1
|
Soendenbroe C, Schjerling P, Bechshøft CJL, Svensson RB, Schaeffer L, Kjaer M, Chazaud B, Jacquier A, Mackey AL. Muscle fibroblasts and stem cells stimulate motor neurons in an age and exercise-dependent manner. Aging Cell 2025; 24:e14413. [PMID: 39555723 PMCID: PMC11896526 DOI: 10.1111/acel.14413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/24/2024] [Accepted: 11/02/2024] [Indexed: 11/19/2024] Open
Abstract
Exercise preserves neuromuscular function in aging through unknown mechanisms. Skeletal muscle fibroblasts (FIB) and stem cells (MuSC) are abundant in skeletal muscle and reside close to neuromuscular junctions, but their relative roles in motor neuron maintenance remain undescribed. Using direct cocultures of embryonic rat motor neurons with either human MuSC or FIB, RNA sequencing revealed profound differential regulation of the motor neuron transcriptome, with FIB generally favoring neuron growth and cell migration and MuSC favoring production of ribosomes and translational machinery. Conditioned medium from FIB was superior to MuSC in preserving motor neurons and increasing their maturity. Lastly, we established the importance of donor age and exercise status and found an age-related distortion of motor neuron and muscle cell interaction that was fully mitigated by lifelong physical activity. In conclusion, we show that human muscle FIB and MuSC synergistically stimulate the growth and viability of motor neurons, which is further amplified by regular exercise.
Collapse
Affiliation(s)
- Casper Soendenbroe
- Department of Orthopedic SurgeryInstitute of Sports Medicine Copenhagen, Copenhagen University Hospital—Bispebjerg and FrederiksbergCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg HospitalUniversity of CopenhagenCopenhagenDenmark
| | - Peter Schjerling
- Department of Orthopedic SurgeryInstitute of Sports Medicine Copenhagen, Copenhagen University Hospital—Bispebjerg and FrederiksbergCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Cecilie J. L. Bechshøft
- Department of Orthopedic SurgeryInstitute of Sports Medicine Copenhagen, Copenhagen University Hospital—Bispebjerg and FrederiksbergCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Rene B. Svensson
- Department of Orthopedic SurgeryInstitute of Sports Medicine Copenhagen, Copenhagen University Hospital—Bispebjerg and FrederiksbergCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Laurent Schaeffer
- Institut NeuroMyoGèneUnité Physiopathologie et Génétique du Neurone et du MuscleLyonFrance
- Centre de Biotechnologie Cellulaire, CBC BiotecCHU de Lyon—Hospices Civils de Lyon (HCL) Groupement EstBronFrance
| | - Michael Kjaer
- Department of Orthopedic SurgeryInstitute of Sports Medicine Copenhagen, Copenhagen University Hospital—Bispebjerg and FrederiksbergCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Bénédicte Chazaud
- Institut NeuroMyoGèneUnité Physiopathologie et Génétique du Neurone et du MuscleLyonFrance
| | - Arnaud Jacquier
- Institut NeuroMyoGèneUnité Physiopathologie et Génétique du Neurone et du MuscleLyonFrance
- Centre de Biotechnologie Cellulaire, CBC BiotecCHU de Lyon—Hospices Civils de Lyon (HCL) Groupement EstBronFrance
| | - Abigail L. Mackey
- Department of Orthopedic SurgeryInstitute of Sports Medicine Copenhagen, Copenhagen University Hospital—Bispebjerg and FrederiksbergCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
2
|
Rasool D, Jahani-Asl A. Master regulators of neurogenesis: the dynamic roles of Ephrin receptors across diverse cellular niches. Transl Psychiatry 2024; 14:462. [PMID: 39505843 PMCID: PMC11541728 DOI: 10.1038/s41398-024-03168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/20/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
The ephrin receptors (EphRs) are the largest family of receptor tyrosine kinases (RTKs) that are abundantly expressed in the developing brain and play important roles at different stages of neurogenesis ranging from neural stem cell (NSC) fate specification to neural migration, morphogenesis, and circuit assembly. Defects in EphR signalling have been associated with several pathologies including neurodevelopmental disorders (NDDs), intellectual disability (ID), and neurodegenerative diseases (NDs). Here, we review our current understanding of the complex and dynamic role of EphRs in the brain and discuss how deregulation of these receptors contributes to disease, highlighting their potential as valuable druggable targets.
Collapse
Affiliation(s)
- Dilan Rasool
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada.
- Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Montréal, QC, H4A 3T2, Canada.
- Regenerative Medicine Program, and Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.
