1
|
Van Doorn CE, Zelows MM, Jaramillo AA. Pituitary adenylate cyclase-activating polypeptide plays a role in neuropsychiatric and substance use disorders: sex-specific perspective. Front Neurosci 2025; 19:1545810. [PMID: 39975969 PMCID: PMC11835941 DOI: 10.3389/fnins.2025.1545810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025] Open
Abstract
The neuropeptide pituitary adenylate cyclase-activating peptide (PACAP) plays a pivotal role in regulating stress, fear, and anxiety responses. Genetic and molecular studies investigating PACAP demonstrate sex-dimorphic characteristics, with females exhibiting increased reactivity of PACAP signaling in neuropsychiatric disorders. Studies expand the role of PACAP to substance use disorders (SUD) by demonstrating modulation of PACAP can lead to neurobiological changes induced by nicotine, ethanol, stimulants and opioids. Given that females with SUD exhibit distinct drug use, relapse, and withdrawal sensitivity relative to males, we hypothesize that the PACAP system contributes to these sex-specific differences. Therefore, we review the role of PACAP in SUD by characterizing the role of PACAP at the molecular, brain regional, and behavioral levels relevant to the addiction cycle. We present literature linking PACAP to neuropsychiatric disorders, which demonstrate the intricate role of PACAP within neuronal signaling and pathways modulating addiction. We hypothesize that females are more particularly susceptible to PACAP-related changes during the intoxication and withdrawal phases of the addiction cycle. Altogether understanding the sex-specific differences in the PACAP system offers a foundation for future studies aimed at developing tailored interventions for addressing SUD.
Collapse
Affiliation(s)
| | | | - Anel A. Jaramillo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
2
|
Rajbhandari AK, Barson JR, Gilmartin MR, Hammack SE, Chen BK. The functional heterogeneity of PACAP: Stress, learning, and pathology. Neurobiol Learn Mem 2023; 203:107792. [PMID: 37369343 PMCID: PMC10527199 DOI: 10.1016/j.nlm.2023.107792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a highly conserved and widely expressed neuropeptide that has emerged as a key regulator of multiple neural and behavioral processes. PACAP systems, including the various PACAP receptor subtypes, have been implicated in neural circuits of learning and memory, stress, emotion, feeding, and pain. Dysregulation within these PACAP systems may play key roles in the etiology of pathological states associated with these circuits, and PACAP function has been implicated in stress-related psychopathology, feeding and metabolic disorders, and migraine. Accordingly, central PACAP systems may represent important therapeutic targets; however, substantial heterogeneity in PACAP systems related to the distribution of multiple PACAP isoforms across multiple brain regions, as well as multiple receptor subtypes with several isoforms, signaling pathways, and brain distributions, provides both challenges and opportunities for the development of new clinically-relevant strategies to target the PACAP system in health and disease. Here we review the heterogeneity of central PACAP systems, as well as the data implicating PACAP systems in clinically-relevant behavioral processes, with a particular focus on the considerable evidence implicating a role of PACAP in stress responding and learning and memory. We also review data suggesting that there are sex differences in PACAP function and its interactions with sex hormones. Finally, we discuss both the challenges and promise of harnessing the PACAP system in the development of new therapeutic avenues and highlight PACAP systems for their critical role in health and disease.
Collapse
Affiliation(s)
| | - Jessica R Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Marieke R Gilmartin
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, United States
| | - Sayamwong E Hammack
- Department of Psychological Science, University of Vermont, 2 Colchester Avenue, Burlington, VT, United States
| | - Briana K Chen
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH) / New York State Psychiatric Institute (NYSPI), New York, NY, United States; Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, NY, United States.
| |
Collapse
|
3
|
Clancy KJ, Devignes Q, Kumar P, May V, Hammack SE, Akman E, Casteen EJ, Pernia CD, Jobson SA, Lewis MW, Daskalakis NP, Carlezon WA, Ressler KJ, Rauch SL, Rosso IM. Circulating PACAP levels are associated with increased amygdala-default mode network resting-state connectivity in posttraumatic stress disorder. Neuropsychopharmacology 2023; 48:1245-1254. [PMID: 37161077 PMCID: PMC10267202 DOI: 10.1038/s41386-023-01593-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
The pituitary adenylate cyclase-activating polypeptide (PACAP) system is implicated in posttraumatic stress disorder (PTSD) and related amygdala-mediated arousal and threat reactivity. PTSD is characterized by increased amygdala reactivity to threat and, more recently, aberrant intrinsic connectivity of the amygdala with large-scale resting state networks, specifically the default mode network (DMN). While the influence of PACAP on amygdala reactivity has been described, its association with intrinsic amygdala connectivity remains unknown. To fill this gap, we examined functional connectivity of resting-state functional magnetic resonance imaging (fMRI) in eighty-nine trauma-exposed adults (69 female) screened for PTSD symptoms to examine the association between blood-borne (circulating) PACAP levels and amygdala-DMN connectivity. Higher circulating PACAP levels were associated with increased amygdala connectivity with posterior DMN regions, including the posterior cingulate cortex/precuneus (PCC/Precun) and left angular gyrus (lANG). Consistent with prior work, this effect was seen in female, but not male, participants and the centromedial, but not basolateral, subregions of the amygdala. Clinical association analyses linked amygdala-PCC/Precun connectivity to anxious arousal symptoms, specifically exaggerated startle response. Taken together, our findings converge with previously demonstrated effects of PACAP on amygdala activity in PTSD-related processes and offer novel evidence for an association between PACAP and intrinsic amygdala connectivity patterns in PTSD. Moreover, these data provide preliminary evidence to motivate future work ascertaining the sex- and subregion-specificity of these effects. Such findings may enable novel mechanistic insights into neural circuit dysfunction in PTSD and how the PACAP system confers risk through a disruption of intrinsic resting-state network dynamics.
