1
|
Korkmaz OT, Saydam F, Dalkiran B, Değirmenci İ, Tunçel N. Vasoactive Intestinal Peptide (VIP) and its Receptors in Adipose Tissue: Implications for Cold Stress Adaptation. Cell Biochem Biophys 2024:10.1007/s12013-024-01606-0. [PMID: 39550744 DOI: 10.1007/s12013-024-01606-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 11/18/2024]
Abstract
Adipose tissue represents an organ that is highly dynamic and contributes toward vital survival events such as immune responses, lactation, metabolism fuel, and thermogenesis. Data emerging from recent studies support the notion of adipose tissue being organized into a complex system characterized by a discrete anatomy, elevated physiological plasticity, and specific vascular and nerve supplies. Vasoactive intestinal peptide (VIP), along with its receptors, type 1 (VPAC1) and type 2 (VPAC2), has been implicated in various physiological and pathophysiological processes. However, studies on VIP and its receptors in adipose tissue are limited. To explore VIP's presence and activity, as well as its adipose tissue-based receptors, we conducted a study on isolated adipocytes and adipose tissue from inguinal white adipose tissue (WAT) and interscapular brown adipose tissue (BAT) in normal and cold-stressed rats. Our findings indicate the presence of the gene expression VIP and VPAC1 in both WAT and BAT under normal conditions, while VPAC2 was absent. In both WAT and BAT, cold exposure upregulated VIP gene expression. However, the response of VIP receptors to cold exposure is controversial. VPAC2 gene expression was induced in both WAT and BAT, while VPAC1 gene expression presented no change of significance in BAT and a slight reduction in WAT. Additionally, VIP, VPAC1, and VPAC2 proteins were identified from Western blot studies on white and brown adipocytes. After exposure to cold there was an increase of significance in the VIP, VPAC1, and VPAC2 protein levels. This study provides novel insights into how VIP and its receptors alter gene expression and protein levels in adipose tissue and adipocytes during cold stress, indicating their potential involvement in adipose tissue regulation. The findings propose VIP's potentially crucial role in adipose tissue's adaptation to cold stress by affecting the metabolic and biochemical functions of subcutaneous and interscapular adipocytes, with potentially significant implications in the context of developing therapies targeting metabolic disorders.
Collapse
Affiliation(s)
- Orhan Tansel Korkmaz
- Department of Physiology, Faculty of Medicine, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey.
| | - Faruk Saydam
- Department of Medical Biology, Medical Faculty, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Bahar Dalkiran
- Department of Physiology, Faculty of Medicine, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| | - İrfan Değirmenci
- Department of Medical Biology, Medical Faculty, Kutahya Health Sciences University, 43020, Kütahya, Turkey
| | - Neşe Tunçel
- Department of Physiology, Faculty of Medicine, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| |
Collapse
|
2
|
Mishra G, Townsend KL. Sensory nerve and neuropeptide diversity in adipose tissues. Mol Cells 2024; 47:100030. [PMID: 38364960 PMCID: PMC10960112 DOI: 10.1016/j.mocell.2024.100030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
Both brown and white adipose tissues (BAT/WAT) are innervated by the peripheral nervous system, including efferent sympathetic nerves that communicate from the brain/central nervous system out to the tissue, and afferent sensory nerves that communicate from the tissue back to the brain and locally release neuropeptides to the tissue upon stimulation. This bidirectional neural communication is important for energy balance and metabolic control, as well as maintaining adipose tissue health through processes like browning (development of metabolically healthy brown adipocytes in WAT), thermogenesis, lipolysis, and adipogenesis. Decades of sensory nerve denervation studies have demonstrated the particular importance of adipose sensory nerves for brown adipose tissue and WAT functions, but far less is known about the tissue's sensory innervation compared to the better-studied sympathetic nerves and their neurotransmitter norepinephrine. In this review, we cover what is known and not yet known about sensory nerve activities in adipose, focusing on their effector neuropeptide actions in the tissue.
