1
|
Izadifard M, Ahmadvand M, Chahardouli B, Vaezi M, Janbabai G, Seghatoleslami G, Bahrami M, Yaghmaie M, Barkhordar M. Plasma-circulating miR-638, miR-6511b-5p, miR-3613-5p, miR-455-3p, miR-5787, and miR-548a-3p as noninvasive biomarkers of immune reconstitution post-allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia patients. Transpl Immunol 2025; 91:102240. [PMID: 40347984 DOI: 10.1016/j.trim.2025.102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 05/07/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
INTRODUCTION Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a viable treatment option for acute myeloid leukemia (AML), though it carries risks including delayed immune reconstitution and hematopoietic reconstitution failure. This study aimed to explore the potential of circulating miRNA levels as biomarkers for post-transplant immune reconstitution. METHODS This observational study was carried out on de novo non-M3 AML patients receiving allo-HSCT from HLA-matched sibling donors at Shariati Hospital, Iran in 2020-2023. Accordingly, the immunophenotype of NK cells, T cells, and B cells was determined by ten-color multiparameter flow cytometry on blood samples collected pre-transplantation and at day +30 post-transplantation. Concurrently, plasma levels of miR-638, miR-6511b-5p, miR-3613-5p, miR-455-3p, miR-5787, and miR-548a-3p were quantified using quantitative reverse transcription-polymerase chain reaction (RT qPCR). RESULTS The expression of miR-638, miR-3613-5p, miR-455-3p, and miR-548a-3p positively correlated with CD4+ T cells, CD4+/CD8+ T cell ratio, CD3-/16+/56- cells, and platelet count. Elevated miR-455-3p and miR-3613-5p expressions were associated with higher CD3-/16+/56- cells (P = 0.0475 and P = 0.0325, respectively). Similarly, miR-638 upregulation correlated with increases in CD4+ T cells (P = 0.0112) and the CD4+/CD8+ T cell ratio (P = 0.006), while miR-548a-3p upregulation was associated with increases in the CD4+/CD8+ T cell ratio (P = 0.0353) and platelet count (P = 0.0191). Conversely, miR-3613-5p and miR-6511b-5p had considerable negative correlations with CD8+ T cells (P = 0.03 and P = 0.0246, respectively), whereas miR-5787 negatively correlated with CD3+/16-/56+ cells (P = 0.025). CONCLUSION Our findings suggest that differentiation of cell subpopulations is regulated by specific miRNAs. Furthermore, miRNA-based strategies may be developed for immunotherapeutic treatments of AML.
Collapse
Affiliation(s)
- Marzieh Izadifard
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Bahram Chahardouli
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ghasem Janbabai
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Marjan Yaghmaie
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Barkhordar
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Ghahramani Almanghadim H, Karimi B, Valizadeh S, Ghaedi K. Biological functions and affected signaling pathways by Long Non-Coding RNAs in the immune system. Noncoding RNA Res 2025; 10:70-90. [PMID: 39315339 PMCID: PMC11417496 DOI: 10.1016/j.ncrna.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Recently, the various regulative functions of long non-coding RNAs (LncRNAs) have been well determined. Recently, the vital role of LncRNAs as gene regulators has been identified in the immune system, especially in the inflammatory response. All cells of the immune system are governed by a complex and ever-changing gene expression program that is regulated through both transcriptional and post-transcriptional processes. LncRNAs regulate gene expression within the cell nucleus by influencing transcription or through post-transcriptional processes that affect the splicing, stability, or translation of messenger RNAs (mRNAs). Recent studies in immunology have revealed substantial alterations in the expression of lncRNAs during the activation of the innate immune system as well as the development, differentiation, and activation of T cells. These lncRNAs regulate key aspects of immune function, including the manufacturing of inflammatory molecules, cellular distinction, and cell movement. They do this by modulating protein-protein interactions or through base pairing with RNA and DNA. Here we review the current understanding of the mechanism of action of lncRNAs as novel immune-related regulators and their impact on physiological and pathological processes related to the immune system, including autoimmune diseases. We also highlight the emerging pattern of gene expression control in important research areas at the intersection between immunology and lncRNA biology.
Collapse
Affiliation(s)
| | - Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sepehr Valizadeh
- Department of Internal Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
3
|
Farhan SH, Jasim SA, Bansal P, Kaur H, Abed Jawad M, Qasim MT, Jabbar AM, Deorari M, Alawadi A, Hadi A. Exosomal Non-coding RNA Derived from Mesenchymal Stem Cells (MSCs) in Autoimmune Diseases Progression and Therapy; an Updated Review. Cell Biochem Biophys 2024; 82:3091-3108. [PMID: 39225902 DOI: 10.1007/s12013-024-01432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 09/04/2024]
Abstract
Inflammation and autoimmune diseases (AD) are common outcomes of an overactive immune system. Inflammation occurs due to the immune system reacting to damaging stimuli. Exosomes are being recognized as an advanced therapeutic approach for addressing an overactive immune system, positioning them as a promising option for treating AD. Mesenchymal stem cells (MSCs) release exosomes that have strong immunomodulatory effects, influenced by their cell of origin. MSCs-exosomes, being a cell-free therapy, exhibit less toxicity and provoke a diminished immune response compared to cell-based therapies. Exosomal non-coding RNAs (ncRNA), particularly microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are intricately linked to various biological and functional aspects of human health. Exosomal ncRNAs can lead to tissue malfunction, aging, and illnesses when they experience tissue-specific alterations as a result of various internal or external problems. In this study, we will examine current trends in exosomal ncRNA researches regarding AD. Then, therapeutic uses of MSCs-exosomal ncRNA will be outlined, with a particle focus on the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Shireen Hamid Farhan
- Biotechnology department, College of Applied Science, Fallujah University, Fallujah, Iraq
| | | | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, India
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq.
| | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Abeer Mhussan Jabbar
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq.
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq
- College of technical engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of technical engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Ali Hadi
- Department of medical laboratories techniques, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
4
|
ElMonier AA, Shaker OG, Ali SO. Regulatory role of the lncRNAs MIAT and PVT1 in Behçet's disease through targeting miR-93-5p and miR-124-3p. Mol Med 2024; 30:157. [PMID: 39317938 PMCID: PMC11423507 DOI: 10.1186/s10020-024-00914-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Noncoding RNAs play pivotal roles in the process of autoimmune diseases. However, the definite contributions of these molecules to Behçet's disease (BD) are still unknown. This study aimed to explore the clinical value of a novel competing endogenous (ce) RNA network in the pathogenesis of BD and to assess its use in primary diagnosis. METHODS Bioinformatic analysis was applied to construct a BD-related ceRNA network: lncRNA (MIAT and PVT1)-miRNA (miR-93-5p and miR-124-3p)-mRNA (SOD-2 and MICA). Blood was obtained from 70 BD patients and 30 healthy subjects, and the serum expression of the tested RNAs was estimated via quantitative real-time PCR (qPCR). Serum tumor necrosis factor-alpha (TNF-α) levels were also determined. The associations between these RNAs were further analyzed, and receiver operating characteristic (ROC) curve and logistic regression analyses were employed to validate their diagnostic and prognostic values. RESULTS The expression levels of the lncRNAs PVT1 and miR-93-5p were significantly increased, whereas those of the lncRNAs MIAT and miR-124-3p, as well as those of the SOD-2 and MICA mRNAs, were significantly decreased in BD patients compared with controls. BD patients had significantly higher serum TNF-α levels than controls did. ROC curve analysis indicated that the selected RNAs could be candidate diagnostic biomarkers for BD. Moreover, the highest diagnostic efficiency was achieved with the combination of MIAT and miR-93-5p or PVT1 and miR-124-3p with either SOD-2 or MICA. Logistic regression analysis revealed that all RNA expression levels could be predictors for BD. CONCLUSION Mechanistically, our research revealed a novel ceRNA network that is significantly disrupted in BD. The findings reported herein, highlight the noncoding RNA-molecular pathways underlying BD and identify potential targets for therapeutic intervention. These insights will likely be applicable for developing new strategies for the early diagnosis, management and risk assessment of BD as well as the design of novel preventive measures. Trial registration The protocol for the clinical studies was approved by Cairo University's Faculty of Pharmacy's Research Ethics Committee (approval number: BC 3590).
Collapse
Affiliation(s)
- Asmaa A ElMonier
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Olfat G Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Shimaa O Ali
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Mehmandar-Oskuie A, Jahankhani K, Rostamlou A, Mardafkan N, Karamali N, Razavi ZS, Mardi A. Molecular mechanism of lncRNAs in pathogenesis and diagnosis of auto-immune diseases, with a special focus on lncRNA-based therapeutic approaches. Life Sci 2024; 336:122322. [PMID: 38042283 DOI: 10.1016/j.lfs.2023.122322] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
Autoimmune diseases are a diverse set of conditions defined by organ damage due to abnormal innate and acquired immune system responses. The pathophysiology of autoimmune disorders is exceedingly intricate and has yet to be fully understood. The study of long non-coding RNAs (lncRNAs), non-protein-coding RNAs with at least 200 nucleotides in length, has gained significant attention due to the completion of the human genome project and the advancement of high-throughput genomic approaches. Recent research has demonstrated how lncRNA alters disease development to different degrees. Although lncRNA research has made significant progress in cancer and generative disorders, autoimmune illnesses are a relatively new research area. Moreover, lncRNAs play crucial functions in differentiating various immune cells, and their potential relationships with autoimmune diseases have received growing attention. Because of the importance of Th17/Treg axis in auto-immune disease development, in this review, we discuss various molecular mechanisms by which lncRNAs regulate the differentiation of Th17/Treg cells. Also, we reviewed recent findings regarding the several approaches in the application of lncRNAs in the diagnosis and treatment of human autoimmune diseases, as well as current challenges in lncRNA-based therapeutic approaches to auto-immune diseases.
Collapse
Affiliation(s)
- Amirreza Mehmandar-Oskuie
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arman Rostamlou
- Department of Medical Biology, Faculty of Medicine, University of EGE, Izmir, Turkey
| | - Nasibeh Mardafkan
- Department of Laboratory Science, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Karamali
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Zahra Sadat Razavi
- Department of Immunology, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Amirhossein Mardi
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
6
|
Chen K, Luo M, Lv Y, Luo Z, Yang H. Undervalued and novel roles of heterogeneous nuclear ribonucleoproteins in autoimmune diseases: Resurgence as potential biomarkers and targets. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1806. [PMID: 37365887 DOI: 10.1002/wrna.1806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Autoimmune diseases are mainly characterized by the abnormal autoreactivity due to the loss of tolerance to specific autoantigens, though multiple pathways associated with the homeostasis of immune responses are involved in initiating or aggravating the conditions. The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a major category of RNA-binding proteins ubiquitously expressed in a multitude of cells and have attracted great attentions especially with their distinctive roles in nucleic acid metabolisms and the pathogenesis in diseases like neurodegenerative disorders and cancers. Nevertheless, the interplay between hnRNPs and autoimmune disorders has not been fully elucidated. Virtually various family members of hnRNPs are increasingly identified as immune players and are pertinent to all kinds of immune-related processes including immune system development and innate or adaptive immune responses. Specifically, hnRNPs have been extensively recognized as autoantigens within and even beyond a myriad of autoimmune diseases, yet their diagnostic and prognostic values are seemingly underestimated. Molecular mimicry, epitope spreading and bystander activation may represent major putative mechanisms underlying the presence of autoantibodies to hnRNPs. Besides, hnRNPs play critical parts in regulating linchpin genes expressions that control genetic susceptibility, disease-linked functional pathways, or immune responses by interacting with other components particularly like microRNAs and long non-coding RNAs, thereby contributing to inflammation and autoimmunity as well as specific disease phenotypes. Therefore, comprehensive unraveling of the roles of hnRNPs is conducive to establishing potential biomarkers and developing better intervention strategies by targeting these hnRNPs in the corresponding disorders. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Kangzhi Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Mengchuan Luo
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanzhi Lv
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Akbarzadeh S, Tayefeh-Gholami S, Najari P, Rajabi A, Ghasemzadeh T, Hosseinpour Feizi M, Safaralizadeh R. The expression profile of HAR1A and HAR1B in the peripheral blood cells of multiple sclerosis patients. Mol Biol Rep 2023; 50:2391-2398. [PMID: 36583781 DOI: 10.1007/s11033-022-08182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a progressive neurodegenerative disease of the central nervous system (CNS) with varying degrees of axonal and neuronal damage. The onset and progression of the disease are influenced by several environmental and genetic variables. Long non-coding RNAs (lncRNAs) have a crucial role in the pathophysiology of MS. Our study aimed to assess the levels of HAR1A and HAR1B lncRNA expression in the blood samples of MS patients and investigate the relationship between these lncRNAs and disease activity. METHODS AND RESULTS The blood samples of 100 MS patients, including 82 relapsing-remitting (RR), 8 primary progressive (PP), and 10 secondary progressive (SP) MS cases, and 100 healthy controls were collected. Quantitative real-time PCR was used for the evaluation of gene expression. ROC curve analysis was performed to evaluate the diagnostic potential of lncRNA levels. A significant decrease was detected in HAR1A expressions (P < 0.0001), and a moderate increase was also shown in HAR1B of SPMS patients (P value = 0.0189). HAR1A showed different expression levels in patients over forty (P value = 0.034). The expression levels of HAR1A and HAR1B were positively correlated in MS patients (r = 0.2003, P value = 0.0457). In addition, ROC curve results suggested that HAR1A can be introduced as a novel biomarker for MS diagnosis (AUC = 0.776). CONCLUSION The low serum level of HAR1A may be a potential molecular biomarker for MS diagnosis; however, no discernible difference was detected in the expression level of HAR1B in the blood samples of MS patients.
