1
|
Ishaq S, Shah IA, Lee SD, Wu BT. Effects of exercise training on the nigrostriatal glutamatergic pathway and receptor interactions in Parkinson's disease: a systematic review. Front Aging Neurosci 2025; 17:1512278. [PMID: 40007696 PMCID: PMC11850376 DOI: 10.3389/fnagi.2025.1512278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Background The excitatory imbalance of glutamatergic neurons, caused by insufficient input from dopaminergic neurons, contributes the pathogenesis of Parkinson's disease (PD). Exercise training is one of the non-pharmacological, non-invasive therapeutic approaches. Objective This systematic review is the first to summarize the effects of exercise training on the regulation of protein and gene expressions within the nigrostriatal glutamatergic pathway and its receptor interactions in animal models of Parkinson's disease (PD). Methodology The PubMed, Web of Science, and Embase electronic databases were searched, and 9 out of 96 studies that met the PRISMA guidelines were included. These studies received a CAMARADES score ranging from 4 to 6 out of 10. The included studies utilized pharmacologically induced PD models in mice or rats with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 6-hydroxydopamine (6-OHDA). The majority of studies (89%) employed treadmill training, while 11% used voluntary wheel running, with training protocols consisting of 5 days per week for 4 weeks. Results Exercise training reduced extracellular glutamate (Glu) and increased the expression of GLT-1, GS, Gln, and mGluR2/3 while down-regulating VGULT1 in the presynaptic terminal of the glutamatergic neurons within the nigrostriatal pathway in PD animal models. It also downregulated mGluR5 and modulated the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits: GluA1 was downregulated, inhibiting long-term potentiation, while GluA2 and GluA3 were upregulated in the nigrostriatal pathway in PD animal models. In addition, the exercise training downregulated the N-methyl-D-aspartate (NMDA) receptors, Arc, Cav1.3, CaMKII, and p-CaMKII in the nigrostriatal pathway in PD animal models. Conclusion Exercise training exerted a neuroprotective effect on the glutamatergic pathway in Parkinson's disease (PD) animal models by limiting excess glutamate in the synaptic cleft. Exercise training modulated the ionotropic receptors and limited the glutamatergic excitatory imbalance within the nigrostriatal pathway in PD animal models. It also improved motor function, including balance, coordination, and gait parameters. Systematic review registration https://www.crd.york.ac.uk/prospero/#recordDetails, identifier CRD42024564127.
Collapse
Affiliation(s)
- Shahid Ishaq
- PhD Program in Healthcare Science, College of Healthcare Science, China Medical University, Taichung, Taiwan
| | - Iqbal Ali Shah
- PhD Program in Healthcare Science, College of Healthcare Science, China Medical University, Taichung, Taiwan
| | - Shin-Da Lee
- PhD Program in Healthcare Science, College of Healthcare Science, China Medical University, Taichung, Taiwan
- Department of Physical Therapy, China Medical University, Taichung, Taiwan
| | - Bor-Tsang Wu
- Department of Senior Citizen Service Management, National Taichung University of Science and Technology, Taichung, Taiwan
| |
Collapse
|
2
|
Kasanga EA, Soto I, Centner A, McManus R, Shifflet MK, Navarrete W, Han Y, Lisk J, Ehrhardt T, Wheeler K, Mhatre-Winters I, Richardson JR, Bishop C, Nejtek VA, Salvatore MF. Moderate intensity aerobic exercise alleviates motor deficits in 6-OHDA lesioned rats and reduces serum levels of biomarkers of Parkinson's disease severity without recovery of striatal dopamine or tyrosine hydroxylase. Exp Neurol 2024; 379:114875. [PMID: 38944332 DOI: 10.1016/j.expneurol.2024.114875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024]
Abstract
Alleviation of motor impairment by aerobic exercise (AE) in Parkinson's disease (PD) patients points to activation of neurobiological mechanisms that may be targetable by therapeutic approaches. However, evidence for AE-related recovery of striatal dopamine (DA) signaling or tyrosine hydroxylase (TH) loss has been inconsistent in rodent studies. This ambiguity may be related to the timing of AE intervention in relation to the status of nigrostriatal neuron loss. Here, we replicated human PD at diagnosis by establishing motor impairment with >80% striatal DA and TH loss prior to initiating AE, and assessed its potential to alleviate motor decline and restore DA and TH loss. We also evaluated if serum levels of neurofilament light (NfL) and glial fibrillary acidic protein (GFAP), biomarkers of human PD severity, changed in response to AE. 6-hydroxydopamine (6-OHDA) was infused unilaterally into rat medial forebrain bundle to induce progressive nigrostriatal neuron loss over 28 days. Moderate intensity AE (3× per week, 40 min/session), began 8-10 days post-lesion following establishment of impaired forelimb use. Striatal tissue DA, TH protein and mRNA, and serum levels of NfL/GFAP were determined 3-wks after AE began. Despite severe striatal DA depletion at AE initiation, forelimb use deficits and hypokinesia onset were alleviated by AE, without recovery of striatal DA or TH protein loss, but reduced NfL and GFAP serum levels. This proof-of-concept study shows AE alleviates motor impairment when initiated with >80% striatal DA loss without obligate recovery of striatal DA or TH protein. Moreover, the AE-related reduction of NfL and GFAP serum levels may serve as objective blood-based biomarkers of AE efficacy.
Collapse
Affiliation(s)
- Ella A Kasanga
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Isabel Soto
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Ashley Centner
- Department of Psychology, Binghamton University, Binghamton, NY, United States of America
| | - Robert McManus
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Marla K Shifflet
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Walter Navarrete
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Yoonhee Han
- Department of Environmental Health Sciences, Robert Stempel School of Public Health & Social Work, Florida International University, Miami, FL, United States of America; Isakson Center for Neurological Disease Research, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Jerome Lisk
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Travis Ehrhardt
- Clearcut Ortho Rehab & Diagnostics, Fort Worth, TX, United States of America
| | - Ken Wheeler
- Clearcut Ortho Rehab & Diagnostics, Fort Worth, TX, United States of America
| | - Isha Mhatre-Winters
- Department of Environmental Health Sciences, Robert Stempel School of Public Health & Social Work, Florida International University, Miami, FL, United States of America; Isakson Center for Neurological Disease Research, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Jason R Richardson
- Department of Environmental Health Sciences, Robert Stempel School of Public Health & Social Work, Florida International University, Miami, FL, United States of America; Isakson Center for Neurological Disease Research, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Christopher Bishop
- Department of Psychology, Binghamton University, Binghamton, NY, United States of America
| | - Vicki A Nejtek
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Michael F Salvatore
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States of America.
| |
Collapse
|
3
|
Zhu Y, Song G. Molecular origin and biological effects of exercise mimetics. J Exerc Sci Fit 2024; 22:73-85. [PMID: 38187084 PMCID: PMC10770624 DOI: 10.1016/j.jesf.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
With the rapid development of sports science and molecular biology technology, academia refers to molecules or microorganisms that mimic or enhance the beneficial effects of exercise on the body, called "exercise mimetics." This review aims to clarify the concept and development history of exercise mimetics, and to define the concept of exercise mimetics by summarizing its characteristics and functions. Candidate molecules and drug targets for exercise mimetics are summarized, and the relationship between exercise mimetics and exercise is explained, as well as the targeting system and function of exercise mimetics. The main targeting systems for exercise mimetics are the exercise system, circulatory system, endocrine system, endocrine system, and nervous system, while the immune system is potential targeting systems. Finally, future research directions for exercise mimetics are discussed.