Collapse
Affiliation(s)
- Gargi Mishra
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Mishra G, Townsend KL. The metabolic and functional roles of sensory nerves in adipose tissues. Nat Metab 2023; 5:1461-1474. [PMID: 37709960 DOI: 10.1038/s42255-023-00868-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/18/2023] [Indexed: 09/16/2023]
Abstract
Homeostatic regulation of adipose tissue is critical for the maintenance of energy balance and whole-body metabolism. The peripheral nervous system provides bidirectional neural communication between the brain and adipose tissue, thereby providing homeostatic control. Most research on adipose innervation and nerve functions has been limited to the sympathetic nerves and their neurotransmitter norepinephrine. In recent years, more work has focused on adipose sensory nerves, but the contributions of subsets of sensory nerves to metabolism and the specific roles contributed by sensory neuropeptides are still understudied. Advances in imaging of adipose innervation and newer tissue denervation techniques have confirmed that sensory nerves contribute to the regulation of adipose functions, including lipolysis and browning. Here, we summarize the historical and latest findings on the regulation, function and plasticity of adipose tissue sensory nerves that contribute to metabolically important processes such as lipolysis, vascular control and sympathetic axis cross-talk.
Collapse
Affiliation(s)
- Gargi Mishra
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Pandher PK, Rahim Y, Timms KP, Filatov E, Short LI, Gray SL. Reference gene recommendations and PACAP receptor expression in murine sympathetic ganglia of the autonomic nervous system that innervate adipose tissues after chronic cold exposure. J Neuroendocrinol 2023; 35:e13313. [PMID: 37404042 DOI: 10.1111/jne.13313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 07/06/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is an important regulator of the stress response in mammals, influencing both the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS). PACAP has been reported to influence energy homeostasis, including adaptive thermogenesis, an energy burning process in adipose tissue regulated by the SNS in response to cold stress and overfeeding. While research suggests PACAP acts centrally at the level of the hypothalamus, knowledge of PACAP's role within the sympathetic nerves innervating adipose tissues in response to metabolic stressors is limited. This work shows, for the first time, gene expression of PACAP receptors in stellate ganglia and highlights some differential expression with housing temperature. Additionally, we present our dissection protocol, analysis of tyrosine hydroxylase gene expression as a molecular biomarker for catecholamine producing tissue and recommend three stable reference genes for the normalization of quantitative real time-polymerase chain reaction (qRT-PCR) data when working with this tissue. This study adds to information about neuropeptide receptor expression in peripheral ganglia of the sympathetic nervous system innervating adipose tissue and provides insight into PACAP's role in the regulation of energy metabolism.
Collapse
Affiliation(s)
- Parleen K Pandher
- Northern Medical Program, Division of Medical Sciences, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Yamna Rahim
- Northern Medical Program, Division of Medical Sciences, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Katherine P Timms
- Northern Medical Program, Division of Medical Sciences, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Ekaterina Filatov
- Northern Medical Program, Division of Medical Sciences, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Landon I Short
- Northern Medical Program, Division of Medical Sciences, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Sarah L Gray
- Northern Medical Program, Division of Medical Sciences, University of Northern British Columbia, Prince George, British Columbia, Canada
| |
Collapse
|
5
|
Rustamzadeh A, Afshari D, Alizadeh-Otaghvar HR, Ahadi R, Raoofi A, Shabani R, Ariaei A, Moradi F. Horner syndrome: A new hypothesis for signaling pathway of enophthalmos sign. CURRENT JOURNAL OF NEUROLOGY 2023; 22:197-200. [PMID: 38011358 PMCID: PMC10626143 DOI: 10.18502/cjn.v22i3.13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/03/2023] [Indexed: 11/29/2023]
Abstract
The Article Abstract is not available.