Collapse
Affiliation(s)
- Sama Akbarzadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Samaneh Tayefeh-Gholami
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Parisa Najari
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Ali Rajabi
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Tooraj Ghasemzadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | | | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
8
|
Kumar D, Sahoo SS, Chauss D, Kazemian M, Afzali B. Non-coding RNAs in immunoregulation and autoimmunity: Technological advances and critical limitations. J Autoimmun 2023; 134:102982. [PMID: 36592512 PMCID: PMC9908861 DOI: 10.1016/j.jaut.2022.102982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 01/02/2023]
Abstract
Immune cell function is critically dependent on precise control over transcriptional output from the genome. In this respect, integration of environmental signals that regulate gene expression, specifically by transcription factors, enhancer DNA elements, genome topography and non-coding RNAs (ncRNAs), are key components. The first three have been extensively investigated. Even though non-coding RNAs represent the vast majority of cellular RNA species, this class of RNA remains historically understudied. This is partly because of a lag in technological and bioinformatic innovations specifically capable of identifying and accurately measuring their expression. Nevertheless, recent progress in this domain has enabled a profusion of publications identifying novel sub-types of ncRNAs and studies directly addressing the function of ncRNAs in human health and disease. Many ncRNAs, including circular and enhancer RNAs, have now been demonstrated to play key functions in the regulation of immune cells and to show associations with immune-mediated diseases. Some ncRNAs may function as biomarkers of disease, aiding in diagnostics and in estimating response to treatment, while others may play a direct role in the pathogenesis of disease. Importantly, some are relatively stable and are amenable to therapeutic targeting, for example through gene therapy. Here, we provide an overview of ncRNAs and review technological advances that enable their study and hold substantial promise for the future. We provide context-specific examples by examining the associations of ncRNAs with four prototypical human autoimmune diseases, specifically rheumatoid arthritis, psoriasis, inflammatory bowel disease and multiple sclerosis. We anticipate that the utility and mechanistic roles of these ncRNAs in autoimmunity will be further elucidated in the near future.
Collapse
Affiliation(s)
- Dhaneshwar Kumar
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Subhransu Sekhar Sahoo
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
9
|
Baharlooi H, Mansourabadi AH, Minbashi Moeini M, Mohamed Khosroshahi L, Azimi M. Nucleic Acids as Novel Therapeutic Modalities to Address Multiple Sclerosis Onset and Progression. Cell Mol Neurobiol 2022; 42:2611-2627. [PMID: 34694513 PMCID: PMC11421605 DOI: 10.1007/s10571-021-01158-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 10/17/2021] [Indexed: 02/07/2023]
Abstract
The issue of treating Multiple Sclerosis (MS) begins with disease-modifying treatments (DMTs) which may cause lymphopenia, dyspnea, and many other adverse effects. Consequently, further identification and evaluation of alternative treatments are crucial to monitoring their long-term outcomes and hopefully, moving toward personalized approaches that can be translated into clinical treatments. In this article, we focused on the novel therapeutic modalities that alter the interaction between the cellular constituents contributing to MS onset and progression. Furthermore, the studies that have been performed to evaluate and optimize drugs' efficacy, and particularly, to show their limitations and strengths are also presented. The preclinical trials of novel approaches for multiple sclerosis treatment provide promising prospects to cure the disease with pinpoint precision. Considering the fact that not a single treatment could be effective enough to cover all aspects of MS treatment, additional researches and therapies need to be developed in the future. Since the pathophysiology of MS resembles a jigsaw puzzle, researchers need to put a host of pieces together to create a promising window towards MS treatment. Thus, a combination therapy encompassing all these modules is highly likely to succeed in dealing with the disease. The use of different therapeutic approaches to re-induce self-tolerance in autoreactive cells contributing to MS pathogenesis is presented. A Combination therapy using these tools may help to deal with the clinical disabilities and symptoms of the disease in the future.
Collapse
Affiliation(s)
- Hussein Baharlooi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mansourabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Moein Minbashi Moeini
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Université Laval, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Québec, Canada
| | | | - Maryam Azimi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Hemmat highway, Tehran, Iran.
| |
Collapse
|
10
|
Plewka P, Raczynska KD. Long Intergenic Noncoding RNAs Affect Biological Pathways Underlying Autoimmune and Neurodegenerative Disorders. Mol Neurobiol 2022; 59:5785-5808. [PMID: 35796900 PMCID: PMC9395482 DOI: 10.1007/s12035-022-02941-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022]
Abstract
Long intergenic noncoding RNAs (lincRNAs) are a class of independently transcribed molecules longer than 200 nucleotides that do not overlap known protein-coding genes. LincRNAs have diverse roles in gene expression and participate in a spectrum of biological processes. Dysregulation of lincRNA expression can abrogate cellular homeostasis, cell differentiation, and development and can also deregulate the immune and nervous systems. A growing body of literature indicates their important and multifaceted roles in the pathogenesis of several different diseases. Furthermore, certain lincRNAs can be considered potential therapeutic targets and valuable diagnostic or prognostic biomarkers capable of predicting the onset of a disease, its degree of activity, or the progression phase. In this review, we discuss possible mechanisms and molecular functions of lincRNAs in the pathogenesis of selected autoimmune and neurodegenerative disorders: multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, Sjögren's syndrome, Huntington's disease, Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. This summary can provide new ideas for future research, diagnosis, and treatment of these highly prevalent and devastating diseases.
Collapse
Affiliation(s)
- Patrycja Plewka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Katarzyna Dorota Raczynska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland.
| |
Collapse
|
11
|
Karimi B, Dehghani Firoozabadi A, Peymani M, Ghaedi K. Circulating long noncoding RNAs as novel bio-tools: Focus on autoimmune diseases. Hum Immunol 2022; 83:618-627. [PMID: 35717260 DOI: 10.1016/j.humimm.2022.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/04/2022]
Abstract
Long non-coding RNAs (lncRNAs) are an emerging class of non-coding RNAs that do not encode proteins. These RNAs have various essential regulatory functions. Irregular expression of lncRNAs has been related to the pathological process of varied diseases, and are considered promising diagnostic biomarkers. LncRNAs can release into the circulation and be stable in body fluids as circulating lncRNAs. A subset of circulating lncRNAs that exist in exosomes are referred to as exosomal lncRNA molecules. These lncRNAs are highly stable and resist RNases. Exosomes have captured a great deal of attention due to their involvement in regulating communications between cells. In conditions of autoimmune disease, exosomes play critical roles in the pathological processes. In this context, circulating lncRNAs have been shown to modulate the immune response and indicated as prognosis and diagnostic biomarkers for autoimmune diseases. This review highlights the role of circulating lncRNAs (particularly exosomal) as diagnostic biomarkers for autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, psoriasis, and Sjögren's syndrome.
Collapse
Affiliation(s)
- Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Kamran Ghaedi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
12
|
Sun Y, Han J, Ma H, Ma J, Ren Z. Aberrant expression of long non-coding RNA PVT1 in allergic rhinitis children: Correlation with disease risk, symptoms, and Th1/Th2 imbalance. J Clin Lab Anal 2022; 36:e24281. [PMID: 35274773 PMCID: PMC8993613 DOI: 10.1002/jcla.24281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Long non-coding RNA plasmacytoma variant translocation 1 (lnc-PVT1) exacerbates inflammation and induces T helper (Th) 1/Th2 imbalance in allergic diseases, but its clinical role in allergic rhinitis (AR) remains unclear. Hence, we conducted this study to compare lnc-PVT1 expression among AR children, disease controls (DCs), and health controls (HCs), aiming to investigate its clinical application in AR children. METHODS Sixty AR children, 30 DCs, and 30 HCs were enrolled in the study, and then, their lnc-PVT1 expression in peripheral blood mononuclear cell was detected. Serum interferon-gamma (IFN-γ), interleukin 10 (IL-10), Th1, and Th2 cells in AR children were also analyzed. Besides, lnc-PVT1 was also detected at Week (W)4 after treatment in AR patients. RESULTS Lnc-PVT1 was upregulated in AR children compared with DCs and HCs (both p < 0.001). Lnc-PVT1 was positively related to nasal rhinorrhea score, itching score, congestion score, and total nasal symptom score (TNSS) in AR children (all p < 0.050), instead of sneezing score (p = 0.115). Lnc-PVT1 negatively associated with Th1 cells in AR children (p = 0.028) also exhibited a negative correlation trend with IFN-γ (but without statistical significance) (p = 0.065). Differently, lnc-PVT1 was positively related to Th2 cells (p = 0.012) and IL-10 (p = 0.021) in AR children. Besides, lnc-PVT1 and TNSS were reduced at W4 after treatment in AR children (both p < 0.001); notably, lnc-PVT1 expression decline was correlated with TNSS decline during treatment (p = 0.013). CONCLUSION Lnc-PVT1 works as a biomarker, whose aberrant expression is related to disease severity, Th1/Th2 imbalance, and its decrement can reflect treatment outcome in AR children.
Collapse
Affiliation(s)
- Yujun Sun
- Department of PediatricsThe Second People’s Hospital of LiaochengThe Second Hospital of Liaocheng Affiliated to Shandong First Medical UniversityLinqingChina
| | - Jingjing Han
- Department of Cardiac UltrasoundThe Second People’s Hospital of LiaochengThe Second Hospital of Liaocheng Affiliated to Shandong First Medical UniversityLinqingChina
| | - Haifeng Ma
- Department of PediatricsThe Second People’s Hospital of LiaochengThe Second Hospital of Liaocheng Affiliated to Shandong First Medical UniversityLinqingChina
| | - Jingbin Ma
- Department of PediatricsThe Second People’s Hospital of LiaochengThe Second Hospital of Liaocheng Affiliated to Shandong First Medical UniversityLinqingChina
| | - Zengzhi Ren
- Department of PediatricsThe Second People’s Hospital of LiaochengThe Second Hospital of Liaocheng Affiliated to Shandong First Medical UniversityLinqingChina
| |
Collapse
|
13
|
Amiri M, Mokhtari MJ, Bayat M, Safari A, Dianatpuor M, Tabrizi R, Borhani-Haghighi A. Expression and diagnostic values of MIAT, H19, and NRON long non-coding RNAs in multiple sclerosis patients. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00260-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Multiple sclerosis (MS) is a chronic inflammatory disease. Various long non-coding RNAs (lncRNAs) appear to have an important role in the pathophysiology of MS. This study aimed at evaluating the expression levels of lncRNAs, MIAT, H19, and NRON in peripheral blood of MS cases to a healthy control group. We collected blood samples of 95 MS cases (76 relapsing–remitting (RR) and 19 secondary progressive (SP) MS) and 95 controls. We used quantitative real-time PCR for the evaluation of gene expression. The correlation between expression with clinical parameters was analyzed by a multiple linear regression model. Receiver operating characteristic (ROC) curve analysis was carried out to detect the diagnostic potential of lncRNAs levels according to the area under the curve (AUC).
