1
|
Li Z, Ma Q, Zhang J, Yin R, You J, Hao Q, Wu X, Kang J, Wang L, Deng Y, Li Y, Shen C, Wu B, Feng J, Tu Y, Xiao X, Yu J, Cheng W. Large-Scale Plasma Proteomics to Profile Pathways and Prognosis of Chronic Pain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410160. [PMID: 40048323 PMCID: PMC12021123 DOI: 10.1002/advs.202410160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/10/2025] [Indexed: 04/26/2025]
Abstract
While increasing peripheral mechanisms related to chronic pain, the plasma proteomics profile associated with it and its prognosis remains elusive. This study utilizes 2923 plasma proteins and chronic pain of 51 644 participants from UK Biobank and finds 474 proteins linked to chronic pain in six sites: head, neck or shoulder, back, stomach or abdominal, hip, and knee, with 11 proteins sharing across pain sites. The identified proteins are largely enriched in immune and metabolic pathways and highly expressed in tissues like lungs and small intestines. Phenome-wide analysis highlights the significance of pain-related proteome on diverse facets of human health, and in-depth Mendelian randomization validates 10 proteins (CD302, RARRES2, TNFRSF1B, BTN2A1, TNFRSF9, COL18A1, TNF, CD74, TNFRSF4, and BTN2A1) as markers of chronic pain. Furthermore, protein sets capable of classifying pain patients and healthy participants, particularly performing best in hip pain (area under curve, AUC = 0.725), are identified. Interestingly, the prediction of pain spreading over ten years achieves an AUC of 0.715, with leptin identified as a crucial predictor. This study delineates proteins associated with various pain conditions and identifies proteins capable of classifying pain and predicting pain spreading, offering benefits for both research and clinical practice.
Collapse
Affiliation(s)
- Ze‐Yu Li
- Institute of Science and Technology for Brain‐Inspired IntelligenceDepartment of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200433China
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University)Ministry of EducationShanghai200433China
| | - Qing Ma
- Institute of Science and Technology for Brain‐Inspired IntelligenceDepartment of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200433China
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University)Ministry of EducationShanghai200433China
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive ScienceEast China Normal UniversityShanghai200062China
| | - Jie Zhang
- Department of NeurosurgeryHuashan Hospital, Shanghai Medical CollegeFudan UniversityShanghai200040China
- National Center for Neurological DisordersShanghai200040China
| | - Rui‐Ying Yin
- Institute of Science and Technology for Brain‐Inspired IntelligenceDepartment of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200433China
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University)Ministry of EducationShanghai200433China
| | - Jia You
- Institute of Science and Technology for Brain‐Inspired IntelligenceDepartment of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200433China
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University)Ministry of EducationShanghai200433China
| | - Qi‐Zheng Hao
- Institute of Science and Technology for Brain‐Inspired IntelligenceDepartment of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200433China
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University)Ministry of EducationShanghai200433China
| | - Xin‐Rui Wu
- Institute of Science and Technology for Brain‐Inspired IntelligenceDepartment of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200433China
| | - Ju‐Jiao Kang
- Institute of Science and Technology for Brain‐Inspired IntelligenceDepartment of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200433China
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University)Ministry of EducationShanghai200433China
| | - Lin‐Bo Wang
- Institute of Science and Technology for Brain‐Inspired IntelligenceDepartment of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200433China
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University)Ministry of EducationShanghai200433China
| | - Yue‐Ting Deng
- Institute of Science and Technology for Brain‐Inspired IntelligenceDepartment of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200433China
| | - Yu‐Zhu Li
- Institute of Science and Technology for Brain‐Inspired IntelligenceDepartment of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200433China
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University)Ministry of EducationShanghai200433China
| | - Chun Shen