- Ottawa Institutes of System Biology, University of Ottawa, Health Sciences Campus, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
3
|
Wu YS, Zheng WH, Liu TH, Sun Y, Xu YT, Shao LZ, Cai QY, Tang YQ. Joint-tissue integrative analysis identifies high-risk genes for Parkinson's disease. Front Neurosci 2024; 18:1309684. [PMID: 38576865 PMCID: PMC10991821 DOI: 10.3389/fnins.2024.1309684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/22/2024] [Indexed: 04/06/2024] Open
Abstract
The loss of dopaminergic neurons in the substantia nigra and the abnormal accumulation of synuclein proteins and neurotransmitters in Lewy bodies constitute the primary symptoms of Parkinson's disease (PD). Besides environmental factors, scholars are in the early stages of comprehending the genetic factors involved in the pathogenic mechanism of PD. Although genome-wide association studies (GWAS) have unveiled numerous genetic variants associated with PD, precisely pinpointing the causal variants remains challenging due to strong linkage disequilibrium (LD) among them. Addressing this issue, expression quantitative trait locus (eQTL) cohorts were employed in a transcriptome-wide association study (TWAS) to infer the genetic correlation between gene expression and a particular trait. Utilizing the TWAS theory alongside the enhanced Joint-Tissue Imputation (JTI) technique and Mendelian Randomization (MR) framework (MR-JTI), we identified a total of 159 PD-associated genes by amalgamating LD score, GTEx eQTL data, and GWAS summary statistic data from a substantial cohort. Subsequently, Fisher's exact test was conducted on these PD-associated genes using 5,152 differentially expressed genes sourced from 12 PD-related datasets. Ultimately, 29 highly credible PD-associated genes, including CTX1B, SCNA, and ARSA, were uncovered. Furthermore, GO and KEGG enrichment analyses indicated that these genes primarily function in tissue synthesis, regulation of neuron projection development, vesicle organization and transportation, and lysosomal impact. The potential PD-associated genes identified in this study not only offer fresh insights into the disease's pathophysiology but also suggest potential biomarkers for early disease detection.
Collapse
Affiliation(s)
- Ya-Shi Wu
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Wen-Han Zheng
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Tai-Hang Liu
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yan Sun
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yu-Ting Xu
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Li-Zhen Shao
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Qin-Yu Cai
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Ya Qin Tang
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Reemst K, Lopizzo N, Abbink MR, Engelenburg HJ, Cattaneo A, Korosi A. Molecular underpinnings of programming by early-life stress and the protective effects of early dietary ω6/ω3 ratio, basally and in response to LPS: Integrated mRNA-miRNAs approach. Brain Behav Immun 2024; 117:283-297. [PMID: 38242369 DOI: 10.1016/j.bbi.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 12/22/2023] [Accepted: 01/14/2024] [Indexed: 01/21/2024] Open
Abstract
Early-life stress (ELS) exposure increases the risk for mental disorders, including cognitive impairments later in life. We have previously demonstrated that an early diet with low ω6/ω3 polyunsaturated fatty acid (PUFA) ratio protects against ELS-induced cognitive impairments. Several studies have implicated the neuroimmune system in the ELS and diet mediated effects, but currently the molecular pathways via which ELS and early diet exert their long-term impact are not yet fully understood. Here we study the effects of ELS and dietary PUFA ratio on hippocampal mRNA and miRNA expression in adulthood, both under basal as well as inflammatory conditions. Male mice were exposed to chronic ELS by the limiting bedding and nesting material paradigm from postnatal day(P)2 to P9, and provided with a diet containing a standard (high (15:1.1)) or protective (low (1.1:1)) ω6 linoleic acid to ω3 alpha-linolenic acid ratio from P2 to P42. At P120, memory was assessed using the object location task. Subsequently, a single lipopolysaccharide (LPS) injection was given and 24 h later hippocampal genome-wide mRNA and microRNA (miRNA) expression was measured using microarray. Spatial learning deficits induced by ELS in mice fed the standard (high ω6/ω3) diet were reversed by the early-life protective (low ω6/ω3) diet. An integrated miRNA - mRNA analysis revealed that ELS and early diet induced miRNA driven mRNA expression changes into adulthood. Under basal conditions both ELS and the diet affected molecular pathways related to hippocampal plasticity, with the protective (low ω6/ω3 ratio) diet leading to activation of molecular pathways associated with improved hippocampal plasticity and learning and memory in mice previously exposed to ELS (e.g., CREB signaling and endocannabinoid neuronal synapse pathway). LPS induced miRNA and mRNA expression was strongly dependent on both ELS and early diet. In mice fed the standard (high ω6/ω3) diet, LPS increased miRNA expression leading to activation of inflammatory pathways. In contrast, in mice fed the protective diet, LPS reduced miRNA expression and altered target mRNA expression inhibiting inflammatory signaling pathways and pathways associated with hippocampal plasticity, which was especially apparent in mice previously exposed to ELS. This data provides molecular insights into how the protective (low ω6/ω3) diet during development could exert its long-lasting beneficial effects on hippocampal plasticity and learning and memory especially in a vulnerable population exposed to stress early in life, providing the basis for the development of intervention strategies.