Results
MIAT, H19, and NRON were significantly increased in the RRMS and SPMS subgroups compared to the controls. We found that the H19 and MIAT expression significantly were higher in SPMS compared with RRMS. Patients with RRMS had a greater level of the average NRON expression is compared with SPMS patients. The expression level of H19 significantly was higher in females relative to male patients. Based on the area under curve (AUC) values, NRON had the best performance in the differentiation of MS patients from controls (AUC = 0.95, P < 0.0001). A combination of MIAT, H19, and NRON expression levels could be useful in differentiating MS patients with 93.6% sensitivity, 98.9% specificity, and diagnostic power of 0.96 (P < 0.0001).
Conclusions
The levels of MIAT, H19, and NRON in peripheral blood could be important biomarkers for MS diagnosis.
Collapse
|
14
|
Jalaiei A, Asadi MR, Sabaie H, Dehghani H, Gharesouran J, Hussen BM, Taheri M, Ghafouri-Fard S, Rezazadeh M. Long Non-Coding RNAs, Novel Offenders or Guardians in Multiple Sclerosis: A Scoping Review. Front Immunol 2021; 12:774002. [PMID: 34950142 PMCID: PMC8688805 DOI: 10.3389/fimmu.2021.774002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis (MS), a chronic inflammatory demyelinating disease of the central nervous system, is one of the most common neurodegenerative diseases worldwide. MS results in serious neurological dysfunctions and disability. Disturbances in coding and non-coding genes are key components leading to neurodegeneration along with environmental factors. Long non-coding RNAs (lncRNAs) are long molecules in cells that take part in the regulation of gene expression. Several studies have confirmed the role of lncRNAs in neurodegenerative diseases such as MS. In the current study, we performed a systematic analysis of the role of lncRNAs in this disorder. In total, 53 studies were recognized as eligible for this systematic review. Of the listed lncRNAs, 52 lncRNAs were upregulated, 37 lncRNAs were downregulated, and 11 lncRNAs had no significant expression difference in MS patients compared with controls. We also summarized some of the mechanisms of lncRNA functions in MS. The emerging role of lncRNAs in neurodegenerative diseases suggests that their dysregulation could trigger neuronal death via still unexplored RNA-based regulatory mechanisms. Evaluation of their diagnostic significance and therapeutic potential could help in the design of novel treatments for MS.
Collapse
Affiliation(s)
- Abbas Jalaiei
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Asadi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hani Sabaie
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Dehghani
- Department of Molecular Medicine, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Jalal Gharesouran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bashdar Mahmud Hussen
- Department Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezazadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Elkhodiry AA, El Tayebi HM. Scavenging the hidden impacts of non-coding RNAs in multiple sclerosis. Noncoding RNA Res 2021; 6:187-199. [PMID: 34938929 PMCID: PMC8666456 DOI: 10.1016/j.ncrna.2021.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease that causes severe neurological dysfunction leading to disabilities in patients. The prevalence of the disease has been increasing gradually worldwide, and the specific etiology behind the disease is not yet fully understood. Therapies aimed against treating MS patients have been growing lately, intending to delay the disease progression and increase the patients' quality of life. Various pathways play crucial roles in developing the disease, and several therapeutic approaches have been tackling those pathways. However, these strategies have shown several side effects and inconsistent efficacy. MicroRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) have been shown to act as key players in various disease pathogenesis and development. Several proinflammatory and anti-inflammatory miRNAs have been reported to participate in the development of MS. Hence, the review assesses the role of miRNAs, lncRNAs, and circRNAs in regulating immune cell functions better to understand their impact on the molecular mechanics of MS.
Collapse
Affiliation(s)
- Aya A. Elkhodiry
- Molecular Pharmacology Research Group, Department of Pharmacology, Toxicology and Clinical Pharmacy, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Hend M. El Tayebi
- Molecular Pharmacology Research Group, Department of Pharmacology, Toxicology and Clinical Pharmacy, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
16
|
Zarzuelo-Romero MJ, Pérez-Ramírez C, Cura Y, Carrasco-Campos MI, Marangoni-Iglecias LM, Ramírez-Tortosa MC, Jiménez-Morales A. Influence of Genetic Polymorphisms on Clinical Outcomes of Glatiramer Acetate in Multiple Sclerosis Patients. J Pers Med 2021; 11:jpm11101032. [PMID: 34683173 PMCID: PMC8540092 DOI: 10.3390/jpm11101032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating disease of autoimmune origin, in which inflammation and demyelination lead to neurodegeneration and progressive disability. Treatment is aimed at slowing down the course of the disease and mitigating its symptoms. One of the first-line treatments used in patients with MS is glatiramer acetate (GA). However, in clinical practice, a response rate of between 30% and 55% is observed. This variability in the effectiveness of the medication may be influenced by genetic factors such as polymorphisms in the genes involved in the pathogenesis of MS. Therefore, this review assesses the impact of genetic variants on the response to GA therapy in patients diagnosed with MS. The results suggest that a relationship exists between the effectiveness of the treatment with GA and the presence of polymorphisms in the following genes: CD86, CLEC16A, CTSS, EOMES, MBP, FAS, TRBC1, IL1R1, IL12RB2, IL22RA2, PTPRT, PVT1, ALOX5AP, MAGI2, ZAK, RFPL3, UVRAG, SLC1A4, and HLA-DRB1*1501. Consequently, the identification of polymorphisms in these genes can be used in the future as a predictive marker of the response to GA treatment in patients diagnosed with MS. Nevertheless, there is a lack of evidence for this and more validation studies need to be conducted to apply this information to clinical practice.
Collapse
Affiliation(s)
- María José Zarzuelo-Romero
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18001 Granada, Spain;
| | - Cristina Pérez-Ramírez
- Center of Biomedical Research, Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., 18016 Armilla, Granada, Spain;
- Pharmacogenetics Unit, Pharmacy Service, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (Y.C.); (M.I.C.-C.); (L.M.M.-I.); (A.J.-M.)
- Correspondence:
| | - Yasmín Cura
- Pharmacogenetics Unit, Pharmacy Service, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (Y.C.); (M.I.C.-C.); (L.M.M.-I.); (A.J.-M.)
| | - María Isabel Carrasco-Campos
- Pharmacogenetics Unit, Pharmacy Service, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (Y.C.); (M.I.C.-C.); (L.M.M.-I.); (A.J.-M.)
| | - Luciana María Marangoni-Iglecias
- Pharmacogenetics Unit, Pharmacy Service, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (Y.C.); (M.I.C.-C.); (L.M.M.-I.); (A.J.-M.)
| | - María Carmen Ramírez-Tortosa
- Center of Biomedical Research, Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., 18016 Armilla, Granada, Spain;
| | - Alberto Jiménez-Morales
- Pharmacogenetics Unit, Pharmacy Service, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (Y.C.); (M.I.C.-C.); (L.M.M.-I.); (A.J.-M.)
| |
Collapse
|
17
|
Yu L, Zhang L, Jiang Z, Yu B. Decreasing lncRNA PVT1 causes Treg/Th17 imbalance via NOTCH signaling in immune thrombocytopenia. ACTA ACUST UNITED AC 2021; 26:734-740. [PMID: 34555308 DOI: 10.1080/16078454.2021.1974200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Objectives: Immune thrombocytopenia (ITP) is an autoimmune disease. T helper cell 17 (Th17) cells are increased in peripheral blood of ITP patients. NOTCH signaling is involved in Th17 cell differentiation and function. Besides, lncRNA Plasmacytoma variant translocation 1 (PVT1) was decreased in experimental autoimmune encephalomyelitis, and overexpressing PVT1 inhibited Th17 cell differentiation. Here, we aimed to investigate the effect of lncRNA PVT1 on ITP and its related mechanism.Methods: The number of Th17 cells and Treg cells was carried out using flow cytometry. PVT1 levels were detected by quantitative real-time PCR. Interleukin-17 (IL-17) levels and transforming growth factor-β (TGF-β) levels were detected by enzyme-linked immunosorbent assay. Protein levels of retinoid acid-related orphan receptor γ t (RORγt), forkhead box P3 (Foxp3), and NOTCH1 were carried out by western blot. NOTCH1 ubiquitylation was detected by ubiquitination assay.Results: PVT1 was down-regulated and Th17 cells were up-regulated in ITP patients. Overexpression of PVT1 decreased the number of Th17 cells, and also decreased the levels of IL-17, RORγt, and NOTCH1. Besides, PVT1 could bind to NOTCH1 and mediated NOTCH1 degradation by increasing its ubiquitination. Additionally, excessive expression of PVT1 could increase the levels of PVT1, reduce the amount of Th17 cells, as well as the levels of IL-17, RORγt, and NOTCH1, while co-overexpressing NOTCH1 reversed the results.Conclusion: PVT1 was down-regulated in ITP patients. Overexpressing PVT1 might reduce Th17 cell differentiation by down-regulating NOTCH1, and further alleviated the development of ITP.
Collapse
Affiliation(s)
- Ling Yu
- Department of Blood Transfusion, Jinhua People's Hospital, Jinhua, People's Republic of China
| | - Liqin Zhang
- Department of Laboratory, Jinhua People's Hospital, Jinhua, People's Republic of China
| | - Zhiyong Jiang
- Department of hematopathology, Jinhua People's Hospital, Jinhua, People's Republic of China
| | - Beiwei Yu
- Department of Laboratory, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
18
|
Nociti V, Santoro M. What do we know about the role of lncRNAs in multiple sclerosis? Neural Regen Res 2021; 16:1715-1722. [PMID: 33510060 PMCID: PMC8328773 DOI: 10.4103/1673-5374.306061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/21/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis is a chronic, inflammatory and degenerative disease of the central nervous system of unknown aetiology although well-defined evidence supports an autoimmune pathogenesis. So far, the exact mechanisms leading to autoimmune diseases are still only partially understood. We know that genetic, epigenetic, molecular, and cellular factors resulting in pathogenic inflammatory responses are certainly involved. Long non-coding RNAs (lncRNAs) are non-protein coding transcripts longer than 200 nucleotides that play an important role in both innate and acquired immunity, so there is great interest in lncRNAs involved in autoimmune diseases. The research on multiple sclerosis has been enriched with many studies on the molecular role of lncRNAs in the pathogenesis of the disease and their potential application as diagnostic and prognostic biomarkers. In particular, many multiple sclerosis fields of research are based on the identification of lncRNAs as possible biomarkers able to predict the onset of the disease, its activity degree, its progression phase and the response to disease-modifying drugs. Last but not least, studies on lncRNAs can provide a new molecular target for new therapies, missing, so far, a cure for multiple sclerosis. While our knowledge on the role of lncRNA in multiple sclerosis has recently improved, further studies are required to better understand the specific role of lncRNAs in this neurological disease. In this review, we present the most recent studies on molecular characterization of lncRNAs in multiple sclerosis disorder discussing their clinical relevance as biomarkers for diagnosis and treatments.