Collapse
Affiliation(s)
- Kevin J Clancy
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Quentin Devignes
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Poornima Kumar
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Victor May
- Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Eylül Akman
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Emily J Casteen
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Cameron D Pernia
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sydney A Jobson
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Michael W Lewis
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Nikolaos P Daskalakis
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - William A Carlezon
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kerry J Ressler
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Scott L Rauch
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Isabelle M Rosso
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Curtis GR, Gargiulo AT, Carpenter BA, Pirino BE, Hawks A, Coleman SA, Syed NA, Gupta A, Barson JR. Sex-related differences in endogenous pituitary adenylate cyclase-activating polypeptide (PACAP) in the thalamic paraventricular nucleus: Implications for addiction neuroscience. ADDICTION NEUROSCIENCE 2023; 5:100058. [PMID: 36798694 PMCID: PMC9928148 DOI: 10.1016/j.addicn.2022.100058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Males and females exhibit differences in motivated and affective behavior; however, the neural substrates underlying these differences remain poorly understood. In the paraventricular nucleus of the thalamus (PVT), sex-related differences in neuronal activity have been identified in response to motivated behavior tasks and affective challenges. Within the PVT, the neuropeptide, pituitary adenylate cyclase-activating polypeptide (PACAP), is highly expressed and is also involved in motivated and affective behavior. The purpose of this study was to compare the expression of PACAP mRNA and peptide in the PVT of males and females. Analysis with quantitative real-time PCR in mice revealed that females had significantly higher levels of PACAP mRNA than males in the whole PVT, but no differences in the neuropeptides enkephalin or corticotropin releasing factor (CRF) in this brain region. While in rats, females demonstrated a trend for greater gene expression than males in the anterior/middle and middle/posterior PVT, they again showed no differences in enkephalin or CRF. Analysis with immunofluorescent histochemistry revealed that female mice had significantly more PACAP-containing cells than males as a function of area throughout the PVT, and that female rats had significantly more PACAP-27 and PACAP-38-containing cells than males, both as a percentage of total cells and as a function of PVT area. For PACAP-27, this specifically occurred in the anterior PVT, and for PACAP-38, it occurred throughout the anterior, middle, and posterior PVT. These results suggest that sex-related differences in PVT PACAP may underly some of the established sex-related differences in motivated and affective behavior.
Collapse
Affiliation(s)
- Genevieve R. Curtis
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, U.S.A
| | - Andrew T. Gargiulo
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, U.S.A
| | - Brody A. Carpenter
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, U.S.A
| | - Breanne E. Pirino
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, U.S.A
| | - Annie Hawks
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, U.S.A
| | - Sierra A. Coleman
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, U.S.A
| | - Nawal A. Syed
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, U.S.A
| | - Anuranita Gupta
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, U.S.A
| | - Jessica R. Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, U.S.A
| |
Collapse
|
5
|
Li Y, Zeng X, Zhou H. Relationship between anxiety and drug abstention motivation in men with substance use disorders: a cross-sectional study of compulsory isolation rehabilitation in China. J Ethn Subst Abuse 2023; 22:189-212. [PMID: 34543152 DOI: 10.1080/15332640.2021.1923103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Studies have found that anxiety is among the common negative emotions in individuals with substance use disorders. Anxiety affects drug abstention motivation, but the mechanism underlying this effect is still unclear. The current study aimed to examine the relationship among anxiety, regulatory emotional self-efficacy, psychological resilience and drug abstention motivation in an attempt to explore the mechanism underlying drug abstention motivation. The participants were 732 men with substance use disorders who were sent to compulsory rehabilitation in China. All participants completed measures of anxiety, regulatory emotional self-efficacy, psychological resilience and drug abstention motivation through questionnaires. The results indicated that anxiety negatively predicts drug abstention motivation. Regulatory emotional self-efficacy mediates the relationship between anxiety and drug abstention motivation. In addition, psychological resilience moderates the mediation between anxiety and regulatory emotional self-efficacy. The current results are not only helpful for understanding the relationship between anxiety and drug abstention motivation from the perspective of emotion but also of great significance for guiding individuals with substance use disorders in enhancing their drug abstention motivation by reducing negative emotion.
Collapse
Affiliation(s)
- Yeqing Li
- Jiangxi Normal University, Nanchang, China
| | - Xiaoqing Zeng
- Jiangxi Normal University, Nanchang, China.,Jiangxi Key Laboratory of Psychology and Cognition, Nanchang, China
| | | |
Collapse
|
6
|
Martins-Oliveira M, Akerman S, Holland PR, Tavares I, Goadsby PJ. Pharmacological modulation of ventral tegmental area neurons elicits changes in trigeminovascular sensory processing and is accompanied by glycemic changes: Implications for migraine. Cephalalgia 2022; 42:1359-1374. [PMID: 36259130 DOI: 10.1177/03331024221110111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Imaging migraine premonitory studies show increased midbrain activation consistent with the ventral tegmental area, an area involved in pain modulation and hedonic feeding. We investigated ventral tegmental area pharmacological modulation effects on trigeminovascular processing and consequent glycemic levels, which could be involved in appetite changes in susceptible migraine patients. METHODS Serotonin and pituitary adenylate cyclase-activating polypeptide receptors immunohistochemistry was performed in ventral tegmental area parabrachial pigmented nucleus of male Sprague Dawley rats. In vivo trigeminocervical complex neuronal responses to dura mater nociceptive electrical stimulation, and facial mechanical stimulation of the ophthalmic dermatome were recorded. Changes in trigeminocervical complex responses following ventral tegmental area parabrachial pigmented nucleus microinjection of glutamate, bicuculline, naratriptan, pituitary adenylate cyclase-activating polypeptide-38 and quinpirole were measured, and blood glucose levels assessed pre- and post-microinjection. RESULTS Glutamatergic stimulation of ventral tegmental area parabrachial pigmented nucleus neurons reduced nociceptive and spontaneous trigeminocervical complex neuronal firing. Naratriptan, pituitary adenylate cyclase-activating polypeptide-38 and quinpirole inhibited trigeminovascular spontaneous activity, and trigeminocervical complex neuronal responses to dural-evoked electrical and mechanical noxious stimulation. Trigeminovascular sensory processing through modulation of the ventral tegmental area parabrachial pigmented nucleus resulted in reduced circulating glucose levels. CONCLUSION Pharmacological modulation of ventral tegmental area parabrachial pigmented nucleus neurons elicits changes in trigeminovascular sensory processing. The interplay between ventral tegmental area parabrachial pigmented nucleus activity and the sensory processing by the trigeminovascular system may be relevant to understand associated sensory and homeostatic symptoms in susceptible migraine patients.