Collapse
Affiliation(s)
- Yuping Zhu
- Key Lab of Physical Fitness Evaluation and Motor Function Monitoring, College of Physical Education, Southwest University, Chongqing, 400715, China
| | - Gang Song
- Key Lab of Physical Fitness Evaluation and Motor Function Monitoring, College of Physical Education, Southwest University, Chongqing, 400715, China
| |
Collapse
|
4
|
Zikereya T, Shi K, Chen W. Goal-directed and habitual control: from circuits and functions to exercise-induced neuroplasticity targets for the treatment of Parkinson's disease. Front Neurol 2023; 14:1254447. [PMID: 37881310 PMCID: PMC10597699 DOI: 10.3389/fneur.2023.1254447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by motor and cognitive impairments. The progressive depletion of dopamine (DA) is the pathological basis of dysfunctional goal-directed and habitual control circuits in the basal ganglia. Exercise-induced neuroplasticity could delay disease progression by improving motor and cognitive performance in patients with PD. This paper reviews the research progress on the motor-cognitive basal ganglia circuit and summarizes the current hypotheses for explaining exercise intervention on rehabilitation in PD. Studies on exercise mediated mechanisms will contribute to the understanding of networks that regulate goal-directed and habitual behaviors and deficits in PD, facilitating the development of strategies for treatment of PD.
Collapse
Affiliation(s)
- Talifu Zikereya
- Department of Physical Education, China University of Geosciences, Beijing, China
| | - Kaixuan Shi
- Department of Physical Education, China University of Geosciences, Beijing, China
| | - Wei Chen
- Physical Education College, Hebei Normal University, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Chen Y, Wang X, Xiao B, Luo Z, Long H. Mechanisms and Functions of Activity-Regulated Cytoskeleton-Associated Protein in Synaptic Plasticity. Mol Neurobiol 2023; 60:5738-5754. [PMID: 37338805 DOI: 10.1007/s12035-023-03442-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/10/2023] [Indexed: 06/21/2023]
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) is one of the most important regulators of cognitive functions in the brain regions. As a hub protein, Arc plays different roles in modulating synaptic plasticity. Arc supports the maintenance of long-term potentiation (LTP) by regulating actin cytoskeletal dynamics, while it guides the endocytosis of AMPAR in long-term depression (LTD). Moreover, Arc can self-assemble into capsids, leading to a new way of communicating among neurons. The transcription and translation of the immediate early gene Arc are rigorous procedures guided by numerous factors, and RNA polymerase II (Pol II) is considered to regulate the precise timing dynamics of gene expression. Since astrocytes can secrete brain-derived neurotrophic factor (BDNF) and L-lactate, their unique roles in Arc expression are emphasized. Here, we review the entire process of Arc expression and summarize the factors that can affect Arc expression and function, including noncoding RNAs, transcription factors, and posttranscriptional regulations. We also attempt to review the functional states and mechanisms of Arc in modulating synaptic plasticity. Furthermore, we discuss the recent progress in understanding the roles of Arc in the occurrence of major neurological disorders and provide new thoughts for future research on Arc.
Collapse
Affiliation(s)
- Yifan Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Xiaohu Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, Hunan, People's Republic of China, 410008.
| | - Hongyu Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, Hunan, People's Republic of China, 410008.
| |
Collapse
|
6
|
Binda KH, Chacur M, Martins DO. Exercise Improves Orofacial Pain and Modifies Neuropeptide Expression in a Rat Model of Parkinson's Disease. Neurotox Res 2023; 41:459-470. [PMID: 37266893 DOI: 10.1007/s12640-023-00651-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
Pain is a common non-motor symptom of Parkinson's disease (PD), which often occurs in the early disease stages. Despite the high prevalence, it remains inadequately treated. In a hemi-parkinsonian rat model, we aimed to investigate the neurochemical factors involved in orofacial pain development, with a specific focus on pain-related peptides and cannabinoid receptors. We also evaluated whether treadmill exercise could improve orofacial pain and modulate these mechanisms. Rats were unilaterally injected in the striatum with either 6-hydroxydopamine (6-OHDA) or saline. Fifteen days after stereotactic surgery, the animals were submitted to treadmill exercise (EX), or remained sedentary (SED). Pain assessment was performed before the surgical procedure and prior to each training session. Pain-related peptides, substance P (SP), calcitonin gene-related peptide (CGRP), and transient receptor potential vanilloid type 1 (TRPV1) activation and cannabinoid receptor type 1 (CB1) and type 2 (CB2) were evaluated in the trigeminal nucleus. In order to confirm the possible involvement of cannabinoid receptors, we also injected antagonists of CB1 and CB2 receptors. We confirmed the presence of orofacial pain after unilateral 6-OHDA-injection, which improved after aerobic exercise training. We also observed increased pain-related expression of SP, CGRP and TRPV1 and decreased CB1 and CB2 in the trigeminal ganglion and caudal spinal trigeminal nucleus in animals with PD, which was reversed after aerobic exercise training. In addition, we confirm the involvement of cannabinoid receptors since both antagonists decreased the nociceptive threshold of PD animals. These data suggest that aerobic exercise effectively improved the orofacial pain associated with the PD model, and may be mediated by pain-related neuropeptides and cannabinoid receptors in the trigeminal system.
Collapse
Affiliation(s)
- Karina Henrique Binda
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Nuclear Medicine and PET Centre, Aarhus University, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Marucia Chacur
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Daniel Oliveira Martins
- Laboratory of Neuroscience, Hospital Sírio-Libanês, Rua Daher Cutait, 69, 05508-000, São Paulo, SP, Brazil.
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Scherma M, Palmas MF, Pisanu A, Masia P, Dedoni S, Camoglio C, Fratta W, Carta AR, Fadda P. Induction of Activity-Regulated Cytoskeleton-Associated Protein and c-Fos Expression in an Animal Model of Anorexia Nervosa. Nutrients 2023; 15:3830. [PMID: 37686862 PMCID: PMC10490422 DOI: 10.3390/nu15173830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Anorexia nervosa (AN) is a complex eating disorder characterized by reduced caloric intake to achieve body-weight loss. Furthermore, over-exercise is commonly reported. In recent years, animal models of AN have provided evidence for neuroplasticity changes in specific brain areas of the mesocorticolimbic circuit, which controls a multitude of functions including reward, emotion, motivation, and cognition. The activity-regulated cytoskeleton-associated protein (Arc) is an immediate early gene that modulates several forms of synaptic plasticity and has been linked to neuropsychiatric illness. Since the role of Arc in AN has never been investigated, in this study we evaluated whether the anorexic-like phenotype reproduced by the activity-based anorexia (ABA) model may impact its expression in selected brain regions that belong to the mesocorticolimbic circuit (i.e., prefrontal cortex, nucleus accumbens, and hippocampus). The marker of neuronal activation c-Fos was also assessed. We found that the expression of both markers increased in all the analyzed brain areas of ABA rats in comparison to the control groups. Moreover, a negative correlation between the density of Arc-positive cells and body-weight loss was found. Together, our findings suggest the importance of Arc and neuroplasticity changes within the brain circuits involved in dysfunctional behaviors associated with AN.