Collapse
Affiliation(s)
- Kitty Reemst
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science park 904, Amsterdam, 1098 XH, the Netherlands
| | - Nicola Lopizzo
- Biological Psychiatry Unit, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Maralinde R Abbink
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science park 904, Amsterdam, 1098 XH, the Netherlands
| | - Hendrik J Engelenburg
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science park 904, Amsterdam, 1098 XH, the Netherlands
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Aniko Korosi
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science park 904, Amsterdam, 1098 XH, the Netherlands.
| |
Collapse
|
5
|
Valeri A, Chiricosta L, D’Angiolini S, Pollastro F, Salamone S, Mazzon E. Cannabichromene Induces Neuronal Differentiation in NSC-34 Cells: Insights from Transcriptomic Analysis. Life (Basel) 2023; 13:life13030742. [PMID: 36983897 PMCID: PMC10051538 DOI: 10.3390/life13030742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Phytocannabinoids, with their variety of beneficial effects, represent a valid group of substances that could be employed as neurogenesis-enhancers or neuronal differentiation inducers. We focused our attention on the neuronal-related potential of cannabichromene (CBC) when administered to undifferentiated NSC-34 for 24 h. Transcriptomic analysis showed an upregulation of several neuronal markers, such as Neurod1 and Tubb3, as well as indicators of neuronal differentiation process progression, such as Pax6. An in-depth investigation of the processes involved in neuronal differentiation indicates positive cytoskeleton remodeling by upregulation of Cfl2 and Tubg1, and active differentiation-targeted transcriptional program, suggested by Phox2b and Hes1. After 48 h of treatment, the markers previously examined in the transcriptomic analysis are still overexpressed, like Ache and Hes1, indicating that the differentiation process is still in progress. The lack of GFAP protein suggests that no astroglial differentiation is taking place, and it is reasonable to indicate the neuronal one as the ongoing one. These results indicate CBC as a potential neuronal differentiation inducer for NSC-34 cells.
Collapse
Affiliation(s)
- Andrea Valeri
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Simone D’Angiolini
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
- Plantachem S.r.l.s., Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Stefano Salamone
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
- Plantachem S.r.l.s., Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
- Correspondence:
| |
Collapse
|
6
|
Dong R, Ye N, Wang J, Zhao S, Wang T, Wang G, Shi X, Cheng J, Zhang Y, Yao T, Chen M, Zhang T, Luo L. Serum Exosomes MicroRNAs Are Novel Non-Invasive Biomarkers of Intrahepatic Cholestasis of Pregnancy. Front Endocrinol (Lausanne) 2022; 13:832577. [PMID: 35600587 PMCID: PMC9114354 DOI: 10.3389/fendo.2022.832577] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/25/2022] [Indexed: 11/17/2022] Open
Abstract
Background Intrahepatic cholestasis of pregnancy (ICP) is closely related to the occurrence of adverse outcomes. Currently, total bile acids (TBAs) are the only diagnostic index for ICP, and its sensitivity and specificity have certain limitations. In this study, we aimed to develop potential biomarkers for the diagnosis of ICP. Methods Sixty pregnant women diagnosed with ICP and 48 healthy pregnant controls were enrolled in this study. We used the Agilent microRNA (miRNA) array followed by quantitative reverse transcriptase polymerase chain reaction assays to identify and validate the serum exosome miRNA profiles in ICP and healthy pregnant controls. We employed bioinformatics to identify metabolic processes associated with differentially expressed serum exosome miRNAs. Results The expression levels of hsa-miR-4271, hsa-miR-1275, and hsa-miR-6891-5p in maternal serum exosomes were significantly lower in ICP patients compared to controls; the diagnostic accuracy of hsa-miR-4271, hsa-miR-1275, and hsa-miR-6891-5p was evaluated with the area under the receiver operating characteristic curve (AUC) values of 0.861, 0.886, and 0.838, respectively. Multiple logistic regression analysis showed that a combination of the levels of hsa-miR-4271and hsa-miR-1275 afforded a significantly higher AUC (0.982). The non-error rate of a combination of all three exosome miRNAs was the highest (95%), thus more reliable ICP diagnosis. The expression levels of all three exosome miRNAs were negatively associated with TBAs. Furthermore, according to bioinformatics analysis, the three exosome miRNAs were related to lipid metabolism, apoptosis, oxidative stress, and the Mitogen Activated Protein Kinase (MAPK) signaling pathway. Conclusions This study may identify the novel non-invasive biomarkers for ICP and provided new insights into the important role of the exosome miRNA regulation in ICP.