Collapse
Affiliation(s)
- Viviana Nociti
- Institute of Neurology, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | | |
Collapse
|
19
|
Gholipour M, Taheri M, Mehvari Habibabadi J, Nazer N, Sayad A, Ghafouri-Fard S. Dysregulation of lncRNAs in autoimmune neuropathies. Sci Rep 2021; 11:16061. [PMID: 34373511 PMCID: PMC8352925 DOI: 10.1038/s41598-021-95466-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/27/2021] [Indexed: 01/09/2023] Open
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) and Guillain-Barré syndrome (GBS) are inflammatory neuropathies with different clinical courses but similar underlying mechanisms. Long non-coding RNAs (lncRNAs) might affect pathogenesis of these conditions. In the current project, we have selected HULC, PVT1, MEG3, SPRY4-IT1, LINC-ROR and DSCAM-AS1 lncRNAs to appraise their transcript levels in the circulation of CIDP and GBS cases versus controls. Expression of HULC was higher in CIDP patients compared with healthy persons (Ratio of mean expression (RME) = 7.62, SE = 0.72, P < 0.001). While expression of this lncRNA was not different between female CIDP cases and female controls, its expression was higher in male CIDP cases compared with male controls (RME = 13.50, SE = 0.98, P < 0.001). Similarly, expression of HULC was higher in total GBS cases compared with healthy persons (RME = 4.57, SE = 0.65, P < 0.001) and in male cases compared with male controls (RME = 5.48, SE = 0.82, P < 0.001). Similar pattern of expression was detected between total cases and total controls. PVT1 was up-regulated in CIDP cases compared with controls (RME = 3.04, SE = 0.51, P < 0.001) and in both male and female CIDP cases compared with sex-matched controls. Similarly, PVT1 was up-regulated in GBS cases compared with controls (RME = 2.99, SE = 0.55, P vale < 0.001) and in total patients compared with total controls (RME = 3.02, SE = 0.43, P < 0.001). Expression levels of DSCAM-AS1 and SPRY4-IT1 were higher in CIDP and GBS cases compared with healthy subjects and in both sexes compared with gender-matched healthy persons. Although LINC-ROR was up-regulated in total CIDP and total GBS cases compared with controls, in sex-based comparisons, it was only up-regulated in male CIDP cases compared with male controls (RME = 3.06, P = 0.03). Finally, expression of MEG3 was up-regulated in all subgroups of patients versus controls except for male GBS controls. SPRY4-IT could differentiate CIDP cases from controls with AUC = 0.84, sensitivity = 0.63 and specificity = 0.97. AUC values of DSCAM-AS1, MEG3, HULC, PVT1 and LINC-ROR were 0.80, 0.75, 0.74, 0.73 and 0.72, respectively. In differentiation between GBS cases and controls, SPRY4-IT and DSCAM-AS1 has the AUC value of 0.8. None of lncRNAs could appropriately differentiate between CIDP and GBS cases. Combination of all lncRNAs could not significantly enhance the diagnostic power. Taken together, these lncRNAs might be involved in the development of CIDP or GBS.
Collapse
Affiliation(s)
- Mahdi Gholipour
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Naghme Nazer
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Extracellular Vesicles in Multiple Sclerosis: Role in the Pathogenesis and Potential Usefulness as Biomarkers and Therapeutic Tools. Cells 2021; 10:cells10071733. [PMID: 34359903 PMCID: PMC8303489 DOI: 10.3390/cells10071733] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022] Open
Abstract
Although extracellular vesicles (EVs) were initially relegated to a waste disposal role, nowadays, they have gained multiple fundamental functions working as messengers in intercellular communication as well as exerting active roles in physiological and pathological processes. Accumulating evidence proves the involvement of EVs in many diseases, including those of the central nervous system (CNS), such as multiple sclerosis (MS). Indeed, these membrane-bound particles, produced in any type of cell, carry and release a vast range of bioactive molecules (nucleic acids, proteins, and lipids), conferring genotypic and phenotypic changes to the recipient cell. This means that not only EVs per se but their content, especially, could reveal new candidate disease biomarkers and/or therapeutic agents. This review is intended to provide an overview regarding current knowledge about EVs’ involvement in MS, analyzing the potential versatility of EVs as a new therapeutic tool and source of biomarkers.
Collapse
|
21
|
Soltanmoradi S, Tavakolpour V, Moghadasi AN, Kouhkan F. Expression analysis of NF-κB-associated long noncoding RNAs in peripheral blood mononuclear cells from relapsing-remitting multiple sclerosis patients. J Neuroimmunol 2021; 356:577602. [PMID: 33979709 DOI: 10.1016/j.jneuroim.2021.577602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/05/2021] [Accepted: 05/02/2021] [Indexed: 12/19/2022]
Abstract
Long noncoding RNAs (lncRNAs) as potential disease biomarkers might be related to severe course of multiple sclerosis (MS). We evaluated expression levels of NF-κB-associated lncRNAs including HOTAIR, THRIL, H19, NKILA, and ANRIL; as well as expression of IL-6, TNF-α and MMP9, in peripheral blood mononuclear cells (PBMCs) from 60 relapse-remitting MS (RRMS) patients. At relapse phase of RRMS, up-regulation of ANRIL and H19 was positively correlated with the overexpression of IL-6; high levels of THRIL and HOTAIR was positively correlated with increased levels of TNF-α and MMP9, respectively; however, the NKILA expression was negatively correlated with the expression of TNF-α.
Collapse
Affiliation(s)
| | - Vahid Tavakolpour
- Stem Cell Technology Research Center, Tehran, Iran; Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
22
|
Shaker OG, Hassan A, Mohammed AM, Mohammed SR. lincR-Ccr2-5′AS and THRIL as potential biomarkers of multiple sclerosis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00151-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Multiple sclerosis (MS) is a demyelinating disease affecting the central nervous system (CNS). Long non-coding RNAs (lncRNAs) were believed to play a role in the pathogenesis of neurological disorders including MS. lincR-Ccr2-5′AS is expressed in the T helper2 (Th2) lineage. TNF-α heterogeneous nuclear ribonucleoprotein L (THRIL) causes the induction of TNF-α and regulates innate immune response and inflammation. We investigated the expression of lincR-Ccr2-5′AS and THRIL in MS to clarify their association with MS risk and the clinical features.
Results
LincR-Ccr2-5′AS was significantly downregulated in MS patients (fold change = 0.43±0.29, p = 0.03). The expression level was significantly low in patients with motor weakness and optic neuritis, patients with Expanded Disability Status Scale (EDSS) ≥5.5, and treatment-naïve patients. THRIL was significantly upregulated in MS patients (fold change = 6.18±2, p = 0.02). Its expression was significantly higher in patients with relapsing-remitting multiple sclerosis (RRMS), patients with motor weakness, patients with EDSS ≤5, and patients who received interferon.
Conclusion
Our results showed the downregulation of lincR-Ccr2-5′AS and the upregulation of lncRNA THRIL in MS patients. This differential expression of both lncRNAs may have an important role in MS pathogenesis.
Collapse
|
23
|
Kuai F, Zhou L, Zhou J, Sun X, Dong W. Long non-coding RNA THRIL inhibits miRNA-24-3p to upregulate neuropilin-1 to aggravate cerebral ischemia-reperfusion injury through regulating the nuclear factor κB p65 signaling. Aging (Albany NY) 2021; 13:9071-9084. [PMID: 33675584 PMCID: PMC8034910 DOI: 10.18632/aging.202762] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022]
Abstract
Purpose: The aim of this study was to investigate the role of the tumor necrosis factor and HNRNPL related immunoregulatory long non-coding RNA (THRIL) in cerebral ischemia-reperfusion injury. Methods: A rat middle cerebral artery occlusion/ischemia-reperfusion (MCAO/IR) model and an oxygen glucose deprivation/reoxygenation (OGD/R) cell model were constructed. THRIL was knocked down using siTHRIL. Neurological deficit score was detected based on the criteria of Zea-Longa. Brain region 2,3,5-Triphenyltetrazolium (TTC) staining and quantitative analysis of cerebral infarction volume, RT-qPCR, and fluorescence immunostaining were performed for assessing THRIL expression. MTT assay was used to detect the cell proliferation ability after transfection, TUNEL assay was applied to detect apoptosis, and western blot and ELISA detected related protein expression. A dual luciferase reporter system and RIP assay were used to confirm the target relationship. Results: THRIL was upregulated in both in vitro and in vivo models of brain ischemia-reperfusion injury. Knockdown of THRIL attenuated OGD/R neuronal apoptosis and OGD/R-induced inflammation. THRIL targeted and regulated the expression of miR-24-3p/neuropilin-1 (NRP1) axis. THRIL silencing significantly improved the neurological functioning of rats in the MCAO/R model by miR-24-3p/NRP1/NF-κB p65 signaling pathway. Conclusion: THRIL could aggravate cerebral ischemia-reperfusion injury by competitively binding to miR-24-3p to promote the upregulation of NRP1 and further promoted the activation of the NF-κB p65 signaling pathway.
Collapse
Affiliation(s)
- Feng Kuai
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Department of Geriatrics, The First People's Hospital of Yancheng, The Forth Affiliated Hospital of Nantong University, Yancheng 224001, China
| | - Liang Zhou
- Department of orthopedic, The People's Hospital of Lianshui, Huai'an 223001, China
| | - Jianping Zhou
- Department of Geriatrics, The First People's Hospital of Yancheng, The Forth Affiliated Hospital of Nantong University, Yancheng 224001, China
| | - Xuemei Sun
- Department of Geriatrics, The First People's Hospital of Yancheng, The Forth Affiliated Hospital of Nantong University, Yancheng 224001, China
| | - Wanli Dong
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
24
|
Competing Endogenous RNA Networks as Biomarkers in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21249582. [PMID: 33339180 PMCID: PMC7765627 DOI: 10.3390/ijms21249582] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022] Open
Abstract
Protein aggregation is classically considered the main cause of neuronal death in neurodegenerative diseases (NDDs). However, increasing evidence suggests that alteration of RNA metabolism is a key factor in the etiopathogenesis of these complex disorders. Non-coding RNAs are the major contributor to the human transcriptome and are particularly abundant in the central nervous system, where they have been proposed to be involved in the onset and development of NDDs. Interestingly, some ncRNAs (such as lncRNAs, circRNAs and pseudogenes) share a common functionality in their ability to regulate gene expression by modulating miRNAs in a phenomenon known as the competing endogenous RNA mechanism. Moreover, ncRNAs are found in body fluids where their presence and concentration could serve as potential non-invasive biomarkers of NDDs. In this review, we summarize the ceRNA networks described in Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis and spinocerebellar ataxia type 7, and discuss their potential as biomarkers of these NDDs. Although numerous studies have been carried out, further research is needed to validate these complex interactions between RNAs and the alterations in RNA editing that could provide specific ceRNET profiles for neurodegenerative disorders, paving the way to a better understanding of these diseases.
Collapse
|
25
|
Mitonuclear interactions influence multiple sclerosis risk. Gene 2020; 758:144962. [DOI: 10.1016/j.gene.2020.144962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/28/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022]
|
26
|
Wu L, Xia J, Li D, Kang Y, Fang W, Huang P. Mechanisms of M2 Macrophage-Derived Exosomal Long Non-coding RNA PVT1 in Regulating Th17 Cell Response in Experimental Autoimmune Encephalomyelitisa. Front Immunol 2020; 11:1934. [PMID: 33013847 PMCID: PMC7500097 DOI: 10.3389/fimmu.2020.01934] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/17/2020] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNA (lncRNA) is pivotal for multiple sclerosis (MS), but the potential mechanism of lncRNA PVT1 in MS animal model, experimental autoimmune encephalomyelitis (EAE) still remains unclear. In this study, macrophages were firstly isolated and induced to polarize into M2 macrophages. M2 macrophage-derived exosomes (M2-exos) were extracted and identified, and EAE mouse model was established and treated with M2-exos. The effect of M2-exos on EAE mice was evaluated by clinical scores. The proportion of Treg and Th17 cells in spinal cord cells and splenocytes, and levels of inflammatory factors were measured. The targeting relationships among PVT1, miR-21-5p, and SOCS5 were verified. The expression of JAKs/STAT3 pathway-related proteins was measured. After M2-exo treatment, the clinical score of EAE mice decreased, and demyelination and inflammatory infiltration improved; Th17 cells decreased, Treg cells increased, and the levels of inflammatory factors decreased significantly. SOCS5 and PVT1 were downregulated and miR-21-5p was upregulated in EAE mice. PVT1 could sponge miR-21-5p to regulate SOCS5. SOCS5 alleviated EAE symptoms by repressing the JAKs/STAT3 pathway. Together, M2-exos-carried lncRNA PVT1 sponged miR-21-5p to upregulate SOCS5 and inactivate the JAKs/STAT3 pathway, thus reducing inflammation and protecting EAE mice. This study may offer novel treatments for MS.