Collapse
Affiliation(s)
- Maria Scherma
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.F.P.); (S.D.); (C.C.); (W.F.); (A.R.C.); (P.F.)
| | - Maria Francesca Palmas
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.F.P.); (S.D.); (C.C.); (W.F.); (A.R.C.); (P.F.)
| | - Augusta Pisanu
- Neuroscience Institute, Section of Cagliari, National Research Council (CNR), 09042 Cagliari, Italy;
| | - Paolo Masia
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.F.P.); (S.D.); (C.C.); (W.F.); (A.R.C.); (P.F.)
| | - Simona Dedoni
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.F.P.); (S.D.); (C.C.); (W.F.); (A.R.C.); (P.F.)
| | - Chiara Camoglio
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.F.P.); (S.D.); (C.C.); (W.F.); (A.R.C.); (P.F.)
| | - Walter Fratta
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.F.P.); (S.D.); (C.C.); (W.F.); (A.R.C.); (P.F.)
| | - Anna R. Carta
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.F.P.); (S.D.); (C.C.); (W.F.); (A.R.C.); (P.F.)
| | - Paola Fadda
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.F.P.); (S.D.); (C.C.); (W.F.); (A.R.C.); (P.F.)
- Neuroscience Institute, Section of Cagliari, National Research Council (CNR), 09042 Cagliari, Italy;
| |
Collapse
|
8
|
Zhu Q, Deng J, Yao M, Xu C, Liu D, Guo L, Zhu Y. Effects of physical activity on visuospatial working memory in healthy individuals: A systematic review and meta-analysis. Front Psychol 2023; 14:1103003. [PMID: 36874874 PMCID: PMC9974834 DOI: 10.3389/fpsyg.2023.1103003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/25/2023] [Indexed: 02/17/2023] Open
Abstract
Introduction Physical activity interventions improve cognitive performance, especially visuospatial working memory (VSWM). However, evidence on the effects of these interventions in children, adolescents, and older adults remains scant. This meta-analysis aimed to identify the effects of physical activity on VSWM improvement in healthy individuals and the best exercise intervention program to improve VSWM capacity. Methods We searched for randomized controlled trials (RCTs) of exercise interventions targeting VSWM in healthy individuals from Web of Science, MEDLINE, BIOSIS Previews, PubMed, China National Knowledge Infrastructure, and Wanfang Data (Chinese) databases, from inception to August 20, 2022. Results Among 21 articles (1,595 healthy participants), the heterogeneity test statistic was I2 = 32.3%, p = 0.053. The mean quality scores of the included articles were 6.9 points (reaction time [RT] studies) and 7.5 points (Score studies). Moreover, 28 RCTs were included (10 RT studies and 18 Score studies), and the subgroup analysis found significant effects for elderly participants, children, interventions involving a higher level of cognitive engagement, low and moderate exercise intensity, chronic exercise, exercise duration ≥60 min, and exercise period ≥90 days. Physical activity had a small but significant positive impact on VSWM in healthy individuals. Current evidence confirms the effects of physical activity on VSWM capacity only in children and seniors but not in young adults. Other age groups, including adolescents and middle-aged adults, have not been studied. Prescription of interventions involving high-level cognitive engagement, low and moderate exercise intensity, chronic exercise, exercise for >30 min per session, and exercise for more than 3 months is recommended for children and seniors. Discussion Future RCTs would be to fill the gap in studies on adolescents and middle-aged adults, and report detailed exercise intervention programs about different age groups.Systematic Review Registration: PROSPERO (https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022354737). INPLASY (https://doi.org/10.37766/inplasy2022.8.0053).
Collapse
Affiliation(s)
- Qiqi Zhu
- College of Physical Education, Southwest University, Chongqing, China
| | - Jie Deng
- College of Physical Education, Southwest University, Chongqing, China
| | - Meixi Yao
- Physical Education College, Zhengzhou University, Henan, China
| | - Chong Xu
- Ministry of Sports and National Defense Education, Chongqing College of Electronic Engineering, Chongqing, China
| | - Demin Liu
- College of Physical Education, Southwest University, Chongqing, China
| | - Liya Guo
- College of Physical Education, Southwest University, Chongqing, China
| | - Yu Zhu
- College of Physical Education, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Rezaee Z, Marandi SM, Alaei H. Molecular Mechanisms of Exercise in Brain Disorders: a Focus on the Function of Brain-Derived Neurotrophic Factor-a Narrative Review. Neurotox Res 2022; 40:1115-1124. [PMID: 35655062 DOI: 10.1007/s12640-022-00527-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
Abstract
The natural aging process as well as many age-related diseases is associated with impaired metabolic adaptation and declined ability to cope with stress. As major causes of disability and morbidity during the aging process, brain disorders, including psychiatric and neurodegenerative disorders, are likely to increase across the globe in the future decades. This narrative review investigates the link among exercise and brain disorders, aging, and inflammatory biomarkers, along with the function of brain-derived neurotrophic factor. For this study, related manuscript from all databases, Google scholar, Scopus, PubMed, and ISI were assessed. Also, in the search process, the keywords of exercise, neurodegeneration, neurotrophin, mitochondrial dysfunction, and aging were used. Mitochondrial abnormality increases neuronal abnormality and brain disease during the aging process. Stress and inflammatory factors caused by lifestyle and aging also increase brain disorders. Evidences suggest that exercise, as a noninvasive treatment strategy, has antioxidant effects and can reduce neuronal lesions. Brain-derived neurotrophic factor expression following the exercise can reduce brain symptoms; however, careful consideration should be given to a number of factors affecting the results.