Collapse
Affiliation(s)
- Auob Rustamzadeh
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Daryoush Afshari
- Department of Neurology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Reza Ahadi
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Raoofi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ronak Shabani
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Armin Ariaei
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradi
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Lu T, Li L, Li Y, Li X. RNA-sequencing Reveals Differentially Expressed Genes of Laying Hens Fed Baihu Decoction Under Heat Shock. J Poult Sci 2023; 60:2023012. [PMID: 37214233 PMCID: PMC10189359 DOI: 10.2141/jpsa.2023012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Egg production, an important economic trait in the poultry industry, is sensitive to heat stress. The hypothalamus is a crucial center for thermoregulation by detecting temperature changes and regulating the autonomic nervous system in poultry. Baihu decoction (BH), which contains four ingredients (Rhizoma Anemarrhenae, Gypsum Fibrosum, Radix Glycyrrhizae, and Semen Oryzae Nonglutinosae), is a traditional Chinese medicinal formula for clearing heat. Our study aimed to investigate the changes in gene transcription levels in the hypothalamus of laying hens treated with heat stress with and without BH using RNA sequencing. A total of 223 differentially expressed genes (DEGs) were identified in the heat-treated group compared with the control group and 613 DEGs were identified in the BH group compared with the heat-treated group. Heat shock led to significant changes in the expression of multiple genes involved in the "neuroactive ligand-receptor interaction" pathway. Moreover, feeding BH led to significant upregulation in the expression of eight genes encoding heat shock proteins (HSPs), which were highlighted as candidates to control the "protein processing in the endoplasmic reticulum (ER)" pathway. These results provide the novel insight that BH responds to heat stress by participating in regulation of the ER signaling pathway and HSPs expression.
Collapse
Affiliation(s)
- Tingting Lu
- Institute of Veterinary Medicine, Henan University of Animal Husbandry and
Economy, Zhengzhou, Henan Province 450002, China
| | - Lihong Li
- Institute of Veterinary Medicine, Henan University of Animal Husbandry and
Economy, Zhengzhou, Henan Province 450002, China
| | - Yuwei Li
- Institute of Veterinary Medicine, Henan University of Animal Husbandry and
Economy, Zhengzhou, Henan Province 450002, China
| | - Xianghui Li
- Institute of Veterinary Medicine, Henan University of Animal Husbandry and
Economy, Zhengzhou, Henan Province 450002, China
| |
Collapse
|
7
|
Scazzocchio B, Filardi T, Varì R, Brunelli R, Galoppi P, Morano S, Masella R, Santangelo C. Protocatechuic acid influences immune-metabolic changes in the adipose tissue of pregnant women with gestational diabetes mellitus. Food Funct 2021; 12:7490-7500. [PMID: 34213517 DOI: 10.1039/d1fo00267h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gestational diabetes mellitus (GDM) is associated with immune metabolic changes that increase women's risk of developing metabolic disorders later in life. Nutritional intervention is a crucial component in reducing the burden of these pathological features. We examined whether protocatechuic acid (PCA), a major metabolite of anthocyanins abundant in plant food, is able to exert insulin-mimetic activity and modulate inflammation in the visceral adipose tissue (VAT) obtained at delivery, from pregnant women with GDM or normal glucose tolerance (NGT). PCA stimulated glucose uptake in the VAT from both GDM and NGT women. This capability was associated with increased phosphorylation of p38 mitogen-activated protein kinase (p38MAPK), as further demonstrated by the inhibitory effect of SB203580, a p38MAPK inhibitor, on PCA-induced glucose uptake. The GDM-VAT expressed lower adiponectin levels and PCA stimulated adiponectin release in the NGT-VAT and, albeit to a lower extent, in the GDM-VAT. Higher levels of IL6 and TNFα were secreted by the GDM-VAT compared with the NGT one, and PCA had no effects on them. PCA reduced the overexpression of vasoactive intestinal peptide receptor 2 (VPAC2) in the GDM-VAT. Further studies are needed to establish whether and how anthocyanins and food rich in these compounds may contribute to prevent or delay metabolic disorders in women with GDM.