Collapse
Affiliation(s)
- Ruirui Dong
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Ningzhen Ye
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Jing Wang
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Shaojie Zhao
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Tiejun Wang
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Gaoying Wang
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Xinrui Shi
- School of Medicine, Jiangnan University, Wuxi, China
| | - Jing Cheng
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Yan Zhang
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Tingting Yao
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ting Zhang
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Liang Luo
- Intensive Care Medicine, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
7
|
Qi Z, Wang S, Li J, Wen Y, Cui R, Zhang K, Liu Y, Yang X, Zhang L, Xu B, Liu W, Xu Z, Deng Y. Protective role of mRNA demethylase FTO on axon guidance molecules of nigro-striatal projection system in manganese-induced parkinsonism. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128099. [PMID: 34954437 DOI: 10.1016/j.jhazmat.2021.128099] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/02/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
One of the major environmental factors that induce PD is Manganese (Mn). Cellular and molecular mechanism of parkinsonism caused by Mn has not been explored clearly. The results of in vivo and in vitro experiments showed that Mn exposure caused abnormal projection of dopaminergic neurons and decreased mRNA expression and protein levels of FTO. This is due to Mn-induced the upregulation of Foxo3a. Using the cell model of overexpression of FTO, we found that FTO could antagonize Mn-induced the down-regulation of axon guidance molecule ephrin-B2 through RNA-seq, MeRIP-qPCR, and RT-qPCR experiments. Through RIP-seq and actinomycin D experiments, it was found that FTO can up-regulate the mRNA m6A level of ephrin-B2, which can be recognized by YTHDF2 and degraded. Finally, it is proved that Mn induces dopaminergic neurons projection injury and motor dysfunction through Foxo3a/FTO/m6A/ephrin-B2/YTHDF2 signal pathway.
Collapse
Affiliation(s)
- Zhipeng Qi
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Shuang Wang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Jiashuo Li
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Yi Wen
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Rong Cui
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Ke Zhang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.
| | - Yanan Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China; Department of Preventive Health, Zhuhai People's Hospital, Zhuhai, Guangdong, China.
| | - Xinxin Yang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China; School of Public Health, Xuzhou Medical University, Xuzhou 221004, China.
| | - Lei Zhang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Zhaofa Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
8
|
Singal CMS, Jaiswal P, Mehta A, Saleem K, Seth P. Role of EphrinA3 in HIV-1 Neuropathogenesis. ASN Neuro 2021; 13:17590914211044359. [PMID: 34618621 PMCID: PMC8504696 DOI: 10.1177/17590914211044359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Glial cells perform important supporting functions for neurons through a dynamic crosstalk. Neuron–glia communication is the major phenomenon to sustain homeostatic functioning of the brain. Several interactive pathways between neurons and astrocytes are critical for the optimal functioning of neurons, and one such pathway is the ephrinA3–ephA4 signaling. The role of this pathway is essential in maintaining the levels of extracellular glutamate by regulating the excitatory amino acid transporters, EAAT1 and EAAT2 on astrocytes. Human immunodeficiency virus-1 (HIV-1) and its proteins cause glutamate excitotoxicity due to excess glutamate levels at sites of high synaptic activity. This study unravels the effects of HIV-1 transactivator of transcription (Tat) from clade B on ephrinA3 and its role in regulating glutamate levels in astrocyte–neuron co-cultures of human origin. It was observed that the expression of ephrinA3 increases in the presence of HIV-1 Tat B, while the expression of EAAT1 and EAAT2 was attenuated. This led to reduced glutamate uptake and therefore high neuronal death due to glutamate excitotoxicity. Knockdown of ephrinA3 using small interfering RNA, in the presence of HIV-1 Tat B reversed the neurotoxic effects of HIV-1 Tat B via increased expression of glutamate transporters that reduced the levels of extracellular glutamate. The in vitro findings were validated in autopsy brain sections from acquired immunodeficiency syndrome patients and we found ephrinA3 to be upregulated in the case of HIV-1-infected patients. This study offers valuable insights into astrocyte-mediated neuronal damage in HIV-1 neuropathogenesis.
Collapse
Affiliation(s)
| | - Paritosh Jaiswal
- Cellular and Molecular Neuroscience, 29050National Brain Research Centre, Manesar, Gurgaon, India
| | - Anuradha Mehta
- Cellular and Molecular Neuroscience, 29050National Brain Research Centre, Manesar, Gurgaon, India
| | - Kanza Saleem
- Cellular and Molecular Neuroscience, 29050National Brain Research Centre, Manesar, Gurgaon, India
| | - Pankaj Seth
- Cellular and Molecular Neuroscience, 29050National Brain Research Centre, Manesar, Gurgaon, India
| |
Collapse
|
9
|
Hao YP, Wang WY, Qiao Q, Li G. EFNA1 is a potential key gene that correlates with immune infiltration in low-grade glioma. Medicine (Baltimore) 2021; 100:e26188. [PMID: 34087884 PMCID: PMC8183727 DOI: 10.1097/md.0000000000026188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/14/2021] [Indexed: 01/04/2023] Open
Abstract
EFNA1 is a key gene that is associated with the pathogenesis of several human cancers. However, the prognostic role of EFNA1 in many cancers and the relationship between EFNA1 and tumor-infiltrating lymphocytes in different cancers remain unclear.The expression levels of EFNA1 in 33 types of cancer in the TCGA (The Cancer Genome Atlas) database were collected via the UCSC Xena browser. The clinical data of LGG (low grade glioma) patients were downloaded from the TCGA database. The glioma data from the CGGA (Chinese Glioma Genome Atlas) database were also downloaded to verify the results. Kaplan-Meier and Cox regression analyses were used to investigate the prognostic value of EFNA1 in different cancers using R software. We verified the differential expression of EFNA1 in glioma and normal brain tissue via gene expression profiling interactive analysis. We evaluated the relationship between the expression level of EFNA1 and the clinicopathological features of LGG patients via the Wilcoxon signed-rank test. The immune infiltration levels were evaluated via tumor immune estimation resource (TIMER) and CIBERSORT, and the correlations between EFNA1 and immune cell levels were investigated via TIMER. Finally, we conducted gene set enrichment analysis (GSEA) to explore the potential mechanisms.Data from the TCGA database showed that EFNA1 was differentially expressed in many kinds of cancers when compared with normal tissues. Upregulated EFNA1 expression in esophageal carcinoma (ESCA), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), and LGG correlated with shorter patient overall survival (OS) times. The Cox regression analysis revealed that the expression of EFNA1 was also a risk factor for the disease-specific survival (DSS) and progression-free interval (PFI) of LGG patients. The multiple Cox regression analysis revealed that EFNA1 was an independent prognostic factor for LGG patients. In addition, EFNA1 expression was increased in the WHO grade III group and the 1p19q non-codeletion group. Moreover, EFNA1 expression was positively correlated with the levels of infiltrating CD4+ T cells, myeloid dendritic cells and neutrophils in LGG. GSEA suggested that several GO and kyoto encyclopedia of genes and genomes (KEGG) items associated with nervous system function and apoptotic pathway were significantly enriched in the EFNA1-low and EFNA1-high expression phenotypes.EFNA1 may play a pivotal role in the development of LGG and may serve as a potential marker for LGG prognosis and therapy.