Collapse
Affiliation(s)
- Zeinab Rezaee
- Faculty of Physical Education & Sport Sciences, Department of Sport Physiology, University of Isfahan, Azadi Sq, HezarJerib Ave, P.O. Box, Isfahan, 81799-54359, Iran.
| | - Sayed Mohammad Marandi
- Faculty of Physical Education & Sport Sciences, Department of Sport Physiology, University of Isfahan, Azadi Sq, HezarJerib Ave, P.O. Box, Isfahan, 81799-54359, Iran
| | - Hojjatallah Alaei
- Department of Physiology, School of Medicine, University of Isfahan Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Zhuo W, Lundquist AJ, Donahue EK, Guo Y, Phillips D, Petzinger GM, Jakowec MW, Holschneider DP. A mind in motion: Exercise improves cognitive flexibility, impulsivity and alters dopamine receptor gene expression in a Parkinsonian rat model. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100039. [DOI: 10.1016/j.crneur.2022.100039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 02/06/2022] [Accepted: 04/24/2022] [Indexed: 11/26/2022] Open
|
11
|
Keifer J. Regulation of AMPAR trafficking in synaptic plasticity by BDNF and the impact of neurodegenerative disease. J Neurosci Res 2022; 100:979-991. [PMID: 35128708 DOI: 10.1002/jnr.25022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023]
Abstract
Research demonstrates that the neural mechanisms underlying synaptic plasticity and learning and memory involve mobilization of AMPA-type neurotransmitter receptors at glutamatergic synaptic contacts, and that these mechanisms are targeted during neurodegenerative disease. Strengthening neural transmission occurs with insertion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) into synapses while weakening results from receptor withdrawal. A key player in the trafficking of AMPARs during plasticity and learning is the brain-derived neurotrophic factor (BDNF) signaling system. BDNF is a neurotrophic factor that supports neuronal growth and is required for learning and memory. Significantly, a primary feature of many neurodegenerative diseases is a reduction in BDNF protein as well as disrupted neuronal surface expression of synaptic AMPARs. The resulting weakening of synaptic contacts leads to synapse loss and neuronal degeneration that underlies the cognitive impairment and dementia observed in patients with progressive neurodegenerative disease such as Alzheimer's. In the face of these data, one therapeutic approach is to increase BDNF bioavailability in brain. While this has been met with significant challenges, the results of the research have been promising. In spite of this, there are currently no clinical trials to test many of these findings on patients. Here, research showing that BDNF drives AMPARs to synapses, AMPAR trafficking is essential for synaptic plasticity and learning, and that neurodegenerative disease results in a significant decline in BDNF will be reviewed. The aim is to draw attention to the need for increasing patient-directed clinical studies to test the possible benefits of increasing levels of neurotrophins, specifically BDNF, to treat brain disorders. Much is known about the cellular mechanisms that underlie learning and memory in brain. It can be concluded that signaling by neurotrophins like BDNF and AMPA-type glutamate receptor synaptic trafficking are fundamental to these processes. Data from animal models and patients reveal that these mechanisms are adversely targeted during neurodegenerative disease and results in memory loss and cognitive decline. A brief summary of our understanding of these mechanisms indicates that it is time to apply this knowledge base directly to development of therapeutic treatments that enhance neurotrophins for brain disorders in patient populations.
Collapse
Affiliation(s)
- Joyce Keifer
- Neuroscience Group, Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| |
Collapse
|
12
|
Ferreira AFF, Singulani MP, Ulrich H, Feng ZP, Sun HS, Britto LR. Inhibition of TRPM2 by AG490 Is Neuroprotective in a Parkinson's Disease Animal Model. Mol Neurobiol 2022; 59:1543-1559. [PMID: 35000153 DOI: 10.1007/s12035-022-02723-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is characterized by motor impairment and dopaminergic neuronal loss. There is no cure for the disease, and treatments have several limitations. The transient receptor potential melastatin 2 (TRPM2), a calcium-permeable non-selective cation channel, has been reported to be upregulated in neuronal death. However, there are no in vivo studies evaluating TRPM2's role and neuroprotective effects in PD. Here, we test the hypothesis that TRPM2 is upregulated in the 6-hydroxydopamine (6-OHDA) mouse model of PD and that its inhibition, by the AG490, is neuroprotective. For that, AG490 or vehicle were intraperitoneally administered into C57BL/6 mice. Mice then received 6-OHDA into the right striatum. Motor behavior assessments were evaluated 6, 13, and 20 days after surgery using the cylinder and apomorphine-induced rotational testes, and 7, 14, and 21 days after surgery using rotarod test. Brain samples of substantia nigra (SNc) and striatum (CPu) were collected for immunohistochemistry and immunoblotting on days 7 and 21. We showed that TRPM2 protein expression was upregulated in 6-OHDA-treated animals. In addition, AG490 prevented dopaminergic neuron loss, microglial activation, and astrocyte reactivity in 6-OHDA-treated animals. The compound improved motor behaviors and Akt/GSK-3β/caspase-3 signaling. We conclude that TRPM2 inhibition by AG490 is neuroprotective in the 6-OHDA model and that the TRPM2 channel may represent a potential therapeutic target for PD.
Collapse
Affiliation(s)
- Ana Flávia Fernandes Ferreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Monique Patricio Singulani
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Neurosciences - LIM27, Department & Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Hong-Shuo Sun
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.,Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Luiz Roberto Britto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Exercise mimetics: harnessing the therapeutic effects of physical activity. Nat Rev Drug Discov 2021; 20:862-879. [PMID: 34103713 DOI: 10.1038/s41573-021-00217-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/05/2023]
Abstract
Exercise mimetics are a proposed class of therapeutics that specifically mimic or enhance the therapeutic effects of exercise. Increased physical activity has demonstrated positive effects in preventing and ameliorating a wide range of diseases, including brain disorders such as Alzheimer disease and dementia, cancer, diabetes and cardiovascular disease. This article discusses the molecular mechanisms and signalling pathways associated with the beneficial effects of physical activity, focusing on effects on brain function and cognitive enhancement. Emerging therapeutic targets and strategies for the development of exercise mimetics, particularly in the field of central nervous system disorders, as well as the associated opportunities and challenges, are discussed.
Collapse
|
14
|
Ferreira AFF, Binda KH, Real CC. The effects of treadmill exercise in animal models of Parkinson's disease: A systematic review. Neurosci Biobehav Rev 2021; 131:1056-1075. [PMID: 34688727 DOI: 10.1016/j.neubiorev.2021.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/04/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is a progressive disabling brain disorder. Physical exercise has been shown to alleviate the symptoms of PD and, consequently, improve patient quality of life. Exercise mechanisms involved in beneficial effects on PD have been widely investigated. This study aims to systematically review the literature on the use of treadmill exercise in PD animal models. The study was conducted according to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). Searches were conducted in MEDLINE, EMBASE, and ISI databases. In total, 78 studies were included. The dopaminergic system, behavior, neuroplasticity, neuroinflammation, mitochondria, and musculoskeletal systems were some of the outcomes evaluated by the selected studies. Based on the systematic review center for laboratory animal experimentation (SYRCLE) RoB tool, the methodologies revealed a high risk of bias and lack of information about study design, which needs attention for data reproducibility. This review can guide future studies that aim to fill existing gaps regarding the effects of treadmill exercise in PD animal models.