Collapse
Affiliation(s)
- Lei Wu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, China
| | - Jinjin Xia
- Department of Neurology, Changxing Hospital, Second Affiliated Hospital of Medical College of Zhejiang University, Huzhou, China
| | - Donghui Li
- Department of Neurology, Changxing Hospital, Second Affiliated Hospital of Medical College of Zhejiang University, Huzhou, China
| | - Ying Kang
- Department of Pollution Source Statistics, Zhejiang Provincial Environmental Monitoring Center, Hangzhou, China
| | - Wei Fang
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Peng Huang
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
27
|
Ghaderian S, Shomali N, Behravesh S, Danbaran GR, Hemmatzadeh M, Aslani S, Jadidi-Niaragh F, Hosseinzadeh R, Torkamandi S, Mohammadi H. The emerging role of lncRNAs in multiple sclerosis. J Neuroimmunol 2020; 347:577347. [PMID: 32745803 DOI: 10.1016/j.jneuroim.2020.577347] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/05/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is the most common inflammatory demyelinating disease of the central nervous system (CNS) with various clinical manifestations. The characteristic of MS is that myelin is attacked by the body's immune system and increases the electrical capacity of axons, and is the primary pathophysiological mechanism of the transmission block. Studies have shown that epigenetic factors participate in the development of MS. LncRNAs are highly abundant and heterogeneous linear RNA transcripts with lengths exceeding 200 nucleotides and no protein-coding potential. Currently, pieces of evidence have demonstrated that lncRNAs have fundamental actions in multiple cellular pathways, including immune system regulation, epithelial-mesenchymal transition (EMT), cancer cell growth and metastasis, cellular homeostasis, and embryo development. It has been demonstrated that epigenetic mechanisms have an abundant role in the pathogenesis of MS in which the role of lncRNAs as epigenetic regulatory molecules in molecular processes has been proven. In this paper, we have focused on the correlation between MS and lncRNAs, the role of lncRNA in the pathogenesis of the disease, and the diagnostic and prognostic potential of lncRNA in MS.
Collapse
Affiliation(s)
- Samin Ghaderian
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Navid Shomali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheil Behravesh
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Aslani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Hosseinzadeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Torkamandi
- Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
28
|
Recent advances of long noncoding RNAs involved in the development of multiple sclerosis. Chin J Nat Med 2020; 18:36-46. [PMID: 31955822 DOI: 10.1016/s1875-5364(20)30003-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Indexed: 12/12/2022]
Abstract
Given the rapid increase of patients with autoimmune diseases and the lack of satisfactory therapies, the discovery of novel and effective therapeutic targets have been in an urgent demand. Recent studies have revealed that long noncoding RNAs (lncRNAs) play crucial roles in the development of multiple sclerosis (MS), which provides a new opportunity of uncovering novel mechanism associated with the progression of MS. This review highlights the dysregulation of lncRNAs in the development of MS in patients and animal models. Additionally, the potential clinical relevance of lncRNAs severed as therapeutic targets and diagnostic markers are discussed.
Collapse
|
29
|
Lodde V, Murgia G, Simula ER, Steri M, Floris M, Idda ML. Long Noncoding RNAs and Circular RNAs in Autoimmune Diseases. Biomolecules 2020; 10:E1044. [PMID: 32674342 PMCID: PMC7407480 DOI: 10.3390/biom10071044] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 02/07/2023] Open
Abstract
Immune responses are essential for the clearance of pathogens and the repair of injured tissues; however, if these responses are not properly controlled, autoimmune diseases can occur. Autoimmune diseases (ADs) are a family of disorders characterized by the body's immune response being directed against its own tissues, with consequent chronic inflammation and tissue damage. Despite enormous efforts to identify new drug targets and develop new therapies to prevent and ameliorate AD symptoms, no definitive solutions are available today. Additionally, while substantial progress has been made in drug development for some ADs, most treatments only ameliorate symptoms and, in general, ADs are still incurable. Hundreds of genetic loci have been identified and associated with ADs by genome-wide association studies. However, the whole list of molecular factors that contribute to AD pathogenesis is still unknown. Noncoding (nc)RNAs, such as microRNAs, circular (circ)RNAs, and long noncoding (lnc)RNAs, regulate gene expression at different levels in various diseases, including ADs, and serve as potential drug targets as well as biomarkers for disease progression and response to therapy. In this review, we will focus on the potential roles and genetic regulation of ncRNA in four autoimmune diseases-systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, and type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Valeria Lodde
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (V.L.); (G.M.); (E.R.S.); (M.F.)
| | - Giampaolo Murgia
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (V.L.); (G.M.); (E.R.S.); (M.F.)
| | - Elena Rita Simula
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (V.L.); (G.M.); (E.R.S.); (M.F.)
| | - Maristella Steri
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, SS554 km 4,500, 09042 Monserrato-Cagliari, Italy;
| | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (V.L.); (G.M.); (E.R.S.); (M.F.)
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, SS554 km 4,500, 09042 Monserrato-Cagliari, Italy;
| | - Maria Laura Idda
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Traversa La Crucca 3, 07100 Sassari, Italy
| |
Collapse
|
30
|
Ali MA, Shaker OG, Khalefa AA, Abdelwahed MY, Ali E, Ezzat EM, Elghobary HA, Awaji AA, Fouad NA, Ayoub SE. Serum long noncoding RNAs FAS-AS1 & PVT1 are novel biomarkers for systemic lupus erythematous. Br J Biomed Sci 2020; 77:208-212. [PMID: 32614682 DOI: 10.1080/09674845.2020.1765459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: Systemic Lupus Erythematous (SLE) is a chronic systemic autoimmune disorder whose diagnosis depends on combination of multiple factors. Circulating lncRNAs could serve as diagnostic non-invasive biomarkers for SLE. We hypothesised that serum FAS-AS1 and PVT1 are new biomarkers for SLE that relate to clinical features and laboratory markers. Materials and Method: Measurement of serum FAS-AS1 & PVT1 by qRT-PCR, analysis of the association between two RNAs and the clinical data, activity index and laboratory markers by standard routine methods. Results: There was a significant relative increased serum FAS-AS1 (median (IQR) 2.19 (0.13-8.62) and a significant reduced PVT1 (median (IQR) 0.52 (0.01-7.55) in SLE patients compared to controls (P < 0.0001 for FAS-AS1 and = 0.007 for PVT1). Serum FAS-AS1 and PVT1 were positively correlated (r= 0.37, P = 0.001). Higher FAS-AS1 was significantly linked with nephritis (P = 0.011), positive anti-dsDNA (P= 0.01) and lower serum PVT1 was significantly associated with oral ulcers (P= 0.023), photosensitivity (P= 0.017), and neurological manifestations (P= 0.041). Serum PVT1 negatively correlated with age (r= -0.52, P< 0.0001) and ESR level (r= -0.29, P= 0.011) in SLE patients. No correlation between disease activity and serum FAS-AS1 or PVT1 was detected. Conclusions: Our study provides evidence that serum FAS-AS1 and PVT1 are new biomarkers for SLE.
Collapse
Affiliation(s)
- M A Ali
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University Fayoum, Egypt
| | - O G Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University , Cairo, Egypt
| | - A A Khalefa
- Department of Physiology, Faculty of Medicine, Zagazig University , Zagazig, Egypt
| | - M Y Abdelwahed
- Department of Physiology, Faculty of Medicine, Fayoum University , Fayoum, Egypt
| | - Egi Ali
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University , Fayoum, Egypt
| | - E M Ezzat
- Department of Internal Medicine, Faculty of Medicine, Fayoum University , Fayoum, Egypt
| | - H A Elghobary
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University , Cairo, Egypt
| | - A A Awaji
- University of Tabuk, University College of Taymaa, Faculty of Science, Biology Department , Tabuk, Saudi Arabia
| | - N A Fouad
- Faculty of Medicine, Department of Rheumatology and Rehabilitation, Fayoum University , Fayoum 63514, Egypt
| | - S E Ayoub
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University Fayoum, Egypt
| |
Collapse
|
31
|
Ayoub SE, Hefzy EM, Abd El-Hmid RG, Ahmed NA, Khalefa AA, Ali DY, Ali MA. Analysis of the expression profile of long non-coding RNAs MALAT1 and THRIL in children with immune thrombocytopenia. IUBMB Life 2020; 72:1941-1950. [PMID: 32563217 DOI: 10.1002/iub.2310] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS Pediatric immune thrombocytopenia (ITP) is an autoimmune disease; whose etiology is not exactly understood and seems to be highly multifactorial. Long non-coding RNAs (lncRNAs) are key regulators of different actions, which contribute to the development of many autoimmune diseases. To gain a further understanding, we estimated the relative expression of lncRNAs Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and tumor necrosis factor-α (TNF-α) and heterogeneous nuclear ribonucleoprotein L (hnRNPL) immune-regulatory lncRNA (THRIL) in pediatric ITP. METHODS In this case-control study, analysis of the expression profiles of these lncRNAs in blood samples from children with ITP and healthy controls (HCs) using quantitative real-time PCR was done. The association of MALAT1 and THRIL with ITP clinical features and their potential usage as non-invasive circulating biomarkers for ITP diagnosis was also evaluated. The receiver operating characteristic curve was constructed, and an area under the curve was analyzed. RESULTS Both lncRNAs MALAT1 and THRIL were significantly upregulated in ITP patients in comparison to HCs ( p < .0001 and = .001 respectively). In addition, there was a positive significant correlation between the expression level of both biomarkers among patients (r = 0.745, p < .0001). At cutoff points of 1.17 and 1.27 for lncRNAs MALAT1and THRIL, respectively, both biomarkers had an excellent specificity (100% for both) and fair sensitivity (63.6 and 73.3% for lncRNAs MALAT1and THRIL, respectively). Improvement of biomarkers specificity was obtained by evaluation of the combined expression of both biomarkers. Serum lncRNAs MALAT1 and THRIL could be used as potential biomarkers in differentiating childhood ITP patients and HCs.
Collapse
Affiliation(s)
- Shymaa E Ayoub
- Department of Medical Biochemistry and Molecular Biology, Fayoum University, Al Fayoum, Egypt
| | - Enas M Hefzy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Al Fayoum, Egypt
| | - Rehab G Abd El-Hmid
- Department of Pediatric Medicine, Faculty of Medicine, Fayoum University, Al Fayoum, Egypt
| | - Naglaa A Ahmed
- Department of Physiology, Faculty of Medicine, Zagazig University, El Zagazig, Egypt
| | - Abeer A Khalefa
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Al Fayoum, Egypt
| | - Doaa Y Ali
- Department of Clinical Pathology, Fayoum University, Al Fayoum, Egypt
| | - Marwa A Ali
- Department of Medical Biochemistry and Molecular Biology, Fayoum University, Al Fayoum, Egypt
| |
Collapse
|
32
|
Taghizadeh E, Taheri F, Samadian MM, Soudyab M, Abi A, Gheibi Hayat SM. Role of long non-coding RNAs (LncRNAs) in multiple sclerosis: a brief review. Neurol Sci 2020; 41:2443-2451. [PMID: 32350675 DOI: 10.1007/s10072-020-04425-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 04/13/2020] [Indexed: 01/05/2023]
Abstract
Multiple sclerosis (MS) as chronic autoimmune inflammatory neurological disease of the central nervous system (CNS) occurs due to several environmental and genetic factors, whose pathogenesis is associated with genes with regulatory role in the immune system. Long non-coding RNAs (LncRNAs) are able to reportedly regulate responses of immune systems and expression of genes, and show the tissue specificity and complexity of biofunctions. Various studies have suggested that the aberrant LncRNA expression is an underlying factor involved in the incidence of MS and that the analysis of the expression profile of these molecules can be a specific biomarker of MS for preventing the course of the disease or responding to treatment. The purpose of this research was to review the recent studies for exploring the functions of LncRNAs in the processes leading to MS disease.