Collapse
Affiliation(s)
- Beatrice Scazzocchio
- Center for Gender-Specific Medicine, Gender Specific Prevention and Health Unit, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Filatov E, Short LI, Forster MAM, Harris SS, Schien EN, Hughes MC, Cline DL, Appleby CJ, Gray SL. Contribution of thermogenic mechanisms by male and female mice lacking pituitary adenylate cyclase-activating polypeptide in response to cold acclimation. Am J Physiol Endocrinol Metab 2021; 320:E475-E487. [PMID: 33356993 DOI: 10.1152/ajpendo.00205.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide critical to the regulation of the stress response, including having a role in energy homeostasis. Mice lacking PACAP are cold-sensitive and have impaired adrenergic-induced thermogenesis. Interestingly, Pacap null mice can survive cold housing if acclimated slowly, similar to observations in uncoupling protein 1 (UCP1)-deficient mice. We hypothesized that Pacap null mice use alternate thermogenic pathways to compensate for impaired adaptive thermogenesis when acclimated to cold. Observations of behavior and assessment of fiber type in skeletal muscles did not show evidence of prolonged burst shivering or changes in oxidative metabolism in male or female Pacap-/- mice during cold acclimation compared with Pacap+/+ mice. Despite previous work that has established impaired capacity for adaptive thermogenesis in Pacap null mice, adaptive thermogenesis can be induced in mice lacking PACAP to support survival with cold housing. Interestingly, sex-specific morphological and molecular differences in adipose tissue remodeling were observed in Pacap null mice compared with controls. Thus, sexual dimorphisms are highlighted in adipose tissue remodeling and thermogenesis with cold acclimation in the absence of PACAP.NEW & NOTEWORTHY This manuscript adds to the literature of endocrine regulation of adaptive thermogenesis and energy balance. It specifically describes the role of pituitary adenylate cyclase-activating polypeptide on the regulation of brown adipose tissue via the sympathetic nervous system with a focus on compensatory mechanisms of thermogenesis. We highlight sex-specific differences in energy metabolism.
Collapse
Affiliation(s)
- Ekaterina Filatov
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Landon I Short
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Maeghan A M Forster
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Simon S Harris
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Erik N Schien
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Malcolm C Hughes
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Daemon L Cline
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Colin J Appleby
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Sarah L Gray
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| |
Collapse
|
9
|
Toth D, Veszpremi B, Koppan M, Tamas A, Szogyi D, Brubel R, Nemeth J, Shams M, Reglodi D. Investigation of pituitary adenylate cyclase activating polypeptide (PACAP) in human amniotic fluid samples. Reprod Biol 2020; 20:491-495. [PMID: 32859528 DOI: 10.1016/j.repbio.2020.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 01/14/2023]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide acting as a hormone, a neuromodulator, a neurotransmitter, a trophic factor and is involved in a variety of developmental and regenerative processes. PACAP is present in several human tissues and biological fluids. In many pathological conditions, changes in PACAP levels have been described to reflect disease progression, therefore PACAP has diagnostic value as a potential biomarker. Since PACAP has been shown to play an important role in reproductive physiology and development, it was of interest to examine whether this neuropeptide occurs in the human amniotic fluid. Amniotic fluid samples were collected between the 15-19th weeks of gestation from volunteering pregnant women undergoing amniocentesis as a prenatal diagnostic tool due to maternal age. Pathological cases were excluded after prenatal karyotype analysis. PACAP-like immunoreactivity was measured by radioimmunoassay and could be detected in all samples. The present study provides evidence for the presence of PACAP in human amniotic fluid, but determination of the exact physiological or pathological significance awaits further investigation.