Collapse
Affiliation(s)
- Ana Flávia F Ferreira
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Karina Henrique Binda
- Laboratory of Functional Neuroanatomy of Pain, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil; Translational Neuropsychiatry Unit (TNU), Aarhus University, Aarhus, Denmark
| | - Caroline Cristiano Real
- Translational Neuropsychiatry Unit (TNU), Aarhus University, Aarhus, Denmark; Faculdade de Medicina (FMUSP), Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
15
|
Rezaee Z, Marandi SM, Esfarjani F. Age-related biochemical dysfunction in 6-OHDA model rats subject to induced- endurance exercise. Arch Gerontol Geriatr 2021; 98:104554. [PMID: 34688079 DOI: 10.1016/j.archger.2021.104554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 01/30/2023]
Abstract
Exercise can alleviate the disorders considered as the normal consequences of aging. Whether or not the treadmill endurance training affects the biochemical markers in the Parkinson's disease model rats after the 6-hydroxydopamine (6-OHDA) injection is assessed in this article. The experimental groups of N=8 rats consist of 1) Saline and Young sedentary (S-Young); 2) Saline and Old sedentary (S-Old); 3) Young and 6-OHDA without exercise (Y); 4) Young and 6-OHDA with exercise (YE); 5) Old and 6-OHDA without exercise (O); and 6) Old and 6-OHDA with exercise (OE). An 8 μg of 6-OHDA is injected into the right MFB. The rotation due to apomorphine, weight variation, and some biochemical expression are measured in the rats' striatum. Exposure to 6-OHDA: increase weight loss by (%8) and rotation by (%90), reduce the protein levels of Bdnf by (30%), Th by (43%), and Tfam by (24%), in aging rats (P<0.05). The P53 level rose after the injection compared with the same Saline group (Old rats: 27% and Young rats: 14%), the highest in the O group. The findings indicate that endurance exercise amends the mitochondrial parameters and the apomorphine-induced rotation impairments in the presence of 6-OHDA injection. These positive effects of treadmill running in unilateral 6-OHDA lesioned rat model are age-dependent and are more significant in younger rats.
Collapse
Affiliation(s)
- Zeinab Rezaee
- Exercise Physiology, Department of Physical Education and Sport Science, University of Isfahan, Isfahan, Iran.
| | - Sayed Mohammad Marandi
- Exercise Physiology, Department of Physical Education and Sport Science, University of Isfahan, Isfahan, Iran.
| | - Fahimeh Esfarjani
- Exercise Physiology, Department of Physical Education and Sport Science, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
16
|
Binda KH, Lillethorup TP, Real CC, Bærentzen SL, Nielsen MN, Orlowski D, Brooks DJ, Chacur M, Landau AM. Exercise protects synaptic density in a rat model of Parkinson's disease. Exp Neurol 2021; 342:113741. [PMID: 33965411 DOI: 10.1016/j.expneurol.2021.113741] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/04/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by Lewy body and neurite pathology associated with dopamine terminal dysfunction. Clinically, it is associated with motor slowing, rigidity, and tremor. Postural instability and pain are also features. Physical exercise benefits PD patients - possibly by promoting neuroplasticity including synaptic regeneration. OBJECTIVES In a parkinsonian rat model, we test the hypotheses that exercise: (a) increases synaptic density and reduces neuroinflammation and (b) lowers the nociceptive threshold by increasing μ-opioid receptor expression. METHODS Brain autoradiography was performed on rats unilaterally injected with either 6-hydroxydopamine (6-OHDA) or saline and subjected to treadmill exercise over 5 weeks. [3H]UCB-J was used to measure synaptic vesicle glycoprotein 2A (SV2A) density. Dopamine D2/3 receptor and μ-opioid receptor availability were assessed with [3H]Raclopride and [3H]DAMGO, respectively, while neuroinflammation was detected with the 18kDA translocator protein (TSPO) marker [3H]PK11195. The nociceptive threshold was determined prior to and throughout the exercise protocol. RESULTS We confirmed a dopaminegic deficit with increased striatal [3H]Raclopride D2/3 receptor availability and reduced nigral tyrosine hydroxylase immunoreactivity in the ipsilateral hemisphere of all 6-OHDA-injected rats. Sedentary rats lesioned with 6-OHDA showed significant reduction of ipsilateral striatal and substantia nigra [3H]UCB-J binding while [3H]PK11195 showed increased ipsilateral striatal neuroinflammation. Lesioned rats who exercised had higher levels of ipsilateral striatal [3H]UCB-J binding and lower levels of neuroinflammation compared to sedentary lesioned rats. Striatal 6-OHDA injections reduced thalamic μ-opioid receptor availability but subsequent exercise restored binding. Exercise also raised thalamic and hippocampal SV2A synaptic density in 6-OHDA lesioned rats, accompanied by a rise in nociceptive threshold. CONCLUSION These data suggest that treadmill exercise protects nigral and striatal synaptic integrity in a rat lesion model of PD - possibly by promoting compensatory mechanisms. Exercise was also associated with reduced neuroinflammation post lesioning and altered opioid transmission resulting in an increased nociceptive threshold.
Collapse
Affiliation(s)
- K H Binda
- Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, Building 2b, Aarhus C 8000, Denmark; Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark; Laboratory of Functional Neuroanatomy of Pain, Departamento de Anatomia, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - T P Lillethorup
- Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark.
| | - C C Real
- Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, Building 2b, Aarhus C 8000, Denmark; Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark; Laboratory of Nuclear Medicine (LIM 43), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - S L Bærentzen
- Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, Building 2b, Aarhus C 8000, Denmark; Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark.
| | - M N Nielsen
- Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, Building 2b, Aarhus C 8000, Denmark.
| | - D Orlowski
- Center for Experimental Neuroscience (CENSE), Department of Clinical Medicine, Aarhus University and Department of Neurosurgery, Aarhus University Hospital, Aarhus N, 8200, Denmark.
| | - D J Brooks
- Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark; Institute for Translational and Clinical Research, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| | - M Chacur
- Laboratory of Functional Neuroanatomy of Pain, Departamento de Anatomia, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - A M Landau
- Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, Building 2b, Aarhus C 8000, Denmark; Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark.
| |
Collapse
|
17
|
Exercise-Induced Neuroprotection in the 6-Hydroxydopamine Parkinson's Disease Model. Neurotox Res 2020; 38:850-858. [PMID: 32803628 DOI: 10.1007/s12640-020-00189-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 01/18/2023]
Abstract
Exercise exerts helpful effects in Parkinson's disease. In this study, the 6-hydroxydopamine (6-OHDA) injection was used to investigate the effect of exercise on apomorphine-induced rotation and neurorestoration. Rats (n = 32) were divided into four groups: (1) Saline+Noexercise (Sham); (2) 6-OHDA+Noexercise (6-OHDA); (3) Saline+Exercise (S+EXE), and (4) 6-OHDA+Exercise (6-OHDA+EXE). The rats were administered 8 μg 6-OHDA by injection into the right medial forebrain bundle. After 2 weeks, the exercise group was run (14 consecutive days, 30 min per day). One month after the surgery, following the injection of apomorphine, the 6-OHDA group displayed a significant increase in rotation and the 6-OHDA+EXE group showed a significant reduction of rotational asymmetry (P < 0.001). 6-OHDA injection reduced the mRNA and protein expression of the AMP-activated protein kinase, brain-derived neurotropic factor, and tyrosine hydroxylase in relation to the Sham group and exercise increased these levels. Expression of the silent information regulator 2 homolog 1 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha was unexpectedly enhanced in the 6-OHDA groups in relation to the Sham group. These findings suggest that the 6-OHDA injection increased the neurodegeneration and mitochondrial and behavioral dysfunctions and the treadmill running attenuated these disorders in the ipsilateral striatum of the 6-OHDA+EXE group.