Collapse
Affiliation(s)
- Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Forough Taheri
- Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Mahdi Samadian
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soudyab
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Abi
- Department of Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
33
|
Ghetti M, Vannini I, Storlazzi CT, Martinelli G, Simonetti G. Linear and circular PVT1 in hematological malignancies and immune response: two faces of the same coin. Mol Cancer 2020; 19:69. [PMID: 32228602 PMCID: PMC7104523 DOI: 10.1186/s12943-020-01187-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
Non coding RNAs (ncRNAs) have emerged as regulators of human carcinogenesis by affecting the expression of key tumor suppressor genes and oncogenes. They are divided into short and long ncRNAs, according to their length. Circular RNAs (circRNAs) are included in the second group and were recently discovered as being originated by back-splicing, joining either single or multiple exons, or exons with retained introns. The human Plasmacytoma Variant Translocation 1 (PVT1) gene maps on the long arm of chromosome 8 (8q24) and encodes for 52 ncRNAs variants, including 26 linear and 26 circular isoforms, and 6 microRNAs. PVT1 genomic locus is 54 Kb downstream to MYC and several interactions have been described among these two genes, including a feedback regulatory mechanism. MYC-independent functions of PVT1/circPVT1 have been also reported, especially in the regulation of immune responses. We here review and discuss the role of both PVT1 and circPVT1 in the hematopoietic system. No information is currently available concerning their transforming ability in hematopoietic cells. However, present literature supports their cooperation with a more aggressive and/or undifferentiated cell phenotype, thus contributing to cancer progression. PVT1/circPVT1 upregulation through genomic amplification or rearrangements and/or increased transcription, provides a proliferative advantage to malignant cells in acute myeloid leukemia, acute promyelocytic leukemia, Burkitt lymphoma, multiple myeloma (linear PVT1) and acute lymphoblastic leukemia (circPVT1). In addition, PVT1 and circPVT1 regulate immune responses: the overexpression of the linear form in myeloid derived suppressor cells induced immune tolerance in preclinical tumor models and circPVT1 showed immunosuppressive properties in myeloid and lymphoid cell subsets. Overall, these recent data on PVT1 and circPVT1 functions in hematological malignancies and immune responses reflect two faces of the same coin: involvement in cancer progression by promoting a more aggressive phenotype of malignant cells and negative regulation of the immune system as a novel potential therapy-resistance mechanism.
Collapse
Affiliation(s)
- Martina Ghetti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy
| | - Ivan Vannini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy.
| | | | - Giovanni Martinelli
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy
| |
Collapse
|
34
|
Samudyata, Castelo-Branco G, Liu J. Epigenetic regulation of oligodendrocyte differentiation: From development to demyelinating disorders. Glia 2020; 68:1619-1630. [PMID: 32154951 DOI: 10.1002/glia.23820] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/19/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022]
Abstract
The maintenance of progenitor states or the differentiation of progenitors into specific lineages requires epigenetic remodeling of the gene expression program. In the central nervous system, oligodendrocyte progenitors (OPCs) give rise to oligodendrocytes (OLs), whose main function has been thought to be to produce myelin, a lipid-rich structure insulating the axons. However, recent findings suggest diverse OL transcriptional states, which might imply additional functions. The differentiation of OPCs into postmitotic OLs is a highly regulated and sensitive process and requires temporal waves of gene expression through epigenetic remodeling of the genome. In this review, we will discuss recent advances in understanding the events shaping the chromatin landscape through histone modifications and long noncoding RNAs during OPC differentiation, in physiological and pathological conditions. We suggest that epigenetic regulation plays a fundamental role in governing the accessibility of transcriptional machinery to DNA sequences, which ultimately determines functional outcomes in OLs.
Collapse
Affiliation(s)
- Samudyata
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Jia Liu
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University of New York, New York, New York, USA
| |
Collapse
|
35
|
Pang T, Du L, Li F, Liu Y, Ma X, Cao Q, Shi L, Li N, Kijlstra A, Yang P. Association of apoptosis genes in PDCD1 but not PDCD1LG2, FAS, and FASLG with pediatric idiopathic uveitis in Han Chinese. Pediatr Res 2020; 87:634-638. [PMID: 31618754 DOI: 10.1038/s41390-019-0612-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/11/2019] [Accepted: 08/27/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Previous studies have shown that aberrant T lymphocyte apoptosis is involved in the pathogenesis of uveitis. Genetic variants of apoptotic pathway-related factors (including PDCD1, PDCD1LG2, FAS, and FASLG) may affect apoptosis and in turn predict susceptibility to autoimmune disease. This has not yet been studied in pediatric idiopathic uveitis (PIU) and juvenile idiopathic arthritis (JIA)-associated uveitis and was therefore the subject of the study presented here. METHODS Fourteen single-nucleotide polymorphisms (SNPs) of several apoptosis-related pathway genes were analyzed in 1238 PIU patients, 128 JIA-associated uveitis patients and 1114 healthy controls using the iPLEX Gold Assay and MassARRAY platform. RESULTS A lower frequency of the PDCD1/rs6710479 CC genotype in PIU patients was found when compared to controls (Pc = 3.42 × 10-3). A higher frequency of the PDCD1/rs7421861 A allele (Pc = 4.85 × 10-3) was observed in PIU patients as compared with controls. Stratification analysis showed a positive association of band keratopathy with the PDCD1/rs7565639 CT genotype (Pc = 1.05 × 10-2) and a negative association of this parameter with the PDCD1/rs7565639 C allele (Pc = 3.76 × 10-2). CONCLUSIONS This study revealed that rs6710479 and rs7421861 in the PDCD1 gene confer susceptibility to PIU in Han Chinese. A stratified analysis showed that PDCD1/rs7565639 is associated with band keratopathy in PIU patients.
Collapse
Affiliation(s)
- Tingting Pang
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, People's Republic of China.,The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Liping Du
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, People's Republic of China
| | - Fuzhen Li
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, People's Republic of China
| | - Yizong Liu
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, People's Republic of China.,The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xin Ma
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, People's Republic of China.,The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Qingfeng Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, People's Republic of China
| | - Liying Shi
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, People's Republic of China
| | - Na Li
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, People's Republic of China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, Limburg, The Netherlands
| | - Peizeng Yang
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, People's Republic of China. .,The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, People's Republic of China.
| |
Collapse
|
36
|
Associations Between Genomic Variants in lncRNA-TRPM2-AS and lncRNA-HNF1A-AS1 Genes and Risk of Multiple Sclerosis. J Mol Neurosci 2020; 70:1050-1055. [PMID: 32100228 DOI: 10.1007/s12031-020-01504-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 02/05/2020] [Indexed: 01/12/2023]
Abstract
Multiple sclerosis (MS) is a complex genetic trait characterized by demyelination of central nervous system (CNS), inflammation, and progressive neurological dysfunction. There is evidenced that autophagy and stress mechanisms are tightly linked with MS. Previous studies have demonstrated that LncRNAs TRPM2-AS and HNF1A-AS1 are involved in oxidative stress and autophagy, respectively. In the current study, we investigated the association of TRPM2-AS and HNF1A-AS1 single nucleotide polymorphisms (SNPs) with MS risk in 300 Iranian patients and 300 healthy controls. Our results have shown that T allele of the rs933151 was statistically significant underrepresented in MS patients compared with healthy subjects (OR (95% CI) = 0.696 (0.532-0.911), P = 0.005). This SNP was associated with lower MS risk in codominant and dominant models (OR (95% CI) = 0.68 (0.48-0.96), P value = 0.032; OR (95% CI) = 0.65 (0.47-0.91), P value = 0.012, respectively). The rs7953249 was not associated with MS susceptibility in any inheritance models (P values of 0.73, 0.46, 0.61, and 0.71 for codominant, dominant, recessive, and overdominant models, respectively). Present study highlighted a novel association at the TRPM2-AS gene (SNP rs933151) with MS susceptibility.
Collapse
|
37
|
Qi H, Shen J, Zhou W. Up-regulation of long non-coding RNA THRIL in coronary heart disease: Prediction for disease risk, correlation with inflammation, coronary artery stenosis, and major adverse cardiovascular events. J Clin Lab Anal 2020; 34:e23196. [PMID: 31944373 PMCID: PMC7246374 DOI: 10.1002/jcla.23196] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022] Open
Abstract
Objective This study aimed to investigate the role of long non‐coding RNA (lncRNA) THRIL in coronary heart disease (CHD) patients. Methods A total of 420 patients who underwent coronary arteriography due to suspected symptoms of CHD were enrolled, in which 220 were diagnosed as CHD and 200 were set as control subjects. LncRNA THRIL in plasma samples of CHD patients and control subjects was detected by reverse transcription‐quantitative polymerase chain reaction. Gensini score and biochemical indexes were evaluated in CHD patients and control subjects. Plasma inflammatory cytokines were detected, and major adverse cardiovascular events (MACE) were recorded in CHD patients. Results Both before and after adjustment by age/gender, lncRNA THRIL was increased in CHD patients compared with control subjects (both P < .001), and it well predicted enhanced CHD risk by receiver operating characteristic curves. For coronary artery stenosis, it was positively correlated with Gensini score (P < .001, r = .430). For clinical characteristics, lncRNA THRIL was positively correlated with diabetes mellitus occurrence (P < .001) and fasting blood glucose (FBG) level (P = .029, r = .147). For inflammation, it was positively associated with CRP (P < .001, r = .374), TNF‐α (P < .001, r = .249), IL‐1β (P = .001, r = .222), IL‐8 (P < .001, r = .254), and IL‐17 (P = .011, r = .172), while negatively correlated with IL‐10 (P < .001, r = −.244). For prognosis, lncRNA THRIL was positively associated with MACE accumulating rate (P = .037) in CHD patients. Conclusion Long non‐coding RNA THRIL was increased in CHD patients and well predicted elevated CHD risk. Moreover, it was correlated with enhanced coronary stenosis, systematic inflammation, FBG level, and MACE risk in CHD patients.
Collapse
Affiliation(s)
- Haijun Qi
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Shen
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenping Zhou
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Moghbeli M. Genetic and Molecular Biology of Multiple Sclerosis Among Iranian Patients: An Overview. Cell Mol Neurobiol 2020; 40:65-85. [PMID: 31482432 PMCID: PMC11448812 DOI: 10.1007/s10571-019-00731-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/24/2019] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is one if the common types of autoimmune disorders in developed countries. Various environmental and genetic factors are associated with initiation and progression of MS. It is believed that the life style changes can be one of the main environmental risk factors. The environmental factors are widely studied and reported, whereas minority of reports have considered the role of genetic factors in biology of MS. Although Iran is a low-risk country in the case of MS prevalence, it has been shown that there was a dramatically rising trend of MS prevalence among Iranian population during recent decades. Therefore, it is required to assess the probable MS risk factors in Iran. In the present study, we summarized all of the reported genes until now which have been associated with MS susceptibility among Iranian patients. To clarify the probable molecular biology of MS progression, we categorized these reported genes based on their cellular functions. This review paves the way of introducing a specific population-based diagnostic panel of genetic markers among the Iranian population for the first time in the world.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
39
|
Moradi M, Gharesouran J, Ghafouri-Fard S, Noroozi R, Talebian S, Taheri M, Rezazadeh M. Role of NR3C1 and GAS5 genes polymorphisms in multiple sclerosis. Int J Neurosci 2019; 130:407-412. [PMID: 31724909 DOI: 10.1080/00207454.2019.1694019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Multiple sclerosis (MS) as a progressive chronic disease of the central nervous system (CNS) is characterized by demyelination and axonal loss. Results of genetic studies and clinical trials have proved a key role for the immune system in the pathogenesis of MS. Glucocorticoids (GR) are regarded as potent therapeutic compounds for autoimmune and inflammatory diseases which act through their receptors encoded by Nuclear Receptor Subfamily 3 Group C Member 1 (NR3C1) gene. Meanwhile, the long non-coding RNA (lncRNA) growth arrest specific 5 (GAS5) interacts with GR through binding to the DNA-binding domain (DBD) region and reduces GR transcriptional activity.Methods: The purpose of our study was to evaluate the association between MS and polymorphisms within NR3C1 (rs6189/6190, rs56149945, rs41423247) and GAS5 (rs55829688) genes in 300 relapsing-remitting MS patients and 300 healthy subjects.Results: We demonstrated significant differences in distribution of genotype, allele and haplotype frequencies of rs6189, rs41423247 and rs55829688 between the study groups.Conclusion: Our data may suggest that rs6189, rs41423247 and rs55829688 are associated with the increased risk of MS development. Future studies are needed to verify our results in larger sample sizes and elaborate the underlying mechanisms for contribution of these variants in MS disease.