Collapse
|
10
|
Xie J, Xing S, Shen BY, Chen HT, Sun B, Wang ZT, Wang JW, Lu XX. PIWIL1 interacting RNA piR-017061 inhibits pancreatic cancer growth via regulating EFNA5. Hum Cell 2021; 34:550-563. [PMID: 33389678 DOI: 10.1007/s13577-020-00463-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022]
Abstract
PIWI (P element induced wimpy testis) integrating RNAs (piRNAs) are small non-coding RNAs with the length of approximately 30 nucleotides that plays crucial roles in germ cells and adult stem cells. Recently, accumulating data have shown that piRNA and PIWI proteins are involved in tumorigenesis. However, the roles of PIWI proteins and piRNAs in pancreatic cancer are still elusive. Here, we showed that piR-017061 is significantly downregulated in pancreatic cancer patients' samples and pancreatic cancer cell lines. Furthermore, we studied the function of piR-017061 in pancreatic cancer and our data revealed that piR-017061 inhibits pancreatic cancer cell growth in vitro and in vivo. Moreover, we analyzed the genomic loci around piR-017061 and identified EFNA5 as a novel target of piR-017061. Importantly, our data further revealed a direct binding between piR-017061 and EFNA5 mRNA mediated by PIWIL1. Mechanically, piR-017061 cooperates with PIWIL1 to facilitate EFNA5 mRNA degradation and loss of piR-017061 results in accumulation of EFNA5 which facilitates pancreatic cancer development. Hence, our data provided novel insights into PIWI/piRNA-mediated gene regulation and their function in pancreatic cancer. Since PIWI proteins and piRNA predominately express in germline and cancer cells, our study provided novel therapeutic strategy for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Shen Xing
- Ruijing Hospital Proton Therapy Center, Shanghai Jiaotong University School of Medicine, 868 Shuangding Road, Shanghai, 201800, China
- Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 868 Shuangding Road Shanghai, Shanghai, 201800, China
| | - Bo-Yong Shen
- Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 868 Shuangding Road Shanghai, Shanghai, 201800, China
- Research Institute of Pancreatic Disease, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Hai-Tao Chen
- Ruijing Hospital Proton Therapy Center, Shanghai Jiaotong University School of Medicine, 868 Shuangding Road, Shanghai, 201800, China
| | - Bin Sun
- Ruijing Hospital Proton Therapy Center, Shanghai Jiaotong University School of Medicine, 868 Shuangding Road, Shanghai, 201800, China
| | - Zheng-Ting Wang
- Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Jing-Wang Wang
- Suzhou Zhongjian AI Tech, 1888 Pangjing Road Suzhou, Suzhou, 215000, China.
| | - Xiong-Xiong Lu
- Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 868 Shuangding Road Shanghai, Shanghai, 201800, China.