Collapse
|
18
|
Schirinzi T, Canevelli M, Suppa A, Bologna M, Marsili L. The continuum between neurodegeneration, brain plasticity, and movement: a critical appraisal. Rev Neurosci 2020; 31:723-742. [DOI: 10.1515/revneuro-2020-0011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/08/2020] [Indexed: 01/09/2023]
Abstract
Abstract
While the “physiological” aging process is associated with declines in motor and cognitive features, these changes do not significantly impair functions and activities of daily living. Differently, motor and cognitive impairment constitute the most common phenotypic expressions of neurodegeneration. Both manifestations frequently coexist in the same disease, thus making difficult to detect “pure” motor or cognitive conditions. Movement disorders are often characterized by cognitive disturbances, and neurodegenerative dementias often exhibit the occurrence of movement disorders. Such a phenotypic overlap suggests approaching these conditions by highlighting the commonalities of entities traditionally considered distinct. In the present review, we critically reappraised the common clinical and pathophysiological aspects of neurodegeneration in both animal models and patients, looking at motricity as a trait d’union over the spectrum of neurodegeneration and focusing on synaptopathy and oscillopathy as the common pathogenic background. Finally, we discussed the possible role of movement as neuroprotective intervention in neurodegenerative conditions, regardless of the etiology. The identification of commonalities is critical to drive future research and develop novel possible disease-modifying interventions.
Collapse
Affiliation(s)
- Tommaso Schirinzi
- Department of Systems Medicine , University of Rome Tor Vergata , Rome , Italy
| | - Marco Canevelli
- Department of Human Neurosciences , Sapienza University of Rome , Rome , Italy
- National Center for Disease Prevention and Health Promotion, National Institute of Health , Rome , Italy
| | - Antonio Suppa
- Department of Human Neurosciences , Sapienza University of Rome , Rome , Italy
- IRCCS Neuromed , Pozzilli , IS , Italy
| | - Matteo Bologna
- Department of Human Neurosciences , Sapienza University of Rome , Rome , Italy
- IRCCS Neuromed , Pozzilli , IS , Italy
| | - Luca Marsili
- Department of Neurology, Gardner Family Center for Parkinson’s Disease and Movement Disorders , University of Cincinnati , 260 Stetson Street , Cincinnati , 45219, OH , USA
| |
Collapse
|
19
|
Effects of exercise on proactive interference in memory: potential neuroplasticity and neurochemical mechanisms. Psychopharmacology (Berl) 2020; 237:1917-1929. [PMID: 32488351 DOI: 10.1007/s00213-020-05554-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Proactive interference occurs when consolidated memory traces inhibit new learning. This kind of interference decreases the efficiency of new learning and also causes memory errors. Exercise has been shown to facilitate some types of cognitive function; however, whether exercise reduces proactive interference to enhance learning efficiency is not well understood. Thus, this review discusses the effects of exercise on proactive memory interference and explores potential mechanisms, such as neurogenesis and neurochemical changes, mediating any effect.
Collapse
|
20
|
Ferreira AFF, Binda KH, Singulani MP, Pereira CPM, Ferrari GD, Alberici LC, Real CC, Britto LR. Physical exercise protects against mitochondria alterations in the 6-hidroxydopamine rat model of Parkinson's disease. Behav Brain Res 2020; 387:112607. [PMID: 32199987 DOI: 10.1016/j.bbr.2020.112607] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 01/27/2023]
Abstract
Parkinson's disease (PD) is typicaly caractherized by loss of dopaminergic neurons, as well as the presence of mitochondrial impairments. Although physical exercise is known to promote many beneficial effects in healthy subjects, such as enhancing mitocondrial biogenesis and function, it is not clear if these effects are evident after exercise in individuals with PD. The aim of this study was to investigate the effects of two different protocol durations on motor behavior (aphomorphine and gait tests), mitochondrial biogenesis signaling (PGC-1α, NRF-1 and TFAM), structure (oxidative phosphorylation system protein levels) and respiratory chain activity (complex I) in a unilateral PD rat model. For this, male Wistar rats were injected with 6-hydroxydopamine unilaterally into the striatum and submitted to an intermitent moderate treadmill exercise for one or four weeks. In the gait test, only stride width data revealed an improvement after one week of exercise. On the other hand, after 4 weeks of the exercise protocol all gait parameters analyzed and the aphomorphine test demonstrated a recovery. Analysis of protein revealed that one week of exercise was able to prevent PGC-1α and NRF-1 expression decrease in PD animals. In addition, after four weeks of physical exercise, besides PGC-1α and NRF-1, reduction in TFAM and complex I protein levels and increased complex I activity were also prevented in PD animals. Thus, our results suggest a neuroprotective and progressive effect of intermittent treadmill exercise, which could be related to its benefits on mitochondrial biogenesis signaling and respiratory chain modulation of the dopaminergic system in PD.
Collapse
Affiliation(s)
- Ana Flávia Fernandes Ferreira
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Biomedical Science Institute, University of São Paulo, São Paulo, SP, Brazil.
| | - Karina Henrique Binda
- Laboratory of Functional Neuroanatomy of Pain, Department of Anatomy, Biomedical Science Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Monique Patricio Singulani
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Biomedical Science Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Carolina Parga Martins Pereira
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Biomedical Science Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Gustavo Duarte Ferrari
- Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luciane Carla Alberici
- Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Caroline Cristiano Real
- Laboratory of Nuclear Medicine (LIM-43), Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil.
| | - Luiz Roberto Britto
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Biomedical Science Institute, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
21
|
Singulani MP, Pereira CPM, Ferreira AFF, Garcia PC, Ferrari GD, Alberici LC, Britto LR. Impairment of PGC-1α-mediated mitochondrial biogenesis precedes mitochondrial dysfunction and Alzheimer's pathology in the 3xTg mouse model of Alzheimer's disease. Exp Gerontol 2020; 133:110882. [PMID: 32084533 DOI: 10.1016/j.exger.2020.110882] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/16/2019] [Accepted: 02/16/2020] [Indexed: 11/18/2022]
Abstract
Impairment of mitochondrial biogenesis and mitochondrial dysfunction is a prominent feature of Alzheimer's disease (AD). However, the extent to which the impairment of mitochondrial biogenesis influences mitochondrial dysfunction at the onset and during progression of AD is still unclear. Our study demonstrated that the protein expression pattern of the transcription factor pCREB/CREB, together with the protein expression of PGC-1α, NRF1 and TFAM are all significantly reduced in early ages of 3xTg-AD mice. We also found reduced mRNA expression levels of PKAC-α, CREB, PGC-1α, NRF1, NRF2 and TFAM as early as 1 month-of-age, an age at which there was no significant Aβ oligomer deposition, suggesting that mitochondrial biogenesis is likely impaired in ages preceding the development of the AD pathology. In addition, there was a decrease in VDAC2 expression, which is related to mitochondrial content and mitochondrial function, as demonstrated by protein expression of complex IV, as well as complex II + III, and complex IV activities, at later ages in 3xTg-AD mice. These results suggest that the impairment in mitochondrial biogenesis signaling mediated by PGC-1α at early ages of the AD mice model likely resulted in mitochondrial dysfunction and manifestation of the AD pathology at later ages. Taken together, enhancing mitochondrial biogenesis may represent a potential pharmacological approach for the treatment of AD.
