such modulation remain to be discovered for many malignancies. We review here what is known about the influences of active neurons on stem cell and cancer microenvironments across a broad range of tissues, and we discuss emerging principles of neural regulation of development and cancer.
Collapse
Affiliation(s)
- Humsa Venkatesh
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA; Cancer Biology Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle Monje
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
15
|
Unravelling the Mechanism of TrkA-Induced Cell Death by Macropinocytosis in Medulloblastoma Daoy Cells. Mol Cell Biol 2016; 36:2596-611. [PMID: 27503856 DOI: 10.1128/mcb.00255-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/29/2016] [Indexed: 12/26/2022] Open
Abstract
Macropinocytosis is a normal cellular process by which cells internalize extracellular fluids and nutrients from their environment and is one strategy that Ras-transformed pancreatic cancer cells use to increase uptake of amino acids to meet the needs of rapid growth. Paradoxically, in non-Ras transformed medulloblastoma brain tumors, we have shown that expression and activation of the receptor tyrosine kinase TrkA overactivates macropinocytosis, resulting in the catastrophic disintegration of the cell membrane and in tumor cell death. The molecular basis of this uncontrolled form of macropinocytosis has not been previously understood. Here, we demonstrate that the overactivation of macropinocytosis is caused by the simultaneous activation of two TrkA-mediated pathways: (i) inhibition of RhoB via phosphorylation at Ser(185) by casein kinase 1, which relieves actin stress fibers, and (ii) FRS2-scaffolded Src and H-Ras activation of RhoA, which stimulate actin reorganization and the formation of lamellipodia. Since catastrophic macropinocytosis results in brain tumor cell death, improved understanding of the mechanisms involved will facilitate future efforts to reprogram tumors, even those resistant to apoptosis, to die.
Collapse
|
16
|
Pinheiro KV, Alves C, Buendia M, Gil MS, Thomaz A, Schwartsmann G, de Farias CB, Roesler R, Bowman RL, Wang Q, Carro A, Verhaak RGW, Squatrito M. Targeting tyrosine receptor kinase B in gliomas. Neuro Oncol 2016; 19:138-139. [PMID: 27630272 DOI: 10.1093/neuonc/now199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Kelly V Pinheiro
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil (K.V.P., C.A., M.B., M.S.G., A.T., G.S., C.B.F., R.R.); Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (K.V.P., C.A., M.B., M.S.G., A.T., R.R.); Department of Internal Medicine, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (G.S.), Children's Cancer Institute, Porto Alegre, Brazil (C.B.F.)
| | - Camila Alves
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil (K.V.P., C.A., M.B., M.S.G., A.T., G.S., C.B.F., R.R.); Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (K.V.P., C.A., M.B., M.S.G., A.T., R.R.); Department of Internal Medicine, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (G.S.), Children's Cancer Institute, Porto Alegre, Brazil (C.B.F.)
| | - Marienela Buendia
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil (K.V.P., C.A., M.B., M.S.G., A.T., G.S., C.B.F., R.R.); Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (K.V.P., C.A., M.B., M.S.G., A.T., R.R.); Department of Internal Medicine, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (G.S.), Children's Cancer Institute, Porto Alegre, Brazil (C.B.F.)
| | - Mirela S Gil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil (K.V.P., C.A., M.B., M.S.G., A.T., G.S., C.B.F., R.R.); Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (K.V.P., C.A., M.B., M.S.G., A.T., R.R.); Department of Internal Medicine, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (G.S.), Children's Cancer Institute, Porto Alegre, Brazil (C.B.F.)
| | - Amanda Thomaz
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil (K.V.P., C.A., M.B., M.S.G., A.T., G.S., C.B.F., R.R.); Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (K.V.P., C.A., M.B., M.S.G., A.T., R.R.); Department of Internal Medicine, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (G.S.), Children's Cancer Institute, Porto Alegre, Brazil (C.B.F.)
| | - Gilberto Schwartsmann
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil (K.V.P., C.A., M.B., M.S.G., A.T., G.S., C.B.F., R.R.); Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (K.V.P., C.A., M.B., M.S.G., A.T., R.R.); Department of Internal Medicine, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (G.S.), Children's Cancer Institute, Porto Alegre, Brazil (C.B.F.)
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil (K.V.P., C.A., M.B., M.S.G., A.T., G.S., C.B.F., R.R.); Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (K.V.P., C.A., M.B., M.S.G., A.T., R.R.); Department of Internal Medicine, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (G.S.), Children's Cancer Institute, Porto Alegre, Brazil (C.B.F.)
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil (K.V.P., C.A., M.B., M.S.G., A.T., G.S., C.B.F., R.R.); Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (K.V.P., C.A., M.B., M.S.G., A.T., R.R.); Department of Internal Medicine, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (G.S.), Children's Cancer Institute, Porto Alegre, Brazil (C.B.F.).
| | - Robert L Bowman
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil (K.V.P., C.A., M.B., M.S.G., A.T., G.S., C.B.F., R.R.); Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (K.V.P., C.A., M.B., M.S.G., A.T., R.R.); Department of Internal Medicine, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (G.S.), Children's Cancer Institute, Porto Alegre, Brazil (C.B.F.)
| | - Qianghu Wang
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil (K.V.P., C.A., M.B., M.S.G., A.T., G.S., C.B.F., R.R.); Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (K.V.P., C.A., M.B., M.S.G., A.T., R.R.); Department of Internal Medicine, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (G.S.), Children's Cancer Institute, Porto Alegre, Brazil (C.B.F.)
| | - Angel Carro
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil (K.V.P., C.A., M.B., M.S.G., A.T., G.S., C.B.F., R.R.); Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (K.V.P., C.A., M.B., M.S.G., A.T., R.R.); Department of Internal Medicine, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (G.S.), Children's Cancer Institute, Porto Alegre, Brazil (C.B.F.)
| | - Roel G W Verhaak
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil (K.V.P., C.A., M.B., M.S.G., A.T., G.S., C.B.F., R.R.); Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (K.V.P., C.A., M.B., M.S.G., A.T., R.R.); Department of Internal Medicine, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (G.S.), Children's Cancer Institute, Porto Alegre, Brazil (C.B.F.)
| | - Massimo Squatrito
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil (K.V.P., C.A., M.B., M.S.G., A.T., G.S., C.B.F., R.R.); Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (K.V.P., C.A., M.B., M.S.G., A.T., R.R.); Department of Internal Medicine, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (G.S.), Children's Cancer Institute, Porto Alegre, Brazil (C.B.F.)
| |
Collapse
|