Collapse
Affiliation(s)
- Margarida Martins-Oliveira
- Headache Group, Wolfson Centre for Age-Related Disease, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.,Department of Nutrition and Metabolism, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa; Lisboa, Portugal.,Department of Biomedicine, Faculty of Medicine of University of Porto, Porto, Portugal.,Institute of Investigation and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Simon Akerman
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Philip R Holland
- Headache Group, Wolfson Centre for Age-Related Disease, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Isaura Tavares
- Department of Biomedicine, Faculty of Medicine of University of Porto, Porto, Portugal.,Institute of Investigation and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Peter J Goadsby
- Headache Group, Wolfson Centre for Age-Related Disease, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.,Department of Neurology, University of California, Los Angeles, Los Angeles CA USA
| |
Collapse
|
7
|
The Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) System of the Central Amygdala Mediates the Detrimental Effects of Chronic Social Defeat Stress in Rats. eNeuro 2022; 9:ENEURO.0260-22.2022. [PMID: 36566434 PMCID: PMC9506682 DOI: 10.1523/eneuro.0260-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/28/2022] [Accepted: 08/12/2022] [Indexed: 01/21/2023] Open
Abstract
Many psychiatric diseases stem from an inability to cope with stressful events, as chronic stressors can precipitate or exacerbate psychopathologies. The neurobiological mechanisms underlying the response to chronic stress and the resulting anxiety states remain poorly understood. Stress neuropeptides in the extended amygdala circuitry mediate the behavioral response to stress, and hyperactivity of these systems has been hypothesized to be responsible for the emergence of persistent negative outcomes and for the pathogenesis of anxiety-related and trauma-related disorders. Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor PAC1R are highly expressed within the central amygdala (CeA) and play a key role in stress regulation. Here, we used chronic social defeat stress (CSDS), a clinically relevant model of psychosocial stress that produces robust maladaptive behaviors in rodents. We found that 10 days of CSDS cause a significant increase in PACAP levels selectively in the CeA of rats, as well as an increase in PAC1R mRNA. Using a viral vector strategy, we found that PAC1R knock-down in the CeA attenuates the CSDS-induced body weight loss and prevents the CSDS-induced increase in anxiety-like behavior. Notably, CSDS animals display reduced basal corticosterone (CORT) levels and PAC1R knock-down in CeA further reduce them. Finally, the CeA PAC1R knock-down blocks the increase in corticotropin-releasing factor (CRF) immunoreactivity induced by CSDS in CeA. Our findings support the notion that the persistent activation of the PACAP-PAC1R system in the CeA mediates the behavioral outcomes of chronic psychosocial stress independently of the hypothalamic-pituitary-adrenal axis, perhaps via the recruitment of the CRF system.
Collapse
|
8
|
Pituitary adenylate cyclase-activating polypeptide type 1 receptor within the nucleus accumbens core mediates excessive alcohol drinking in alcohol-preferring rats. Neuropharmacology 2022; 212:109063. [PMID: 35460713 DOI: 10.1016/j.neuropharm.2022.109063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/19/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
Alcohol use disorders (AUD) have a strong component of heritability; however, the neurobiological mechanisms mediating the propensity to consume excessive amounts of alcohol are still not well understood. Pituitary adenylate cyclase-activating polypeptide (PACAP), a highly conserved neuropeptide which exerts its effects mainly through the PAC1 receptor (PAC1R), has been suggested to be one of the mediators of the effects of drugs of abuse and alcohol. Here, we investigated the role of the PACAP/PAC1R system in excessive alcohol drinking in alcohol-preferring rats, an established animal model of AUD. Intracerebroventricular (i.c.v.) administration of the PAC1R antagonist PACAP(6-38) blocked excessive alcohol drinking and motivation to drink in Sardinian alcohol-preferring (Scr:sP) rats, without affecting water, saccharin, or sucrose intake. Notably, PACAP(6-38) did not affect ethanol responding in outbred Wistar rats. PACAP(6-38) also significantly reduced alcohol-seeking behavior under a second-order schedule of reinforcement. Using immunohistochemistry, a significant increase in the number of PAC1R positive cells was observed selectively in the nucleus accumbens (NAcc) Core of Scr:sP rats, compared to Wistar rats following alcohol drinking. Finally, excessive drinking in Scr:sP rats was suppressed by intra-NAcc Core, but not intra-NAcc Shell, PACAP(6-38), as well as by virally-mediated PAC1R knockdown in the NAcc Core. The present study shows that hyperactivity of the PACAP/PAC1R system specifically in the NAcc Core mediates excessive drinking of alcohol-preferring rats, and indicates that this system may represent a novel target for the treatment of AUD.
Collapse
|
9
|
Snyder AE, Silberman Y. Corticotropin releasing factor and norepinephrine related circuitry changes in the bed nucleus of the stria terminalis in stress and alcohol and substance use disorders. Neuropharmacology 2021; 201:108814. [PMID: 34624301 PMCID: PMC8578398 DOI: 10.1016/j.neuropharm.2021.108814] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/12/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Alcohol Use Disorder (AUD) affects around 14.5 million individuals in the United States, with Substance Use Disorder (SUD) affecting an additional 8.3 million individuals. Relapse is a major barrier to effective long-term treatment of this illness with stress often described as a key trigger for a person with AUD or SUD to relapse during a period of abstinence. Two signaling molecules, norepinephrine (NE) and corticotropin releasing factor (CRF), are released during the stress response, and also play important roles in reward behaviors and the addiction process. Within the addiction literature, one brain region in which there has been increasing research focus in recent years is the bed nucleus of the stria terminalis (BNST). The BNST is a limbic structure with numerous cytoarchitecturally and functionally different subregions that has been implicated in drug-seeking behaviors and stress responses. This review focuses on drug and stress-related neurocircuitry changes in the BNST, particularly within the CRF and NE systems, with an emphasis on differences and similarities between the major dorsal and ventral BNST subregions.
Collapse
Affiliation(s)
- Angela E Snyder
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, USA
| | - Yuval Silberman
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, USA.