Collapse
Affiliation(s)
- Monique Patricio Singulani
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | | | - Ana Flávia Fernandes Ferreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Priscila Crespo Garcia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gustavo Duarte Ferrari
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Luciane Carla Alberici
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Roberto Britto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
22
|
Binda K, Real C, Ferreira A, Britto L, Chacur M. Antinociceptive effects of treadmill exercise in a rat model of Parkinson's disease: The role of cannabinoid and opioid receptors. Brain Res 2020; 1727:146521. [DOI: 10.1016/j.brainres.2019.146521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/19/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022]
|
23
|
Zhang L, So KF. Exercise, spinogenesis and cognitive functions. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 147:323-360. [PMID: 31607360 DOI: 10.1016/bs.irn.2019.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exercise training improves mental and cognitive functions by enhancing neurogenesis and neuroprotection. Recent studies suggest the facilitation of spinogenesis across different brain regions including hippocampus and cerebral cortex by physical activity. In this article we will summarize major findings for exercise effects on synaptogenesis and spinogenesis, in order to provide mechanisms for exercise intervention of both psychiatric diseases and neurodegenerative disorders. We will also revisit major findings for molecular mechanism governing exercise-related spinogenesis, and will discuss the screening for novel factors, or exerkines, whose levels are correlated with endurance training and affect neural plasticity. We believe that further studies focusing on the molecular mechanism of exercise-mediate spinogenesis should benefit the optimization of exercise therapy in clinics and the evaluation of treatment efficiency using specific biomarkers.
Collapse
Affiliation(s)
- Li Zhang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, PR China; Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, PR China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, PR China; Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, PR China; State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, PR China.
| |
Collapse
|
24
|
Real CC, Doorduin J, Kopschina Feltes P, Vállez García D, de Paula Faria D, Britto LR, de Vries EF. Evaluation of exercise-induced modulation of glial activation and dopaminergic damage in a rat model of Parkinson's disease using [ 11C]PBR28 and [ 18F]FDOPA PET. J Cereb Blood Flow Metab 2019; 39:989-1004. [PMID: 29271291 PMCID: PMC6545619 DOI: 10.1177/0271678x17750351] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Evidence suggests that exercise can modulate neuroinflammation and neuronal damage. We evaluated if such effects of exercise can be detected with positron emission tomography (PET) in a rat model of Parkinson's disease (PD). Rats were unilaterally injected in the striatum with 6-hydroxydopamine (PD rats) or saline (controls) and either remained sedentary (SED) or were forced to exercise three times per week for 40 min (EX). Motor and cognitive functions were evaluated by the open field, novel object recognition, and cylinder tests. At baseline, day 10 and 30, glial activation and dopamine synthesis were assessed by [11C]PBR28 and [18F]FDOPA PET, respectively. PET data were confirmed by immunohistochemical analysis of microglial (Iba-1) / astrocyte (GFAP) activation and tyrosine hydroxylase (TH). [11C]PBR28 PET showed increased glial activation in striatum and hippocampus of PD rats at day 10, which had resolved at day 30. Exercise completely suppressed glial activation. Imaging results correlated well with post-mortem Iba-1 staining, but not with GFAP staining. [18F]FDOPA PET, TH staining and behavioral tests indicate that 6-OHDA caused damage to dopaminergic neurons, which was partially prevented by exercise. These results show that exercise can modulate toxin-induced glial activation and neuronal damage, which can be monitored noninvasively by PET.
Collapse
Affiliation(s)
- Caroline C Real
- 1 Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, University of São Paulo, São Paulo, SP, Brazil.,2 Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,3 Laboratory of Nuclear Medicine (LIM 43), University of São Paulo Medical School, University of São Paulo, São Paulo, Brazil
| | - Janine Doorduin
- 2 Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Paula Kopschina Feltes
- 2 Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - David Vállez García
- 2 Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Daniele de Paula Faria
- 3 Laboratory of Nuclear Medicine (LIM 43), University of São Paulo Medical School, University of São Paulo, São Paulo, Brazil
| | - Luiz R Britto
- 1 Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, University of São Paulo, São Paulo, SP, Brazil
| | - Erik Fj de Vries
- 2 Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
25
|
Effects of Preventive Treadmill Exercise on the Recovery of Metabolic and Mitochondrial Factors in the 6-Hydroxydopamine Rat Model of Parkinson’s Disease. Neurotox Res 2019; 35:908-917. [DOI: 10.1007/s12640-019-0004-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/11/2019] [Accepted: 01/24/2019] [Indexed: 12/11/2022]
|
26
|
Lynch WJ, Robinson AM, Abel J, Smith MA. Exercise as a Prevention for Substance Use Disorder: A Review of Sex Differences and Neurobiological Mechanisms. CURRENT ADDICTION REPORTS 2017; 4:455-466. [PMID: 29430384 PMCID: PMC5802367 DOI: 10.1007/s40429-017-0178-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW This report provides an update on clinical and preclinical findings for the efficacy of exercise to prevent substance use disorder with a focus on recent evidence for sex differences and neurobiological mechanisms. RECENT FINDINGS Exercise/physical activity is associated with decreased drug use in humans. Preclinical results further indicate that exercise decreases vulnerability to drug use and the development of features of substance use disorder, and suggest that females have an enhanced sensitivity to its reward-substitution effects. However, certain exercise conditions may sensitize the reward pathway and enhance vulnerability suggesting that parallel observations in humans (e.g., increased prescription opioid misuse and heroin use in high-school athletes) may be biologically-based. SUMMARY Exercise is a promising prevention strategy for substance use disorder. Further work is needed to establish its efficacy as a sex-specific strategy using larger samples, and to understand the exercise conditions that induce beneficial versus risk-enhancing effects.