Collapse
Affiliation(s)
- Denes Toth
- Department of Forensic Medicine, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary.
| | - Bela Veszpremi
- Department of Obstetrics and Gynaecology, University of Pécs Medical School, Édesanyák útja 17, H-7624 Pécs, Hungary
| | - Miklos Koppan
- Department of Obstetrics and Gynaecology, University of Pécs Medical School, Édesanyák útja 17, H-7624 Pécs, Hungary
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary
| | - Donat Szogyi
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary
| | - Reka Brubel
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary
| | - Jozsef Nemeth
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Mahsa Shams
- Department of Forensic Medicine, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary
| |
Collapse
|
10
|
Circulating PACAP peptide and PAC1R genotype as possible transdiagnostic biomarkers for anxiety disorders in women: a preliminary study. Neuropsychopharmacology 2020; 45:1125-1133. [PMID: 31910434 PMCID: PMC7235237 DOI: 10.1038/s41386-020-0604-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/30/2019] [Accepted: 12/30/2019] [Indexed: 01/04/2023]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP, gene Adcyap1) is a neuropeptide and hormone thought to play a critical role in stress response (Stroth et al., Ann NY Acad Sci 1220:49-59, 2011; Hashimoto et al., Curr Pharm Des 17:985-989, 2011). Research in humans implicates PACAP as a useful biomarker for the severity of psychiatric symptoms in response to psychological stressors, and work in rodent models suggests that PACAP manipulation exerts downstream effects on peripheral hormones and behaviors linked to the stress response, providing a potential therapeutic target. Prior work has also suggested a potential sex difference in PACAP effects due to differential estrogen regulation of this pathway. Therefore, we examined serum PACAP and associated PAC1R genotype in a cohort of males and females with a primary diagnosis of generalized anxiety disorder (GAD) and nonpsychiatric controls. We found that, while circulating hormone levels were not associated with a GAD diagnosis overall (p = 0.19, g = 0.25), PACAP may be associated with GAD in females (p = 0.04, g = 0.33). Additionally, among patients with GAD, the risk genotype identified in the PTSD literature (rs2267735, CC genotype) was associated with higher somatic anxiety symptom severity in females but lower somatic anxiety symptom severity in males (-3.27, 95%CI [-5.76, -0.77], adjusted p = 0.03). Taken together, the associations between the risk genotype, circulating PACAP, and somatic anxiety severity were stronger among females than males. These results indicate a potential underlying biological etiology for sex differences in stress-related anxiety disorders that warrants further study.
Collapse
|
11
|
Kovacs AK, Atlasz T, Werling D, Szabo E, Reglodi D, Toth GK. Stability Test of PACAP in Eye Drops. J Mol Neurosci 2020; 71:1567-1574. [PMID: 32323126 PMCID: PMC8349324 DOI: 10.1007/s12031-020-01532-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022]
Abstract
PACAP is a neuropeptide with widespread distribution and diverse biological functions. It has strong cytoprotective effects mediated mainly through specific PAC1 receptors. Experimental data show protective effects of PACAP in the retina and cornea in several pathological conditions. Although intravitreal injections are a common practice in some ocular diseases, delivery of therapeutic agents in the form of eye drops would be more convenient and would lead to fewer side effects. We have previously shown that PACAP, in the form of eye drops, is able to pass through the ocular barriers and can exert retinoprotective effects. As eye drops represent a promising form of administration of PACAP in ocular diseases, it is important to investigate the stability of PACAP in solutions used in eye drops. In this study, the stability of PACAP1-27 and PACAP1-38 in eye drops was measured in four common media and a commercially available artificial tear solution at both room temperature and +4 °C. Mass spectrometry results show that the highest stability was gained with PACAP1-38 in water and 0.9% saline solution at +4 °C, representing 80–90% drug persistence after 2 weeks. PACAP1-38 in the artificial tear showed very fast degradation at room temperature, but was stable at +4 °C. In summary, PACAP1-38 has higher stability than PACAP1-27, with highest stability at +4 °C in water solution, but both peptides in each medium can be stored for relatively longer periods without significant degradation. These data can provide reference for future therapeutic use of PACAP in eye drops.