| |
Collapse
|
10
|
Jaramillo AA, Brown JA, Winder DG. Danger and distress: Parabrachial-extended amygdala circuits. Neuropharmacology 2021; 198:108757. [PMID: 34461068 DOI: 10.1016/j.neuropharm.2021.108757] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022]
Abstract
Our understanding of the role of the parabrachial nucleus (PBN) has evolved as technology has advanced, in part due to cell-specific studies and complex behavioral assays. This is reflected in the heterogeneous neuronal populations within the PBN to the extended amygdala (EA) circuits which encompass the bed nucleus of the stria terminalis (BNST) and central amygdala (CeA) circuitry, as they differentially modulate aspects of behavior in response to diverse threat-like contexts necessary for survival. Here we review how the PBN→CeA and PBN→BNST pathways differentially modulate fear-like behavior, innate and conditioned, through unique changes in neurotransmission in response to stress-inducing contexts. Furthermore, we hypothesize how in specific instances the PBN→CeA and PBN→BNST circuits are redundant and in part intertwined with their respective reciprocal projections. By deconstructing the interoceptive and exteroceptive components of affect- and stress related behavioral paradigms, evidence suggests that the PBN→CeA circuit modulates innate response to physical stimuli and fear conditioning. Conversely, the PBN→BNST circuit modulates distress-like stress in unpredictable contexts. Thereby, the PBN provides a pathway for alarming interoceptive and exteroceptive stimuli to be processed and relayed to the EA to induce stress-relevant affect. Additionally, we provide a framework for future studies to detail the cell-type specific intricacies of PBN→EA circuits in mediating behavioral responses to threats, and the relevance of the PBN in drug-use as it relates to threat and negative reinforcement. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
Affiliation(s)
- A A Jaramillo
- Vanderbilt University School of Medicine, Nashville, TN, USA; Dept. Mol. Phys. & Biophysics, USA; Vanderbilt Brain Institute, USA; Vanderbilt Center for Addiction Research, USA
| | - J A Brown
- Vanderbilt University School of Medicine, Nashville, TN, USA; Dept. Mol. Phys. & Biophysics, USA; Vanderbilt Brain Institute, USA; Vanderbilt Center for Addiction Research, USA; Department of Pharmacology, USA
| | - D G Winder
- Vanderbilt University School of Medicine, Nashville, TN, USA; Dept. Mol. Phys. & Biophysics, USA; Vanderbilt Brain Institute, USA; Vanderbilt Center for Addiction Research, USA; Department of Pharmacology, USA; Vanderbilt Kennedy Center, USA; Department of Psychiatry & Behavioral Sciences, USA.
| |
Collapse
|
11
|
Boucher MN, May V, Braas KM, Hammack SE. PACAP orchestration of stress-related responses in neural circuits. Peptides 2021; 142:170554. [PMID: 33865930 PMCID: PMC8592028 DOI: 10.1016/j.peptides.2021.170554] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a pleiotropic polypeptide that can activate G protein-coupled PAC1, VPAC1, and VPAC2 receptors, and has been implicated in stress signaling. PACAP and its receptors are widely distributed throughout the nervous system and other tissues and can have a multitude of effects. Human and animal studies suggest that PACAP plays a role responding to a variety of threats and stressors. Here we review the roles of PACAP in several regions of the central nervous system (CNS) as they relate to several behavioral functions. For example, in the bed nucleus of the stria terminalis (BNST), PACAP is upregulated following chronic stress and may drive anxiety-like behavior. PACAP can also influence both the consolidation and expression of fear memories, as demonstrated by studies in several fear-related areas, such as the amygdala, hippocampus, and prefrontal cortex. PACAP can also mediate the emotional component of pain, as PACAP in the central nucleus of the amygdala (CeA) is able to decrease pain sensitivity thresholds. Outside of the central nervous system, PACAP may drive glucocorticoid release via enhanced hypothalamic-pituitary-adrenal axis activity and may participate in infection-induced stress responses. Together, this suggests that PACAP exerts effects on many stress-related systems and may be an important driver of emotional behavior.
Collapse
Affiliation(s)
- Melissa N Boucher
- Department of Psychological Science, University of Vermont, 2 Colchester Avenue, Burlington, VT, 05405, United States
| | - Victor May
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, 149 Beaumont Avenue, Burlington, VT, 05405, United States.
| | - Karen M Braas
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, 149 Beaumont Avenue, Burlington, VT, 05405, United States
| | - Sayamwong E Hammack
- Department of Psychological Science, University of Vermont, 2 Colchester Avenue, Burlington, VT, 05405, United States
| |
Collapse
|
12
|
Martin EL, Doncheck EM, Reichel CM, McRae-Clark AL. Consideration of sex as a biological variable in the translation of pharmacotherapy for stress-associated drug seeking. Neurobiol Stress 2021; 15:100364. [PMID: 34345636 PMCID: PMC8319013 DOI: 10.1016/j.ynstr.2021.100364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 12/01/2022] Open
Abstract
Stress is a frequent precipitant of relapse to drug use. Pharmacotherapies targeting a diverse array of neural systems have been assayed for efficacy in attenuating stress-induced drug-seeking in both rodents and in humans, but none have shown enough evidence of utility to warrant routine use in the clinic. We posit that a critical barrier in effective translation is inattention to sex as a biological variable at all phases of the research process. In this review, we detail the neurobiological systems implicated in stress-induced relapse to cocaine, opioids, methamphetamine, and cannabis, as well as the pharmacotherapies that have been used to target these systems in rodent models, the human laboratory, and in clinical trials. In each of these areas we additionally describe the potential influences of biological sex on outcomes, and how inattention to fundamental sex differences can lead to biases during drug development that contribute to the limited success of large clinical trials. Based on these observations, we determine that of the pharmacotherapies discussed only α2-adrenergic receptor agonists and oxytocin have a body of research with sufficient consideration of biological sex to warrant further clinical evaluation. Pharmacotherapies that target β-adrenergic receptors, other neuroactive peptides, the hypothalamic-pituitary-adrenal axis, neuroactive steroids, and the endogenous opioid and cannabinoid systems require further assessment in females at the preclinical and human laboratory levels before progression to clinical trials can be recommended.
Collapse
Affiliation(s)
- Erin L Martin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Elizabeth M Doncheck
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Carmela M Reichel
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Aimee L McRae-Clark
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.,Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
13
|
Moody TW, Jensen RT. Pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal peptide (Part 2): biology and clinical importance in central nervous system and inflammatory disorders. Curr Opin Endocrinol Diabetes Obes 2021; 28:206-213. [PMID: 33481421 PMCID: PMC7961158 DOI: 10.1097/med.0000000000000621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW To discuss recent advances of vasoactive intestinal peptide/pituitary adenylate cyclase-activating polypeptide (VIP/PACAP) receptors in the selected central nervous system (CNS) and inflammatory disorders. RECENT FINDINGS Recent studies provide evidence that PACAP plays an important role in a number of CNS disorders, particularly the pathogenesis of headaches (migraine, etc.) as well as posttraumatic stress disorder and drug/alcohol/smoking addiction. VIP has important therapeutic effects in a number of autoimmune/inflammatory disorder such as rheumatoid arthritis. In some cases, these insights have advanced to therapeutic trials. SUMMARY Recent insights from studies of VIP/PACAP and their receptors in both CNS disorders (migraine, posttraumatic stress disorder, addiction [drugs, alcohol, smoking]) and inflammatory disorders [such as rheumatoid arthritis] are suggesting new treatment approaches. The elucidation of the importance of VIP/PACAP system in these disorders combined recent development of specific drugs acting on this system (i.e., monoclonal VIP/PACAP antibodies) will likely lead to importance novel treatment approaches in these diseases.