- Research Institute of Pancreatic Disease, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
11
|
Gao S, Sha Z, Zhou J, Wu Y, Song Y, Li C, Liu X, Zhang T, Yu R. BYSL contributes to tumor growth by cooperating with the mTORC2 complex in gliomas. Cancer Biol Med 2021; 18:88-104. [PMID: 33628587 PMCID: PMC7877178 DOI: 10.20892/j.issn.2095-3941.2020.0096] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
Objective: BYSL, which encodes the Bystin protein in humans, is upregulated in reactive astrocytes following brain damage and/or inflammation. We aimed to determine the role and mechanism of BYSL in glioma cell growth and survival. Methods: BYSL expression in glioma tissues was measured by quantitative real-time PCR, Western blot, and immunohistochemistry. In vitro assays were performed to assess the role of BYSL in cell proliferation and apoptosis. Protein interactions and co-localization were determined by co-immunoprecipitation and double immunofluorescence. The expression and activity of the AKT/mTOR signaling molecules were determined by Western blot analysis, and the role of BYSL in glioma growth was confirmed in an orthotopic xenograft model. Results: The BYSL mRNA and protein levels were elevated in glioma tissues. Silencing BYSL inhibited glioma cell proliferation, impeded cell cycle progression, and induced apoptosis, whereas overexpressing BYSL protein led to the opposite effects. We identified a complex consisting of BYSL, RIOK2, and mTOR, and observed co-localization and positive correlations between BYSL and RIOK2 in glioma cells and tissues. Overexpressing BYSL or RIOK2 increased the expression and activity of AKT/mTOR signaling molecules, whereas downregulation of BYSL or RIOK2 decreased the activity of AKT/mTOR signaling molecules. Silencing BYSL or RIOK2 decreased the growth of the tumors and prolonged the lifespan of the animals in an orthotopic xenograft model. Conclusions: High expression of BYSL in gliomas promoted tumor cell growth and survival both in vitro and in vivo. These effects could be attributed to the association of BYSL with RIOK2 and mTOR, and the subsequent activation of AKT signaling.
Collapse
Affiliation(s)
- Shangfeng Gao
- Institute of Nervous System Diseases, Xuzhou Medical University; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Zhuang Sha
- Institute of Nervous System Diseases, Xuzhou Medical University; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Junbo Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Yihao Wu
- Institute of Nervous System Diseases, Xuzhou Medical University; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Yunnong Song
- Institute of Nervous System Diseases, Xuzhou Medical University; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Cheng Li
- Institute of Nervous System Diseases, Xuzhou Medical University; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Xuejiao Liu
- Institute of Nervous System Diseases, Xuzhou Medical University; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Tong Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| |
Collapse
|
12
|
Zhao Y, Lu C, Wang H, Lin Q, Cai L, Meng F, Tesfaye EB, Lai HC, Tzeng CM. Identification of hsa-miR-1275 as a Novel Biomarker Targeting MECP2 for Human Epilepsy of Unknown Etiology. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:398-410. [PMID: 33251277 PMCID: PMC7677659 DOI: 10.1016/j.omtm.2020.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022]
Abstract
Epilepsy affects around 70 million people worldwide, with a 65% rate of unknown etiology. This rate is known as epilepsy of unknown etiology (EUE). Dysregulation of microRNAs (miRNAs) is recognized to contribute to mental disorders, including epilepsy. However, miRNA dysregulation is poorly understood in EUE. Here, we conducted miRNA expression profiling of EUE by microarray technology and identified 57 pathogenic changed miRNAs with significance. The data and bioinformatic analysis results indicated that among these miRNAs, hsa-microRNA (miR)-1275 was highly associated with neurological disorders. Subsequently, new samples of serum and cerebrospinal fluid were collected for validation of hsa-miR-1275 expression by TaqMan assays. Results show that hsa-miR-1275 in serums of EUE were increased significantly, but in cerebrospinal fluid, the miRNA was decreased. Moreover, the MECP2 gene was selected as a hsa-miR-1275 target based on target prediction tools and gene ontology analysis. Validation of in vitro tests proved that MECP2 expression was specifically inhibited by hsa-miR-1275. Additionally, overexpression of hsa-miR-1275 can elevate expression of nuclear factor κB (NF-κB) and promote cell apoptosis. Taken together, hsa-miR-1275 might represent a novel biomarker targeting MECP2 for human EUE.
Collapse
Affiliation(s)
- Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China.,Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, Nanjing Tech University, Nanjing 211800, China
| | - Congxia Lu
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Fujian 361003, China
| | - Huiling Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Qing Lin
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Fujian 361003, China.,Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Fujian 361003, China
| | - Liangliang Cai
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Fujian 361003, China
| | - Fanrong Meng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Enque Biniam Tesfaye
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Gueishan, Taoyuan 33302, Taiwan
| | - Chi-Meng Tzeng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China.,Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Fujian 361003, China
| |
Collapse
|
13
|
Hao Y, Li G. Role of EFNA1 in tumorigenesis and prospects for cancer therapy. Biomed Pharmacother 2020; 130:110567. [PMID: 32745910 DOI: 10.1016/j.biopha.2020.110567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/14/2020] [Accepted: 07/26/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the major threats to human health. It is of vital importance to reveal the mechanisms of tumorigenesis, identify effective biomarkers and develop novel treatments to improve patient outcome. EFNA1 (ephrinA1) is a member of the EFN family, and it has been studied extensively since its discovery in 1990. Increasing evidence indicates that EFNA1 plays a pivotal role in the pathogenesis of tumors. We provide a detailed overview of the expression and prognostic value of EFNA1 in different types of human malignancies. We briefly discuss the mechanisms of EFNA1 induction in hypoxic environments and its pro-angiogenic function in different cancer cells. We describe the effects of EFNA1 on tumor growth, invasiveness and metastasis. We summarize recent advances in EFNA1-associated cancer therapeutics with emphasis on the prospect of novel anti-tumor methods based on EFNA1.