Collapse
Affiliation(s)
- Anita K Kovacs
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dom Sq 8, Szeged, H-6720, Hungary
| | - Tamas Atlasz
- Department of Anatomy, MTA-PTE PACAP Research Group, Medical School, University of Pecs, Szigeti str 12, Pecs, H-7624, Hungary. .,Department of Sportbiology, University of Pecs, Ifjusag str 6, Pecs, H-7624, Hungary.
| | - Dora Werling
- Department of Anatomy, MTA-PTE PACAP Research Group, Medical School, University of Pecs, Szigeti str 12, Pecs, H-7624, Hungary.,Department of Ophthalmology, Medical School, University of Pecs, Rakoczi str 2, Pecs, H-7623, Hungary
| | - Edina Szabo
- Department of Anatomy, MTA-PTE PACAP Research Group, Medical School, University of Pecs, Szigeti str 12, Pecs, H-7624, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Group, Medical School, University of Pecs, Szigeti str 12, Pecs, H-7624, Hungary
| | - Gabor K Toth
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dom Sq 8, Szeged, H-6720, Hungary
| |
Collapse
|
12
|
Ceddia RP, Collins S. A compendium of G-protein-coupled receptors and cyclic nucleotide regulation of adipose tissue metabolism and energy expenditure. Clin Sci (Lond) 2020; 134:473-512. [PMID: 32149342 PMCID: PMC9137350 DOI: 10.1042/cs20190579] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand-receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein-coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.
Collapse
Affiliation(s)
- Ryan P Ceddia
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| |
Collapse
|
13
|
Toth D, Szabo E, Tamas A, Juhasz T, Horvath G, Fabian E, Opper B, Szabo D, Maugeri G, D'Amico AG, D'Agata V, Vicena V, Reglodi D. Protective Effects of PACAP in Peripheral Organs. Front Endocrinol (Lausanne) 2020; 11:377. [PMID: 32765418 PMCID: PMC7381171 DOI: 10.3389/fendo.2020.00377] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide widely distributed in the nervous system, where it exerts strong neuroprotective effects. PACAP is also expressed in peripheral organs but its peripheral protective effects have not been summarized so far. Therefore, the aim of the present paper is to review the existing literature regarding the cytoprotective effects of PACAP in non-neuronal cell types, peripheral tissues, and organs. Among others, PACAP has widespread expression in the digestive system, where it shows protective effects in various intestinal pathologies, such as duodenal ulcer, small bowel ischemia, and intestinal inflammation. PACAP is present in both the exocrine and endocrine pancreas as well as liver where it reduces inflammation and steatosis by interfering with hepatic pathology related to obesity. It is found in several exocrine glands and also in urinary organs, where, with its protective effects being mainly published regarding renal pathologies, PACAP is protective in numerous conditions. PACAP displays anti-inflammatory effects in upper and lower airways of the respiratory system. In the skin, it is involved in the development of inflammatory pathology such as psoriasis and also has anti-allergic effects in a model of contact dermatitis. In the non-neuronal part of the visual system, PACAP showed protective effects in pathological conditions of the cornea and retinal pigment epithelial cells. The positive role of PACAP has been demonstrated on the formation and healing processes of cartilage and bone where it also prevents osteoarthritis and rheumatoid arthritis development. The protective role of PACAP was also demonstrated in the cardiovascular system in different pathological processes including hyperglycaemia-induced endothelial dysfunction and age-related vascular changes. In the heart, PACAP protects against ischemia, oxidative stress, and cardiomyopathies. PACAP is also involved in the protection against the development of pre-senile systemic amyloidosis, which is presented in various peripheral organs in PACAP-deficient mice. The studies summarized here provide strong evidence for the cytoprotective effects of the peptide. The survival-promoting effects of PACAP depend on a number of factors which are also shortly discussed in the present review.
Collapse
Affiliation(s)
- Denes Toth
- Department of Forensic Medicine, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Edina Szabo
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Tamas Juhasz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Gabriella Horvath
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Eszter Fabian
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Balazs Opper
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Dora Szabo
- Heart Institute, Medical School, University of Pécs, Pécs, Hungary
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Agata G. D'Amico
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Viktoria Vicena
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
- *Correspondence: Dora Reglodi
| |
Collapse
|