Collapse
Affiliation(s)
- Terry W Moody
- Department of Health and Human services, National Cancer Institute, Center for Cancer Training. Bethesda, Maryland, USA
| | - Robert T Jensen
- National Institutes of Health, National Institute of Diabetes, Digestive and Kidney Diseases, Digestive Diseases Branch, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Moody TW, Jensen RT. Pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal peptide [Part 1]: biology, pharmacology, and new insights into their cellular basis of action/signaling which are providing new therapeutic targets. Curr Opin Endocrinol Diabetes Obes 2021; 28:198-205. [PMID: 33449573 PMCID: PMC7957349 DOI: 10.1097/med.0000000000000617] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW To discuss recent advances of vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating polypeptide (PACAP) receptors in pharmacology, cell biology, and intracellular signaling in cancer. RECENT FINDINGS Recent studies provide new insights into the pharmacology, cell biology of the VIP/PACAP system and show they play important roles in a number of human cancers, as well as in tumor growth/differentiation and are providing an increased understanding of their signaling cascade that is suggesting new treatment targets/approaches. SUMMARY Recent insights from studies of VIP/PACAP and their receptors in both central nervous system disorders and inflammatory disorders suggest possible new treatment approaches. Elucidation of the exact roles of VIP/PACAP in these disorders and development of new therapeutic approaches involving these peptides have been limited by lack of specific pharmacological tools, and exact signaling mechanisms involved, mediating their effects. Reviewed here are recent insights from the elucidation of structural basis for VIP/PACAP receptor activation as well as the signaling cascades mediating their cellular effects (using results primarily from the study of their effects in cancer) that will likely lead to novel targets and treatment approaches in these diseases.
Collapse
Affiliation(s)
- Terry W Moody
- Department of Health and Human Services, National Cancer Institute, Center for Cancer Training
| | - Robert T Jensen
- National Institutes of Health, National Institute of Diabetes, Digestive and Kidney Diseases, Digestive Diseases Branch, Bethesda, Maryland 20892, USA
| |
Collapse
|
15
|
Pituitary adenylate cyclase-activating polypeptide (PACAP) modulates dependence-induced alcohol drinking and anxiety-like behavior in male rats. Neuropsychopharmacology 2021; 46:509-518. [PMID: 33191400 PMCID: PMC8027820 DOI: 10.1038/s41386-020-00904-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
Abstract
Alcohol use disorder (AUD) is a devastating illness defined by periods of heavy drinking and withdrawal, often leading to a chronic relapsing course. Initially, alcohol is consumed for its positive reinforcing effects, but later stages of AUD are characterized by drinking to alleviate withdrawal-induced negative emotional states. Brain stress response systems in the extended amygdala are recruited by excessive alcohol intake, sensitized by repeated withdrawal, and contribute to the development of addiction. In this study, we investigated one such brain stress response system, pituitary adenylate cyclase-activating polypeptide (PACAP), and its cognate receptor, PAC1R, in alcohol withdrawal-induced behaviors. During acute withdrawal, rats exposed to chronic intermittent ethanol vapor (ethanol-dependent) displayed a significant increase in PACAP levels in the bed nucleus of the stria terminalis (BNST), a brain area within the extended amygdala critically involved in both stress and withdrawal. No changes in PACAP levels were observed in the central nucleus of the amygdala. Site-specific microinfusion of the PAC1R antagonist PACAP(6-38) into the BNST dose-dependently blocked excessive alcohol intake in ethanol-dependent rats without affecting water intake overall or basal ethanol intake in control, nondependent rats. Intra-BNST PACAP(6-38) also reversed ethanol withdrawal-induced anxiety-like behavior in ethanol-dependent rats, but did not affect this measure in control rats. Our findings show that chronic intermittent exposure to ethanol recruits the PACAP/PAC1R system of the BNST and that these neuroadaptations mediate the heightened alcohol drinking and anxiety-like behavior observed during withdrawal, suggesting that this system represents a major brain stress element responsible for the negative reinforcement associated with the "dark side" of alcohol addiction.
Collapse
|
16
|
The Relationship between the Family Functioning of Individuals with Drug Addiction and Relapse Tendency: A Moderated Mediation Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020625. [PMID: 33451020 PMCID: PMC7828550 DOI: 10.3390/ijerph18020625] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/03/2021] [Accepted: 01/09/2021] [Indexed: 11/17/2022]
Abstract
To explore the relationship between family functioning, psychological capital, life history strategy, and relapse tendency of individuals with drug addiction, 842 individuals with drug addiction completed a questionnaire. The results showed that (1) there was a significant negative correlation between the family functioning of individuals with drug addiction and their relapse tendency; (2) psychological capital played an intermediary role between family functioning and relapse tendency; and (3) life history strategy regulated the mediating effect of psychological capital. The results of this study suggest that family members should collaborate with drug addiction treatment centers and participate in the education and treatment process to help reduce drug relapse tendency. Increasing the psychological capital and self-efficacy of individuals with drug addiction through group psychological counseling and psychological education courses could also reduce drug relapse tendency.
Collapse
|
17
|
Southey BR, Zhang P, Keever MR, Rymut HE, Johnson RW, Sweedler JV, Rodriguez-Zas SL. Effects of maternal immune activation in porcine transcript isoforms of neuropeptide and receptor genes. J Integr Neurosci 2021; 20:21-31. [PMID: 33834688 PMCID: PMC8103820 DOI: 10.31083/j.jin.2021.01.332] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/11/2020] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
The prolonged effects of maternal immune activation in response stressors during gestation on the offspring's molecular pathways after birth are beginning to be understood. An association between maternal immune activation and neurodevelopmental and behavior disorders such as autism and schizophrenia spectrum disorders has been detected in long-term gene dysregulation. The incidence of alternative splicing among neuropeptides and neuropeptide receptor genes, critical cell-cell signaling molecules, associated with behavior may compromise the replicability of reported maternal immune activation effects at the gene level. This study aims to advance the understanding of the effect of maternal immune activation on transcript isoforms of the neuropeptide system (including neuropeptide, receptor and connecting pathway genes) underlying behavior disorders later in life. Recognizing the wide range of bioactive peptides and functional receptors stemming from alternative splicing, we studied the effects of maternal immune activation at the transcript isoform level on the hippocampus and amygdala of three-week-old pigs exposed to maternal immune activation due to viral infection during gestation. In the hippocampus and amygdala, 29 and 9 transcript isoforms, respectively, had maternal immune activation effects (P-value < 0.01). We demonstrated that the study of the effect of maternal immune activation on neuropeptide systems at the isoform level is necessary to expose opposite effects among transcript isoforms from the same gene. Genes were maternal immune activation effects have also been associated with neurodevelopmental and behavior disorders. The characterization of maternal immune activation effects at the transcript isoform level advances the understanding of neurodevelopmental disorders and identifies precise therapeutic targets.