Collapse
Affiliation(s)
- Wendy J Lynch
- Associate Professor of Psychiatry and Neurobehavioral Sciences, University of Virginia: P.O. Box 801402, Charlottesville, VA 22904, 434-243-0580 (phone); 434-973-7031 (fax)
| | - Andrea M Robinson
- Postdoctoral Fellow of Psychology, Davidson College: Box 7136 Davidson, NC 28035, 704-894-3012 (phone); 704-894-2512 (fax)
| | - Jean Abel
- Assistant Professor of Psychiatry and Neurobehavioral Sciences, University of Virginia; P.O. Box 801402, Charlottesville, VA 22904-1402, 434) 243-5767 (phone); 434-973-7031 (fax)
| | - Mark A Smith
- Professor of Psychology, Davidson College, Davidson, NC 28035, 704-894-2470 (phone); 704-894-2512 (fax)
| |
Collapse
|
27
|
Lynch WJ, Abel J, Robinson AM, Smith MA. Exercise as a Sex-Specific Treatment for Substance Use Disorder. CURRENT ADDICTION REPORTS 2017; 4:467-481. [PMID: 29404264 PMCID: PMC5796660 DOI: 10.1007/s40429-017-0177-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Exercise is a promising treatment for substance use disorder that may reduce withdrawal symptoms and prevent relapse. In this review, we discuss recent evidence from clinical and preclinical studies for its efficacy, from a behavioral to a molecular level, in order to understand the exercise conditions that lead to beneficial effects. We also highlight the few recent findings of sex-specific differences. RECENT FINDINGS Clinical and preclinical findings show that exercise decreases withdrawal symptoms, including craving, in both males and females. Evidence from clinical studies support the efficacy of exercise to prevent relapse to smoking, although further research is needed to examine sex differences, establish long-term efficacy, and to determine if effects extend to other substance use disorders. Preclinical findings also support the potential utility of exercise to prevent relapse with evidence suggesting that its efficacy is enhanced in males, and mediated by blocking drug-induced adaptations that occur during early abstinence. SUMMARY Sex differences and timing of exercise availability during abstinence should be considered in future studies examining exercise as an intervention for relapse. A better understanding of the neurobiological mechanisms underlying the efficacy of exercise to reduce withdrawal symptoms and prevent relapse is needed to guide its development as a sex-specific treatment.
Collapse
Affiliation(s)
- Wendy J Lynch
- Associate Professor of Psychiatry and Neurobehavioral Sciences University of Virginia: P.O. Box 801402, Charlottesville, VA 22904 434-243-0580 (phone); 434-973-7031 (fax)
| | - Jean Abel
- Assistant Professor of Psychiatry and Neurobehavioral Sciences University of Virginia; P.O. Box 801402, Charlottesville, VA 22904-1402 434) 243-5767 (phone); 434-973-7031 (fax)
| | - Andrea M Robinson
- Postdoctoral Fellow of Psychology Davidson College: Box 7136 Davidson, NC 28035 704-894-3012 (phone); 704-894-2512 (fax)
| | - Mark A Smith
- Professor of Psychology Davidson College, Davidson, NC 28035 704-894-2470 (phone); 704-894-2512 (fax)
| |
Collapse
|
28
|
Hou L, Chen W, Liu X, Qiao D, Zhou FM. Exercise-Induced Neuroprotection of the Nigrostriatal Dopamine System in Parkinson's Disease. Front Aging Neurosci 2017; 9:358. [PMID: 29163139 PMCID: PMC5675869 DOI: 10.3389/fnagi.2017.00358] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies indicate that physical activity and exercise may reduce the risk of developing Parkinson's disease (PD), and clinical observations suggest that physical exercise can reduce the motor symptoms in PD patients. In experimental animals, a profound observation is that exercise of appropriate timing, duration, and intensity can reduce toxin-induced lesion of the nigrostriatal dopamine (DA) system in animal PD models, although negative results have also been reported, potentially due to inappropriate timing and intensity of the exercise regimen. Exercise may also minimize DA denervation-induced medium spiny neuron (MSN) dendritic atrophy and other abnormalities such as enlarged corticostriatal synapse and abnormal MSN excitability and spiking activity. Taken together, epidemiological studies, clinical observations, and animal research indicate that appropriately dosed physical activity and exercise may not only reduce the risk of developing PD in vulnerable populations but also benefit PD patients by potentially protecting the residual DA neurons or directly restoring the dysfunctional cortico-basal ganglia motor control circuit, and these benefits may be mediated by exercise-triggered production of endogenous neuroprotective molecules such as neurotrophic factors. Thus, exercise is a universally available, side effect-free medicine that should be prescribed to vulnerable populations as a preventive measure and to PD patients as a component of treatment. Future research needs to establish standardized exercise protocols that can reliably induce DA neuron protection, enabling the delineation of the underlying cellular and molecular mechanisms that in turn can maximize exercise-induced neuroprotection and neurorestoration in animal PD models and eventually in PD patients.
Collapse
Affiliation(s)
- Lijuan Hou
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Wei Chen
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China.,Department of Exercise and Rehabilitation, Physical Education College, Hebei Normal University, Shijiazhuang, China
| | - Xiaoli Liu
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Decai Qiao
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Fu-Ming Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN, United States
| |
Collapse
|
29
|
Francardo V, Schmitz Y, Sulzer D, Cenci MA. Neuroprotection and neurorestoration as experimental therapeutics for Parkinson's disease. Exp Neurol 2017; 298:137-147. [PMID: 28988910 DOI: 10.1016/j.expneurol.2017.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/25/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022]
Abstract
Disease-modifying treatments remain an unmet medical need in Parkinson's disease (PD). Such treatments can be operationally defined as interventions that slow down the clinical evolution to advanced disease milestones. A treatment may achieve this outcome by either inhibiting primary neurodegenerative events ("neuroprotection") or boosting compensatory and regenerative mechanisms in the brain ("neurorestoration"). Here we review experimental paradigms that are currently used to assess the neuroprotective and neurorestorative potential of candidate treatments in animal models of PD. We review some key molecular mediators of neuroprotection and neurorestoration in the nigrostriatal dopamine pathway that are likely to exert beneficial effects on multiple neural systems affected in PD. We further review past and current strategies to therapeutically stimulate these mediators, and discuss the preclinical evidence that exercise training can have neuroprotective and neurorestorative effects. A future translational task will be to combine behavioral and pharmacological interventions to exploit endogenous mechanisms of neuroprotection and neurorestoration for therapeutic purposes. This type of approach is likely to provide benefit to many PD patients, despite the clinical, etiological, and genetic heterogeneity of the disease.
Collapse
Affiliation(s)
- Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Yvonne Schmitz
- Departments Neurology, Psychiatry, Pharmacology, Columbia University Medical Center: Division of Molecular Therapeutics, New York State Psychiatric Institute, New York 10032, NY, USA
| | - David Sulzer
- Departments Neurology, Psychiatry, Pharmacology, Columbia University Medical Center: Division of Molecular Therapeutics, New York State Psychiatric Institute, New York 10032, NY, USA
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
30
|
Real CC, Garcia PC, Britto LRG. Treadmill Exercise Prevents Increase of Neuroinflammation Markers Involved in the Dopaminergic Damage of the 6-OHDA Parkinson’s Disease Model. J Mol Neurosci 2017; 63:36-49. [DOI: 10.1007/s12031-017-0955-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/21/2017] [Indexed: 12/21/2022]
|