Collapse
Affiliation(s)
- Mohsen Moradi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Gharesouran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rezvan Noroozi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrzad Talebian
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezazadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
40
|
Han Z, Hua J, Xue W, Zhu F. Integrating the Ribonucleic Acid Sequencing Data From Various Studies for Exploring the Multiple Sclerosis-Related Long Noncoding Ribonucleic Acids and Their Functions. Front Genet 2019; 10:1136. [PMID: 31781177 PMCID: PMC6861379 DOI: 10.3389/fgene.2019.01136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic fatal central nervous system (CNS) disease involving in complex immunity dysfunction. Recently, long noncoding RNAs (lncRNAs) were discovered as the important regulatory factors for the pathogenesis of MS. However, these findings often cannot be repeated and confirmed by the subsequent studies. We considered that the small-scale samples or the heterogeneity among various tissues may result in the divergence of the results. Currently, RNA-seq has become a powerful approach to quantify the abundances of lncRNA transcripts. Therefore, we comprehensively collected the MS-related RNA-seq data from a variety of previous studies, and integrated these data using an expression-based meta-analysis to identify the differentially expressed lncRNA between MS patients and controls in whole samples and subgroups. Then, we performed the Jensen-Shannon (JS) divergence and cluster analysis to explore the heterogeneity and expression specificity among various tissues. Finally, we investigated the potential function of identified lncRNAs for MS using weighted gene co-expression network analysis (WGCNA) and gene set enrichment analysis (GSEA), and 5,420 MS-related lncRNAs specifically expressed in the brain tissue were identified. The subgroup analysis found a small heterogeneity of the lncRNA expression profiles between brain and blood tissues. The results of WGCNA and GSEA showed that a potential important function of lncRNAs in MS may be involved in the regulation of ribonucleoproteins and tumor necrosis factor cytokines receptors. In summary, this study provided a strategy to explore disease-related lncRNAs on genome-wide scale, and our findings will be benefit to improve the understanding of MS pathogenesis.
Collapse
Affiliation(s)
- Zhijie Han
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Jiao Hua
- School of Mathematics, Harbin Institute of Technology, Harbin, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
41
|
Long noncoding RNAs associated with phenotypic severity in multiple sclerosis. Mult Scler Relat Disord 2019; 36:101407. [DOI: 10.1016/j.msard.2019.101407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/29/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022]
|
42
|
Moradi A, Rahimi Naiini M, Yazdanpanahi N, Tabatabaeian H, Nabatchian F, Baghi M, Azadeh M, Ghaedi K. Evaluation of The Expression Levels of Three Long Non-Coding RNAs in Multiple Sclerosis. CELL JOURNAL 2019; 22:165-170. [PMID: 31721530 PMCID: PMC6874792 DOI: 10.22074/cellj.2020.6555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/12/2019] [Indexed: 12/20/2022]
Abstract
Objective Multiple sclerosis (MS) is a chronic disorder involving both inflammatory and neurodegenerative responses.
Long non-coding RNAs (lncRNAs) have been had an emerging role as the biomarkers of different disorders, including
autoimmune diseases. Previous studies have shown that NR_003531.3 (MEG3a), AC000061.1_201, and AC007182.6
play a role in the pathogenesis of human autoimmune diseases. However, the potential significance of these lncRNAs,
as the diagnostic biomarkers of MS, has not been studied yet. We aimed to quantitatively evaluate the expression
levels of NR_003531.3, AC000061.1_201, and AC007182.6 in peripheral blood samples of MS patients in comparison
with healthy controls.
Materials and Methods In this case-control study, the blood samples from 20 MS patients and 10 healthy controls
were collected. Total RNA was extracted, and the expression levels of three selected lncRNAs were quantitatively
measured using the quantitative real time-polymerase chain reaction (qRT-PCR) method.
Results We detected a significant down-regulation in the expression of NR_003531.3 in MS patients, while no marked
changes were observed in the expression of AC000061.1_201 and AC007182.6 in patients compared with controls.
Based on the receiver operating characteristic (ROC) curve analysis, NR_003531.3 could discriminate MS patients
from healthy subjects effectively. Regarding the prognosis of MS patients, NR_003531.3 is significantly and inversely
correlated with the expanded disability status scale (EDSS).
Conclusion The potential role of NR_003531.3 lncRNA as a diagnostic biomarker to distinguish MS patients is proposed.
Prognostically, NR_003531.3 correlates with lower disability rates in MS patients.
Collapse
Affiliation(s)
- Afshin Moradi
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdis Rahimi Naiini
- Department of Biochemistry, Medical School and Kerman Physiology Research Center, Kerman University of Medical Science, Kerman, Iran.,Zist-fanavari Novin, Biotechnology Institute, Isfahan, Iran
| | - Nasrin Yazdanpanahi
- Department of Genetics, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Hossein Tabatabaeian
- Division of Genetics, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Fariba Nabatchian
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran. Electronic Address:
| | - Masoud Baghi
- Department of Biology, School of Sciences, University of Isfahan, Isfahan, Iran.,Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | | | - Kamran Ghaedi
- Department of Biology, School of Sciences, University of Isfahan, Isfahan, Iran.,Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. Electronic Address:
| |
Collapse
|
43
|
Wang Y, Fu X, Yu B, Ai F. Long non-coding RNA THRIL predicts increased acute respiratory distress syndrome risk and positively correlates with disease severity, inflammation, and mortality in sepsis patients. J Clin Lab Anal 2019; 33:e22882. [PMID: 31257645 PMCID: PMC6642293 DOI: 10.1002/jcla.22882] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/17/2019] [Accepted: 02/22/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND This present study aimed to investigate the correlation of long non-coding RNA THRIL (lnc-THRIL) with acute respiratory distress syndrome (ARDS) risk, disease severity, inflammation, and mortality in sepsis patients. METHODS A total of 109 sepsis patients admitted to intensive care units were consecutively recruited, and their blood samples were collected. After admission, patients were supervised and screened daily to identify the occurrence of ARDS. Clinical characteristics, routine laboratory testing, and disease severity were recorded, and all enrolled patients were followed up until death in the hospital or discharge for mortality records. Lnc-THRIL was detected by quantitative polymerase chain reaction, and inflammatory cytokine levels were measured by human enzyme-linked immunoassay. RESULTS A total of 32 (29.4%) sepsis patients occurred ARDS and 77 (71.6%) did not. Lnc-THRIL was upregulated in ARDS group compared with non-ARDS group, and it had good value in distinguishing ARDS from non-ARDS in sepsis patients (AUC: 0.706; 95%CI: 0.602-0.809). Besides, lnc-THRIL, smoke, and chronic obstructive pulmonary disease independently predicted increased risk of ARDS. As for disease severity, lnc-THRIL positively correlated with APACHE II score and SOFA score in sepsis patients. Regarding inflammation, lnc-THRIL was positively associated with CRP, PCT, TNF-α, and IL-1β levels in sepsis patients. Additionally, the mortality rate was 30.2%, and lnc-THRIL was upregulated in non-survivors compared with survivors, presenting a good value (AUC: 0.780; 95%CI: 0.683-0.876) in predicting mortality in sepsis patients. CONCLUSION Lnc-THRIL predicts increased risk of ARDS and positively correlates with disease severity, inflammation, and mortality in sepsis patients.
Collapse
Affiliation(s)
- Yan'e Wang
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxing Fu
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Yu
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fen Ai
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Lei F, Zhang H, Xie X. Comprehensive analysis of an lncRNA-miRNA-mRNA competing endogenous RNA network in pulpitis. PeerJ 2019; 7:e7135. [PMID: 31304055 PMCID: PMC6609876 DOI: 10.7717/peerj.7135] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/16/2019] [Indexed: 12/30/2022] Open
Abstract
Background Pulpitis is a common inflammatory disease that affects dental pulp. It is important to understand the molecular signals of inflammation and repair associated with this process. Increasing evidence has revealed that long noncoding RNAs (lncRNAs), via competitively sponging microRNAs (miRNAs), can act as competing endogenous RNAs (ceRNAs) to regulate inflammation and reparative responses. The aim of this study was to elucidate the potential roles of lncRNA, miRNA and messenger RNA (mRNA) ceRNA networks in pulpitis tissues compared to normal control tissues. Methods The oligo and limma packages were used to identify differentially expressed lncRNAs and mRNAs (DElncRNAs and DEmRNAs, respectively) based on expression profiles in two datasets, GSE92681 and GSE77459, from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were further analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Protein–protein interaction (PPI) networks and modules were established to screen hub genes using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and the Molecular Complex Detection (MCODE) plugin for Cytoscape, respectively. Furthermore, an lncRNA-miRNA-mRNA-hub genes regulatory network was constructed to investigate mechanisms related to the progression and prognosis of pulpitis. Then, quantitative real-time polymerase chain reaction (qRT-PCR) was applied to verify critical lncRNAs that may significantly affect the pathogenesis in inflamed and normal human dental pulp. Results A total of 644 upregulated and 264 downregulated differentially expressed genes (DEGs) in pulpitis samples were identified from the GSE77459 dataset, while 8 up- and 19 downregulated probes associated with lncRNA were identified from the GSE92681 dataset. Protein–protein interaction (PPI) based on STRING analysis revealed a network of DEGs containing 4,929 edges and 623 nodes. Upon combined analysis of the constructed PPI network and the MCODE results, 10 hub genes, including IL6, IL8, PTPRC, IL1B, TLR2, ITGAM, CCL2, PIK3CG, ICAM1, and PIK3CD, were detected in the network. Next, a ceRNA regulatory relationship consisting of one lncRNA (PVT1), one miRNA (hsa-miR-455-5p) and two mRNAs (SOCS3 and PLXNC1) was established. Then, we constructed the network in which the regulatory relationship between ceRNA and hub genes was summarized. Finally, our qRT-PCR results confirmed significantly higher levels of PVT1 transcript in inflamed pulp than in normal pulp tissues (p = 0.03). Conclusion Our study identified a novel lncRNA-mediated ceRNA regulatory mechanisms in the pathogenesis of pulpitis.
Collapse
Affiliation(s)
- Fangcao Lei
- Department of Operative Dentistry and Endodontics, School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Han Zhang
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiaoli Xie
- Department of Operative Dentistry and Endodontics, School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
45
|
Zhang Y, Zhou Y, van der Mei IAF, Simpson S, Ponsonby AL, Lucas RM, Tettey P, Charlesworth J, Kostner K, Taylor BV. Lipid-related genetic polymorphisms significantly modulate the association between lipids and disability progression in multiple sclerosis. J Neurol Neurosurg Psychiatry 2019; 90:636-641. [PMID: 30782980 DOI: 10.1136/jnnp-2018-319870] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/14/2018] [Accepted: 12/24/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To investigate whether lipid-related or body mass index (BMI)-related common genetic polymorphisms modulate the associations between serum lipid levels, BMI and disability progression in multiple sclerosis (MS). METHODS The association between disability progression (annualised Expanded Disability Status Scale (EDSS) change over 5 years, ΔEDSS) and lipid-related or BMI-related genetic polymorphisms was evaluated in a longitudinal cohort (n=184), diagnosed with MS. We constructed a cumulative genetic risk score (CGRS) of associated polymorphisms (p<0.05) and examined the interactions between the CGRS and lipid levels (measured at baseline) in predicting ΔEDSS. All analyses were conducted using linear regression. RESULTS Five lipid polymorphisms (rs2013208, rs9488822, rs17173637, rs10401969 and rs2277862) and one BMI polymorphism (rs2033529) were nominally associated with ΔEDSS. The constructed lipid CGRS showed a significant, dose-dependent association with ΔEDSS (ptrend=1.4×10-6), such that participants having ≥6 risk alleles progressed 0.38 EDSS points per year faster compared with those having ≤3. This CGRS model explained 16% of the variance in ΔEDSS. We also found significant interactions between the CGRS and lipid levels in modulating ΔEDSS, including high-density lipoprotein (HDL; pinteraction=0.005) and total cholesterol:high-density lipoprotein ratio (TC:HDL; pinteraction=0.030). The combined model (combination of CGRS and the lipid parameter) explained 26% of the disability variance for HDL and 27% for TC:HDL. INTERPRETATION In this prospective cohort study, both lipid levels and lipid-related polymorphisms individually and jointly were associated with significantly increased disability progression in MS. These results indicate that these polymorphisms and tagged genes might be potential points of intervention to moderate disability progression.