Collapse
Affiliation(s)
- Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA
| | - Pan Zhang
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA
| | - Marissa R Keever
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA
| | - Haley E Rymut
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA
| | - Rodney W Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA
| | - Jonathan V Sweedler
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA
| | - Sandra L Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA.,Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA.,Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA
| |
Collapse
|
18
|
Maita I, Bazer A, Blackford JU, Samuels BA. Functional anatomy of the bed nucleus of the stria terminalis-hypothalamus neural circuitry: Implications for valence surveillance, addiction, feeding, and social behaviors. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:403-418. [PMID: 34225978 DOI: 10.1016/b978-0-12-819975-6.00026-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is a medial basal forebrain structure that modulates the hypothalamo-pituitary-adrenal (HPA) axis. The heterogeneous subnuclei of the BNST integrate inputs from mood and reward-related areas and send direct inhibitory projections to the hypothalamus. The connections between the BNST and hypothalamus are conserved across species, promote activation of the HPA axis, and can increase avoidance of aversive environments, which is historically associated with anxiety behaviors. However, BNST-hypothalamus circuitry is also implicated in motivated behaviors, drug seeking, feeding, and sexual behavior. These complex and diverse roles, as well its sexual dimorphism, indicate that the BNST-hypothalamus circuitry is an essential component of the neural circuitry that may underlie various psychiatric diseases, ranging from anorexia to anxiety to addiction. The following review is a cross-species exploration of BNST-hypothalamus circuitry. First, we describe the BNST subnuclei, microcircuitry and complex reciprocal connections with the hypothalamus. We will then discuss the behavioral functions of BNST-hypothalamus circuitry, including valence surveillance, addiction, feeding, and social behavior. Finally, we will address sex differences in morphology and function of the BNST and hypothalamus.
Collapse
Affiliation(s)
- Isabella Maita
- Department of Psychology, Rutgers University, Piscataway, NJ, United States
| | - Allyson Bazer
- Department of Psychology, Rutgers University, Piscataway, NJ, United States
| | - Jennifer Urbano Blackford
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Research Health Scientist, Tennessee Valley HealthCare System, US Department of Veterans Affairs, Nashville, TN, United States
| | | |
Collapse
|
19
|
Zeng X, Chen Y. Associations of deviant peer affiliation with youths' substance use disorder abstention motivation: The mediating role of perceived social support and the moderating role of collective identity. J Ethn Subst Abuse 2020; 21:402-424. [PMID: 32543334 DOI: 10.1080/15332640.2020.1777608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The aim of the current study is to explore the mechanism by which deviant peer affiliation affects substance abusers' substance abstention motivation and the mediating role of perceived social support in the relationship between these concepts. Moreover, we also investigated whether collective identity moderates the relations among deviant peer affiliation, perceived social support, and substance rehabilitation. The participants were 430 male substance abstainers who completed a battery of questionnaires. The Chinese versions of the Deviant Peer Affiliation Questionnaire, Motivation for Abstention Scale, Perceived Social Support Scale and Identity Orientation Scale were used. The results showed that all the dimensions of deviant peer affiliation were negatively associated with the dimensions of substance abstention motivation. Moreover, perceived social support partially mediated the relations between deviant peer affiliation and substance abstention motivation. Additionally, collective identity was a significant moderator of the relations between perceived social support and substance abstention motivation. These findings provide a clearer understanding regarding the impact of deviant peer affiliation and perceived social support on substance abstention motivation in individuals with substance use disorder.
Collapse
|
20
|
Johnson GC, Parsons R, May V, Hammack SE. The Role of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Signaling in the Hippocampal Dentate Gyrus. Front Cell Neurosci 2020; 14:111. [PMID: 32425759 PMCID: PMC7203336 DOI: 10.3389/fncel.2020.00111] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/08/2020] [Indexed: 01/01/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP, ADCYAP1) dysregulation has been associated with multiple stress-related psychopathologies that may be related to altered hippocampal function. In coherence, PACAP- and PAC1 receptor (ADCYAP1R1)-null mice demonstrate changes in hippocampal-dependent behavioral responses, implicating the PACAPergic system function in this structure. Within the hippocampus, the dentate gyrus (DG) may play an important role in discerning the differences between similar contexts, and DG granule cells appear to both highly express PAC1 receptors and receive inputs from PACAP-expressing terminals. Here, we review the evidence from our laboratories and others that PACAP is an important regulator of activity within hippocampal circuits, particularly within the DG. These data are consistent with an increasing literature implicating PACAP circuits in stress-related pathologies such as post-traumatic stress disorder (PTSD) and implicate the hippocampus, and in particular the DG, as a critical site in which PACAP dysregulation can alter stress-related behaviors.
Collapse
Affiliation(s)
- Gregory C Johnson
- Department of Psychological Science, College of Arts and Sciences, University of Vermont, Burlington, VT, United States
| | - Rodney Parsons
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Victor May
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Sayamwong E Hammack
- Department of Psychological Science, College of Arts and Sciences, University of Vermont, Burlington, VT, United States
| |
Collapse
|
21
|
Beyeler A, Dabrowska J. Neuronal diversity of the amygdala and the bed nucleus of the stria terminalis. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020; 26:63-100. [PMID: 32792868 DOI: 10.1016/b978-0-12-815134-1.00003-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anna Beyeler
- Neurocentre Magendie, French National Institutes of Health (INSERM) unit 1215, Neurocampus of Bordeaux University, Bordeaux, France
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
22
|
Toth D, Szabo E, Tamas A, Juhasz T, Horvath G, Fabian E, Opper B, Szabo D, Maugeri G, D'Amico AG, D'Agata V, Vicena V, Reglodi D. Protective Effects of PACAP in Peripheral Organs. Front Endocrinol (Lausanne) 2020; 11:377. [PMID: 32765418 PMCID: PMC7381171 DOI: 10.3389/fendo.2020.00377] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide widely distributed in the nervous system, where it exerts strong neuroprotective effects. PACAP is also expressed in peripheral organs but its peripheral protective effects have not been summarized so far. Therefore, the aim of the present paper is to review the existing literature regarding the cytoprotective effects of PACAP in non-neuronal cell types, peripheral tissues, and organs. Among others, PACAP has widespread expression in the digestive system, where it shows protective effects in various intestinal pathologies, such as duodenal ulcer, small bowel ischemia, and intestinal inflammation. PACAP is present in both the exocrine and endocrine pancreas as well as liver where it reduces inflammation and steatosis by interfering with hepatic pathology related to obesity. It is found in several exocrine glands and also in urinary organs, where, with its protective effects being mainly published regarding renal pathologies, PACAP is protective in numerous conditions. PACAP displays anti-inflammatory effects in upper and lower airways of the respiratory system. In the skin, it is involved in the development of inflammatory pathology such as psoriasis and also has anti-allergic effects in a model of contact dermatitis. In the non-neuronal part of the visual system, PACAP showed protective effects in pathological conditions of the cornea and retinal pigment epithelial cells. The positive role of PACAP has been demonstrated on the formation and healing processes of cartilage and bone where it also prevents osteoarthritis and rheumatoid arthritis development. The protective role of PACAP was also demonstrated in the cardiovascular system in different pathological processes including hyperglycaemia-induced endothelial dysfunction and age-related vascular changes. In the heart, PACAP protects against ischemia, oxidative stress, and cardiomyopathies. PACAP is also involved in the protection against the development of pre-senile systemic amyloidosis, which is presented in various peripheral organs in PACAP-deficient mice. The studies summarized here provide strong evidence for the cytoprotective effects of the peptide. The survival-promoting effects of PACAP depend on a number of factors which are also shortly discussed in the present review.