Collapse
Affiliation(s)
- Yongping Hao
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Liaoning, 110001, China.
| | - Guang Li
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Liaoning, 110001, China.
| |
Collapse
|
14
|
Expression of Genes Involved in Axon Guidance: How Much Have We Learned? Int J Mol Sci 2020; 21:ijms21103566. [PMID: 32443632 PMCID: PMC7278939 DOI: 10.3390/ijms21103566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/20/2022] Open
Abstract
Neuronal axons are guided to their target during the development of the brain. Axon guidance allows the formation of intricate neural circuits that control the function of the brain, and thus the behavior. As the axons travel in the brain to find their target, they encounter various axon guidance cues, which interact with the receptors on the tip of the growth cone to permit growth along different signaling pathways. Although many scientists have performed numerous studies on axon guidance signaling pathways, we still have an incomplete understanding of the axon guidance system. Lately, studies on axon guidance have shifted from studying the signal transduction pathways to studying other molecular features of axon guidance, such as the gene expression. These new studies present evidence for different molecular features that broaden our understanding of axon guidance. Hence, in this review we will introduce recent studies that illustrate different molecular features of axon guidance. In particular, we will review literature that demonstrates how axon guidance cues and receptors regulate local translation of axonal genes and how the expression of guidance cues and receptors are regulated both transcriptionally and post-transcriptionally. Moreover, we will highlight the pathological relevance of axon guidance molecules to specific diseases.
Collapse
|
15
|
Song Y, Li C, Jin L, Xing J, Sha Z, Zhang T, Ji D, Yu R, Gao S. RIOK2 is negatively regulated by miR-4744 and promotes glioma cell migration/invasion through epithelial-mesenchymal transition. J Cell Mol Med 2020; 24:4494-4509. [PMID: 32125767 PMCID: PMC7176854 DOI: 10.1111/jcmm.15107] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/06/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
RIOK2 is a member of RIO (right open reading frame) kinase family. Recent studies have revealed the involvement of RIO kinases in glioma cell growth and expansion. However, the role and mechanism of RIOK2 in glioma cell migration and invasion remain unclear. Wound healing assay, Transwell assay and real‐time quantitative PCR (qRT‐PCR) detection of matrix metalloproteinases (MMPs) were used to evaluate the migration/invasion of glioma cells. Western blot and qRT‐PCR were employed to measure the expression of epithelial‐mesenchymal transition (EMT) markers. Dual luciferase reporter assay was performed to determine the binding between RIOK2 and miR‐4744. In addition, RIOK2 and miR‐4744 levels were quantified by qRT‐PCR and/or immunohistochemistry in glioma tissues. Transfection of RIOK2 siRNAs significantly inhibited glioma cell migration and invasion and down‐regulated the expression of MMPs (MMP2 and MMP9) and mesenchymal markers (N‐cadherin, β‐catenin, Twist1, fibronectin, ZEB‐1) in glioma cells. Overexpression of RIOK2 showed the opposite effects. MiR‐4744 directly bound to the 3'‐untranslated region of RIOK2 and negatively regulated the expression of RIOK2. Up‐regulation of miR‐4744 inhibited the migration and invasion of glioma cells. Overexpression of RIOK2 could reverse the effects of miR‐4744 up‐regulation on the migration, invasion and EMT process in glioma cells. Moreover, RIOK2 was high, while miR‐4744 was low in glioma tissues, and a negative correlation was found between them. These results suggest that RIOK2 is post‐transcriptionally targeted by miR‐4744, the low miR‐4744 and high RIOK2 levels in glioma may contribute to tumour cell infiltration through promoting the EMT.
Collapse
Affiliation(s)
- Yunnong Song
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Cheng Li
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lei Jin
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jingsong Xing
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Zhuang Sha
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tong Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Daofei Ji
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shangfeng Gao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
16
|
Chen J, Kang XY, Tang CX, Gao DS. Impact of Pitx3 gene knockdown on glial cell line-derived neurotrophic factor transcriptional activity in dopaminergic neurons. Neural Regen Res 2017; 12:1347-1351. [PMID: 28966651 PMCID: PMC5607831 DOI: 10.4103/1673-5374.213557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Pitx3 is strongly associated with the phenotype, differentiation, and survival of dopaminergic neurons. The relationship between Pitx3 and glial cell line-derived neurotrophic factor (GDNF) in dopaminergic neurons remains poorly understood. The present investigation sought to construct and screen a lentivirus expression plasmid carrying a rat Pitx3 short hairpin (sh)RNA and to assess the impact of Pitx3 gene knockdown on GDNF transcriptional activity in MES23.5 dopaminergic neurons. Three pairs of interference sequences were designed and separately ligated into GV102 expression vectors. These recombinant plasmids were transfected into MES23.5 cells and western blot assays were performed to detect Pitx3 protein expression. Finally, the most effective Pitx3 shRNA and a dual-luciferase reporter gene plasmid carrying the GDNF promoter region (GDNF-luciferase) were cotransfected into MES23.5 cells. Sequencing showed that the synthesized sequences were identical to the three Pitx3 interference sequences. Inverted fluorescence microscopy revealed that the lentivirus expression plasmids carrying Pitx3-shRNA had 40–50% transfection efficiency. Western blot assay confirmed that the corresponding Pitx3 of the third knockdown sequence had the lowest expression level. Dual-luciferase reporter gene results showed that the GDNF transcriptional activity in dopaminergic cells cotransfected with both plasmids was decreased compared with those transfected with GDNF-luciferase alone. Together, the results showed that the designed Pitx3-shRNA interference sequence decreased Pitx3 protein expression, which decreased GDNF transcriptional activity.