Collapse
Affiliation(s)
- Yan Zhang
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Yuan Zhou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Ingrid A F van der Mei
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Steve Simpson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.,Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Robyn M Lucas
- National Centre for Epidemiology and Population Health, Research School of Population Health, College of Medicine, Biology and Environment, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Prudence Tettey
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.,School of Public Health, University of Ghana, Accra, Ghana
| | - Jac Charlesworth
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Karam Kostner
- Mater Hospital, University of Queensland, Brisbane, Queensland, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | | |
Collapse
|
46
|
Han Z, Xue W, Tao L, Lou Y, Qiu Y, Zhu F. Genome-wide identification and analysis of the eQTL lncRNAs in multiple sclerosis based on RNA-seq data. Brief Bioinform 2019; 21:1023-1037. [PMID: 31323688 DOI: 10.1093/bib/bbz036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/29/2022] Open
Abstract
Abstract
The pathogenesis of multiple sclerosis (MS) is significantly regulated by long noncoding RNAs (lncRNAs), the expression of which is substantially influenced by a number of MS-associated risk single nucleotide polymorphisms (SNPs). It is thus hypothesized that the dysregulation of lncRNA induced by genomic variants may be one of the key molecular mechanisms for the pathology of MS. However, due to the lack of sufficient data on lncRNA expression and SNP genotypes of the same MS patients, such molecular mechanisms underlying the pathology of MS remain elusive. In this study, a bioinformatics strategy was applied to obtain lncRNA expression and SNP genotype data simultaneously from 142 samples (51 MS patients and 91 controls) based on RNA-seq data, and an expression quantitative trait loci (eQTL) analysis was conducted. In total, 2383 differentially expressed lncRNAs were identified as specifically expressing in brain-related tissues, and 517 of them were affected by SNPs. Then, the functional characterization, secondary structure changes and tissue and disease specificity of the cis-eQTL SNPs and lncRNA were assessed. The cis-eQTL SNPs were substantially and specifically enriched in neurological disease and intergenic region, and the secondary structure was altered in 17.6% of all lncRNAs in MS. Finally, the weighted gene coexpression network and gene set enrichment analyses were used to investigate how the influence of SNPs on lncRNAs contributed to the pathogenesis of MS. As a result, the regulation of lncRNAs by SNPs was found to mainly influence the antigen processing/presentation and mitogen-activated protein kinases (MAPK) signaling pathway in MS. These results revealed the effectiveness of the strategy proposed in this study and give insight into the mechanism (SNP-mediated modulation of lncRNAs) underlying the pathology of MS.
Collapse
Affiliation(s)
- Zhijie Han
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Yan Lou
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yunqing Qiu
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Zhu
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| |
Collapse
|
47
|
Gharesouran J, Taheri M, Sayad A, Mazdeh M, Omrani MD. Integrative analysis of OIP5-AS1/HUR1 to discover new potential biomarkers and therapeutic targets in multiple sclerosis. J Cell Physiol 2019; 234:17351-17360. [PMID: 30815864 DOI: 10.1002/jcp.28355] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS) is a devastating autoimmune disease of the central nervous system associated with demyelination and axonal injury. This study was designed to find potential lncRNAs and their targets that are associated with the molecular basis of MS pathogenesis. In this study, peripheral blood samples were obtained from 50 relapsing-remitting MS (RR-MS) patients and 50 healthy controls. lncRNAs and their target were selected for validation using TaqMan Real-Time PCR. Interactions were studied based on approaches that used to investigation biological functions and signaling pathways affected by differentially expressed messenger RNAs (mRNAs). The results of this study indicate an increase in the expression of HUR1 (p = 0.0001), CPSF7 (p = 0.02), and reduction of CSTF2 expression (p = 0.04). Also, an increase in the expression of OIP5-AS1 (p = 0.01) was observed in men less than 30 years old. We performed a comparative analysis of the long noncoding RNAs (lncRNAs), and then we ranked them as candidate biomarkers according to a decreasing area under the receiver operating characteristic (ROC) curve (AUC) and plotted the results. Dysregulation of lncRNA expression has been linked to diseases. Further studies on the HUR1 gene can be used as diagnostic tools for the identification of high-risk individuals in families with a history of disease before, during, and even after treatment. Our data uncovered the expression profiles of lncRNAs and mRNAs in MS patients, which will help delineate the molecular mechanisms in MS pathogenesis. However, further studies need to determine the precise role of these genes in the pathological process in MS.
Collapse
Affiliation(s)
- Jalal Gharesouran
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdokht Mazdeh
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mir Davood Omrani
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Deng Y, Luan S, Zhang Q, Xiao Y. Retracted: Long noncoding RNA THRIL contributes in lipopolysaccharide-induced HK-2 cells injury by sponging miR-34a. J Cell Biochem 2019; 120:1444-1456. [PMID: 30414207 DOI: 10.1002/jcb.27354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/22/2018] [Indexed: 02/02/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with unknown etiology. Nowadays, several long noncoding RNAs (lncRNAs) have been reported as molecular alterations involved in SLE. This study aimed to reveal the function of TNF-related and HNRNPL-related immunoregulatory lncRNA (THRIL) in SLE. Human epithelial HK-2 cells were exposed to lipopolysaccharide (LPS) to mimic an in vitro SLE model. Then, the functions of THRIL, miR-34a, and monocyte chemoattractant protein-1 (MCP-1), as well as their correlations were detected. LncRNA THRIL was highly expressed in the LPS-stimulated cells, and THRIL overexpression aggravated LPS-induced cell damage as cell viability was decreased, and apoptosis and the release of proinflammatory cytokines were increased. THRIL worked as a sponge of microRNA-34a (miR-34a) and it could directly target MCP-1. Furthermore, MCP-1-activated JNK and Wnt/β-catenin signaling pathways. In conclusion, this study suggested that lncRNA THRIL might be a key regulator participating in LPS-induced injury in HK-2 cells. THRIL overexpression aggravated LPS-induced injury possibly via sponging miR-34a, and thus preventing MCP-1 from degradation by miR-34a. The THRIL/miR-34a/MCP-1 axis might play critical roles in SLE.
Collapse
Affiliation(s)
- Yao Deng
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, China
| | - Sen Luan
- Department of Nephrology, Shengli Oilfield Central Hospital, Dongying, China
| | - Qi Zhang
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, China
| | - Ying Xiao
- Department of Nephrology, Shengli Oilfield Central Hospital, Dongying, China
| |
Collapse
|
49
|
Shaker OG, Mahmoud RH, Abdelaleem OO, Ibrahem EG, Mohamed AA, Zaki OM, Abdelghaffar NK, Ahmed TI, Hemeda NF, Ahmed NA, Mansour DF. LncRNAs, MALAT1 and lnc-DC as potential biomarkers for multiple sclerosis diagnosis. Biosci Rep 2019; 39:BSR20181335. [PMID: 30514825 PMCID: PMC6331681 DOI: 10.1042/bsr20181335] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 12/27/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play an important role in gene regulation and show greater tissue specificity and complexity of biological functions. There is on-going research in their contribution in autoimmune diseases like multiple sclerosis (MS). Our study aimed at the evaluation of serum levels of lncRNAs, MALAT1 and lnc-DC in MS patients and the investigation of the association between these lncRNAs and the disease activity. Serum from 45 MS patients and 45 healthy controls was separated. MALAT1 and lnc-DC expression levels were assayed by qRT-PCR. MALAT1 and lnc-DC were significantly increased in MS patients (P=0.004 and P=0.006, respectively) in comparison with controls. There was a significant increase in expression of MALAT1 in secondary progressive MS (SPMS) subgroup compared with controls (P<0.0001); however, significant elevation of lnc-DC was demonstrated in relapsing remitting MS (RRMS) subtype (P=0.003) compared with normal controls. A positive association between the expression levels of MALAT1 and lnc-DC (r = 0.513, P < 0.0001) in MS patients was detected. Moreover, positive correlation was observed between MALAT1and lnc-DC in RRMS (r = 0.569, P = 0.001). Serum levels of MALAT1 and lnc-DC may serve as potential novel molecular biomarkers for MS diagnosis and may provide a new direction for its treatment.
Collapse
MESH Headings
- Adult
- Biomarkers/blood
- Case-Control Studies
- Female
- Humans
- Male
- Multiple Sclerosis, Chronic Progressive/blood
- Multiple Sclerosis, Chronic Progressive/diagnosis
- Multiple Sclerosis, Chronic Progressive/genetics
- Multiple Sclerosis, Chronic Progressive/pathology
- Multiple Sclerosis, Relapsing-Remitting/blood
- Multiple Sclerosis, Relapsing-Remitting/diagnosis
- Multiple Sclerosis, Relapsing-Remitting/genetics
- Multiple Sclerosis, Relapsing-Remitting/pathology
- RNA, Long Noncoding/blood
- RNA, Long Noncoding/genetics
- Severity of Illness Index
Collapse
Affiliation(s)
- Olfat G Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rania H Mahmoud
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Omayma O Abdelaleem
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Enas G Ibrahem
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Abdelrahmaan A Mohamed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Othman M Zaki
- Department of Clinical pathology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Noha K Abdelghaffar
- Department of Clinical pathology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Tarek I Ahmed
- Department of Internal medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Nada F Hemeda
- Department of Genetics, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Naglaa A Ahmed
- Department of Physiology, Faculty of Medicine, Zagazig University, Zagazig, Sharkea, Egypt
| | - Dina F Mansour
- Department of Neurology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
50
|
Expression analysis of long non-coding RNAs and their target genes in multiple sclerosis patients. Neurol Sci 2019; 40:801-811. [PMID: 30680474 DOI: 10.1007/s10072-019-3720-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 01/12/2019] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is a progressive chronic autoimmune-mediated disease. Recently, long non-coding RNAs (lncRNAs) are characterized to participate in the adjustment of immune responses. Here, we evaluated the expression levels of GSTT1-AS1 and IFNG-AS1 lncRNAs and their targets (TNF and IFNG, respectively) in Iranian MS patients.In this case-control study, 50 relapsing-remitting MS patients and 50 healthy subjects were recruited. Expressions of GSTT1-AS1 and IFNG-AS1 lncRNAs, as well as TNF and IFNG genes, were assessed in their peripheral blood samples by SYBR Green-based Real-time quantitative PCR.Expression levels of GSTT1-AS1 and IFNG-AS1 lncRNAs were both significantly downregulated (p values 0.032 and 0.013, respectively). On the other hand, the expression of TNF and IFNG showed increased levels, however, did not reach statistical significance after our analysis (p > 0.05). Spearman correlation analysis showed that GSTT1-AS1 had a significant positive moderate correlation with IFNG-AS1 (r = 0.541, p < 0.0001), IFNG (r = 0.329, p = 0.001), and TNF (r = 0.204, p = 0.041). Also, IFNG-AS1 revealed the same correlation with IFNG (r = 0.475, p < 0.0001) as well as TNF (r = 0.399, p < 0.0001). Furthermore, GSTT1-AS1 (r = 0.313, p = 0.027) and (IFNG r = 0.478, p < 0.0001) demonstrated a significant positive correlation with age at onset.Briefly, the current study provided for the first time dysregulation of GSTT1-AS1 and IFNG-AS lncRNAs network in MS, which highlights the significant role of epigenetic pathways in this autoimmune disorder. Larger sample size and further investigation assays could shed light on the underlying mechanisms in this area of science.
Collapse
|