Collapse
Affiliation(s)
- Denes Toth
- Department of Forensic Medicine, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Edina Szabo
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Tamas Juhasz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Gabriella Horvath
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Eszter Fabian
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Balazs Opper
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Dora Szabo
- Heart Institute, Medical School, University of Pécs, Pécs, Hungary
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Agata G. D'Amico
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Viktoria Vicena
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
- *Correspondence: Dora Reglodi
| |
Collapse
|
23
|
Goode TD, Acca GM, Maren S. Threat imminence dictates the role of the bed nucleus of the stria terminalis in contextual fear. Neurobiol Learn Mem 2020; 167:107116. [PMID: 31740383 PMCID: PMC6980749 DOI: 10.1016/j.nlm.2019.107116] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 12/24/2022]
Abstract
Recent work indicates that the bed nucleus of the stria terminalis (BNST) is critically involved in the regulation of conditioned fear responses to unpredictable threats. Here we examined whether the involvement of the BNST in contextual fear conditioning in male rats depends on the imminence of shock after placement in the conditioning chamber. Specifically, we hypothesized that the BNST supports contextual freezing after conditioning with delayed, but not imminent, footshock (relative to placement in the context). Rats were implanted with cannulae targeting the BNST and underwent a contextual fear conditioning procedure in which a single footshock unconditioned stimulus (US) was delivered either 1 min or 9 min after the rat was placed in the context; the rats received a total of four identical conditioning sessions over two days, all with equivalent exposure to the context. Contexts associated with either imminent or delayed US onsets produced distinct patterns of freezing and shock-induced activity but freezing in each case was context-dependent. Reversible inactivation of the BNST reduced the expression of contextual freezing in the context paired with delayed (9 min), but not imminent (1 min), footshock onset. Implications of these data are discussed in the light of recent conceptualizations of BNST function, as well as for anxiety behaviors.
Collapse
Affiliation(s)
- Travis D Goode
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX 77843-3474, USA
| | - Gillian M Acca
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX 77843-3474, USA
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX 77843-3474, USA.
| |
Collapse
|
24
|
Pleiotropic pituitary adenylate cyclase-activating polypeptide (PACAP): Novel insights into the role of PACAP in eating and drug intake. Brain Res 2019; 1729:146626. [PMID: 31883848 PMCID: PMC6953419 DOI: 10.1016/j.brainres.2019.146626] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 01/30/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) was discovered thirty years ago, but its role in eating and drug use disorders has only recently begun to be investigated. The present review develops the hypothesis that, although PACAP normally functions to tightly regulate intake, inhibiting it through negative feedback, this relationship can become dysregulated with the development of dependence, such that PACAP instead acts through positive feedback to promote excessive intake. We propose that repeated exposure to palatable food and drugs of abuse can alter the downstream responses of specific populations of neurons to stimulation by PACAP, leading to the perpetuation of the addiction cycle. Thus, this review will first describe published literature on homeostatic food intake, which shows that PACAP suppresses food intake, while its levels are themselves increased by overfeeding. Next, it will present literature on palatable food, cocaine, alcohol, and nicotine, which overall demonstrates that PACAP in specific limbic brain regions can promote their seeking and intake and itself is stimulated by their intake. Then, it will present literature on affective behavior, which shows that chronic stress increases levels of PACAP, which then promotes anxiety and depression, factors that can trigger substance seeking. Finally, the review will address mechanisms through which chronic substance exposure may dysregulate the PACAP system, proposing that it alters expression of PACAP receptor splice variants. While many questions remain to be addressed, the current evidence suggests that PACAP could be a viable medication target for the treatment of binge eating and drug and alcohol use disorders.
Collapse
|
25
|
Anapindi KDB, Yang N, Romanova EV, Rubakhin SS, Tipton A, Dripps I, Sheets Z, Sweedler JV, Pradhan AA. PACAP and Other Neuropeptide Targets Link Chronic Migraine and Opioid-induced Hyperalgesia in Mouse Models. Mol Cell Proteomics 2019; 18:2447-2458. [PMID: 31649062 PMCID: PMC6885698 DOI: 10.1074/mcp.ra119.001767] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic use of opioids can produce opioid-induced hyperalgesia (OIH), and when used to treat migraine, these drugs can result in increased pain and headache chronicity. We hypothesized that overlapping mechanisms between OIH and chronic migraine occur through neuropeptide dysregulation. Using label-free, non-biased liquid chromatography-mass spectrometry to identify and measure changes in more than 1500 neuropeptides under these two conditions, we observed only 16 neuropeptides that were altered between the two conditions. The known pro-migraine molecule, calcitonin-gene related peptide, was among seven peptides associated with chronic migraine, with several pain-processing neuropeptides among the nine other peptides affected in OIH. Further, composite peptide complements Pituitary adenylate cyclase-activating polypeptide (PACAP), Vasoactive intestinal peptide (VIP) and Secretogranin (SCG) showed significant changes in both chronic migraine and OIH. In a follow-up pharmacological study, we confirmed the role of PACAP in models of these two disorders, validating the effectiveness of our peptidomic approach, and identifying PACAP as a mechanistic link between chronic migraine and OIH. Data are available via ProteomeXchange with identifier PXD013362.