Collapse
Affiliation(s)
- Jing Chen
- Experiment Teaching Center of Morphology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xiao-Yu Kang
- Teaching and Research Section of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Chuan-Xi Tang
- Teaching and Research Section of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Dian-Shuai Gao
- Teaching and Research Section of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| |
Collapse
|
17
|
Chen J, Wang T, Zhou XY, Tang CX, Gao DS. Glucose-6-phosphatase-α participates in dopaminergic differentiation. Neurol Res 2017; 39:869-876. [PMID: 28829278 DOI: 10.1080/01616412.2017.1348681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Induction of dopaminergic (DA) differentiation is a cell-based therapy for Parkinson's disease (PD). Here, we explore the key factors of DA differentiation with a focus on glucose-6-phosphatase (G6Pase), a marker enzyme for the endoplasmic reticulum (ER) associated with cell differentiation. METHODS We cultured SH-SY5Y human neuroblastoma cells, a model system for PD research, and added glial cell-derived neurotrophic factor (GDNF; 25, 50, or 100 ng/ml) to stimulate differentiation. Subsequently, several methods, such as microRNA/mRNA microarrays, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were used to detect target genes and proteins respectively. RESULTS Light microscopy revealed that 50 ng/ml GDNF most effectively induced DA differentiation. MicroRNA/mRNA microarrays identified that G6PC mRNA was significantly upregulated, which might be influenced by three downregulated microRNAs. Follow-up qRT-PCR results were consistent with the microarray findings, and western blots also supported the results. DISCUSSION Taken together, our results demonstrate that G6PC, a subunit of G6Pase, participates in DA differentiation. Our findings may contribute to provide a foundation for the research on the mechanism of DA differentiation as well as cell-based therapy for PD.
Collapse
Affiliation(s)
- Jing Chen
- a Experimental Teaching Center of Morphology, Xuzhou Medical University , Xuzhou , China
| | - Ting Wang
- b Department of Human Anatomy and Neurobiology , Xuzhou Medical University , Xuzhou , China
| | - Xiao-Yan Zhou
- a Experimental Teaching Center of Morphology, Xuzhou Medical University , Xuzhou , China
| | - Chuan-Xi Tang
- b Department of Human Anatomy and Neurobiology , Xuzhou Medical University , Xuzhou , China
| | - Dian-Shuai Gao
- b Department of Human Anatomy and Neurobiology , Xuzhou Medical University , Xuzhou , China
| |
Collapse
|
18
|
Xicoy H, Wieringa B, Martens GJM. The SH-SY5Y cell line in Parkinson's disease research: a systematic review. Mol Neurodegener 2017; 12:10. [PMID: 28118852 PMCID: PMC5259880 DOI: 10.1186/s13024-017-0149-0] [Citation(s) in RCA: 639] [Impact Index Per Article: 79.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/05/2017] [Indexed: 12/29/2022] Open
Abstract
Parkinson’s disease (PD) is a devastating and highly prevalent neurodegenerative disease for which only symptomatic treatment is available. In order to develop a truly effective disease-modifying therapy, improvement of our current understanding of the molecular and cellular mechanisms underlying PD pathogenesis and progression is crucial. For this purpose, standardization of research protocols and disease models is necessary. As human dopaminergic neurons, the cells mainly affected in PD, are difficult to obtain and maintain as primary cells, current PD research is mostly performed with permanently established neuronal cell models, in particular the neuroblastoma SH-SY5Y lineage. This cell line is frequently chosen because of its human origin, catecholaminergic (though not strictly dopaminergic) neuronal properties, and ease of maintenance. However, there is no consensus on many fundamental aspects that are associated with its use, such as the effects of culture media composition and of variations in differentiation protocols. Here we present the outcome of a systematic review of scientific articles that have used SH-SY5Y cells to explore PD. We describe the cell source, culture conditions, differentiation protocols, methods/approaches used to mimic PD and the preclinical validation of the SH-SY5Y findings by employing alternative cellular and animal models. Thus, this overview may help to standardize the use of the SH-SY5Y cell line in PD research and serve as a future user’s guide.
Collapse
Affiliation(s)
- Helena Xicoy
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboudumc, Nijmegen, The Netherlands.,Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboudumc, Nijmegen, The Netherlands
| | - Gerard J M Martens
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|