Collapse
Affiliation(s)
| | - Ning Yang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 61801
| | - Elena V Romanova
- Department of Chemistry, University of Illinois at Urbana-Champaign, 61801; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 61801
| | - Stanislav S Rubakhin
- Department of Chemistry, University of Illinois at Urbana-Champaign, 61801; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 61801
| | - Alycia Tipton
- Department of Psychiatry, University of Illinois at Chicago, 60612
| | - Isaac Dripps
- Department of Psychiatry, University of Illinois at Chicago, 60612
| | - Zoie Sheets
- Department of Psychiatry, University of Illinois at Chicago, 60612
| | - Jonathan V Sweedler
- Department of Chemistry, University of Illinois at Urbana-Champaign, 61801; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 61801
| | - Amynah A Pradhan
- Department of Psychiatry, University of Illinois at Chicago, 60612.
| |
Collapse
|
26
|
Goode TD, Ressler RL, Acca GM, Miles OW, Maren S. Bed nucleus of the stria terminalis regulates fear to unpredictable threat signals. eLife 2019; 8:46525. [PMID: 30946011 PMCID: PMC6456295 DOI: 10.7554/elife.46525] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST) has been implicated in conditioned fear and anxiety, but the specific factors that engage the BNST in defensive behaviors are unclear. Here we examined whether the BNST mediates freezing to conditioned stimuli (CSs) that poorly predict the onset of aversive unconditioned stimuli (USs) in rats. Reversible inactivation of the BNST selectively reduced freezing to CSs that poorly signaled US onset (e.g., a backward CS that followed the US), but did not eliminate freezing to forward CSs even when they predicted USs of variable intensity. Additionally, backward (but not forward) CSs selectively increased Fos in the ventral BNST and in BNST-projecting neurons in the infralimbic region of the medial prefrontal cortex (mPFC), but not in the hippocampus or amygdala. These data reveal that BNST circuits regulate fear to unpredictable threats, which may be critical to the etiology and expression of anxiety.
Collapse
Affiliation(s)
- Travis D Goode
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, United States
| | - Reed L Ressler
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, United States
| | - Gillian M Acca
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, United States
| | - Olivia W Miles
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, United States
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, United States
| |
Collapse
|
27
|
Reglodi D, Toth D, Vicena V, Manavalan S, Brown D, Getachew B, Tizabi Y. Therapeutic potential of PACAP in alcohol toxicity. Neurochem Int 2019; 124:238-244. [PMID: 30682380 DOI: 10.1016/j.neuint.2019.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/15/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022]
Abstract
Alcohol addiction is a worldwide concern as its detrimental effects go far beyond the addicted individual and can affect the entire family as well as the community. Considerable effort is being expended in understanding the neurobiological basis of such addiction in hope of developing effective prevention and/or intervention strategies. In addition, organ damage and neurotoxicological effects of alcohol are intensely investigated. Pharmacological approaches, so far, have only provided partial success in prevention or treatment of alcohol use disorder (AUD) including the neurotoxicological consequences of heavy drinking. Pituitary adenylate cyclase-activating polypeptide (PACAP) is an endogenous 38 amino-acid neuropeptide with demonstrated protection against neuronal injury, trauma as well as various endogenous and exogenous toxic agents including alcohol. In this mini-review, following a brief presentation of alcohol addiction and its neurotoxicity, the potential of PACAP as a therapeutic intervention in toxicological consequences of this devastating disorder is discussed.
Collapse
Affiliation(s)
- Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, Hungary.
| | - Denes Toth
- Department of Forensic Medicine, University of Pecs Medical School, Hungary
| | - Viktoria Vicena
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, Hungary
| | - Sridharan Manavalan
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, Hungary; Department of Basic Sciences, National University of Health Sciences, Florida, USA
| | - Dwayne Brown
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| |
Collapse
|
28
|
Goode TD, Maren S. Common neurocircuitry mediating drug and fear relapse in preclinical models. Psychopharmacology (Berl) 2019; 236:415-437. [PMID: 30255379 PMCID: PMC6373193 DOI: 10.1007/s00213-018-5024-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Comorbidity of anxiety disorders, stressor- and trauma-related disorders, and substance use disorders is extremely common. Moreover, therapies that reduce pathological fear and anxiety on the one hand, and drug-seeking on the other, often prove short-lived and are susceptible to relapse. Considerable advances have been made in the study of the neurobiology of both aversive and appetitive extinction, and this work reveals shared neural circuits that contribute to both the suppression and relapse of conditioned responses associated with trauma or drug use. OBJECTIVES The goal of this review is to identify common neural circuits and mechanisms underlying relapse across domains of addiction biology and aversive learning in preclinical animal models. We focus primarily on neural circuits engaged during the expression of relapse. KEY FINDINGS After extinction, brain circuits involving the medial prefrontal cortex and hippocampus come to regulate the expression of conditioned responses by the amygdala, bed nucleus of the stria terminalis, and nucleus accumbens. During relapse, hippocampal projections to the prefrontal cortex inhibit the retrieval of extinction memories resulting in a loss of inhibitory control over fear- and drug-associated conditional responding. CONCLUSIONS The overlapping brain systems for both fear and drug memories may explain the co-occurrence of fear and drug-seeking behaviors.
Collapse
Affiliation(s)
- Travis D Goode
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, 301 Old Main Dr., College Station, TX, 77843-3474, USA
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, 301 Old Main Dr., College Station, TX, 77843-3474, USA.
| |
Collapse
|
29
|
Abstract
Dysregulation of neuropeptides may play an important role in aging-induced impairments. In the long list of neuropeptides, pituitary adenylate cyclase-activating polypeptide (PACAP) represents a highly effective cytoprotective peptide that provides an endogenous control against a variety of tissue-damaging stimuli. PACAP has neuro- and general cytoprotective effects due to anti-apoptotic, anti-inflammatory, and antioxidant actions. As PACAP is also a part of the endogenous protective machinery, it can be hypothesized that the decreased protective effects in lack of endogenous PACAP would accelerate age-related degeneration and PACAP knockout mice would display age-related degenerative signs earlier. Recent results support this hypothesis showing that PACAP deficiency mimics aspects of age-related pathophysiological changes including increased neuronal vulnerability and systemic degeneration accompanied by increased apoptosis, oxidative stress, and inflammation. Decrease in PACAP expression has been shown in different species from invertebrates to humans. PACAP-deficient mice display numerous pathological alterations mimicking early aging, such as retinal changes, corneal keratinization and blurring, and systemic amyloidosis. In the present review, we summarize these findings and propose that PACAP deficiency could be a good model of premature aging.
Collapse
|