- Institute of Science and Technology for Brain‐Inspired IntelligenceDepartment of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200433China
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University)Ministry of EducationShanghai200433China
| | - Bang‐Sheng Wu
- Institute of Science and Technology for Brain‐Inspired IntelligenceDepartment of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200433China
| | - Jian‐Feng Feng
- Institute of Science and Technology for Brain‐Inspired IntelligenceDepartment of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200433China
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University)Ministry of EducationShanghai200433China
- Department of Computer ScienceUniversity of WarwickCoventryCV4 7ALUK
- Fudan ISTBI–ZJNU Algorithm Centre for Brain‐inspired IntelligenceZhejiang Normal UniversityZhejiang321004China
| | - Yi‐Heng Tu
- CAS Key Laboratory of Mental Health, Institute of PsychologyChinese Academy of SciencesBeijing100101China
| | - Xiao Xiao
- Institute of Science and Technology for Brain‐Inspired IntelligenceDepartment of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200433China
| | - Jin‐Tai Yu
- Institute of Science and Technology for Brain‐Inspired IntelligenceDepartment of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200433China
| | - Wei Cheng
- Institute of Science and Technology for Brain‐Inspired IntelligenceDepartment of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200433China
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University)Ministry of EducationShanghai200433China
- Fudan ISTBI–ZJNU Algorithm Centre for Brain‐inspired IntelligenceZhejiang Normal UniversityZhejiang321004China
| |
Collapse
|
2
|
Harris M, Sreekumar S, Paul B, Ramanarayanan V, Nayar S, Subash P, Mathew A. Biomarkers in orofacial pain conditions: A narrative review. J Oral Biol Craniofac Res 2025; 15:365-382. [PMID: 40034372 PMCID: PMC11875180 DOI: 10.1016/j.jobcr.2025.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Orofacial pain conditions, including temporomandibular disorder, migraine, dental pain, and trigeminal neuralgia, are complex, multifactorial disorders with significant impacts on patients' quality of life. As understanding of the pathophysiology of these conditions has deepened, the role of molecular and genetic biomarkers in diagnosing, monitoring, and potentially treating orofacial pain has garnered increasing interest. This scoping review provides a comprehensive overview of the current state of research on biomarkers associated with orofacial pain conditions. By analyzing existing literature, we identify key biomarkers linked to inflammation, neural activity, and tissue degradation that are common across multiple conditions, as well as those specific to particular disorders. Our findings underscore the potential of these biomarkers to guide the development of personalized therapeutic strategies. However, the review also highlights the challenges faced by current biomarker research, including heterogeneity in study designs, small sample sizes, and a lack of longitudinal data. Addressing these challenges is critical for translating biomarker research into clinical practice and improving outcomes for patients with orofacial pain.
Collapse
Affiliation(s)
- Mervin Harris
- Department of Prosthodontics, Amrita School of Dentistry, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham Kochi, Kerala, 682041, India
| | - Saranya Sreekumar
- Department of Prosthodontics, Amrita School of Dentistry, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham Kochi, Kerala, 682041, India
- Core Staff Member – Amrita Center for Evidence-based Oral Health, India
| | - Bindhu Paul
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham Kochi, Kerala, 682041, India
| | - Venkitachalam Ramanarayanan
- Core Staff Member – Amrita Center for Evidence-based Oral Health, India
- Department of Public Health Dentistry, Amrita School of Dentistry, Amrita Vishwa Vidyapeetham, India
| | - Suresh Nayar
- University of Alberta – Division of Otolaryngology-Head and Neck Surgery, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Pramod Subash
- Department of Cleft & Craniomaxillofacial Surgery, Amrita School of Dentistry, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham Kochi, Kerala, 682041, India
| | - Anil Mathew
- Department of Prosthodontics, Amrita School of Dentistry, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham Kochi, Kerala, 682041, India
- Core Staff Member – Amrita Center for Evidence-based Oral Health, India
| |
Collapse
|
3
|
Deschênes ÉR, Do J, Tsampalieros A, Webster RJ, Whitley N, Ward LM, Pohl D. Pediatric Headache Patients Are at High Risk of Vitamin D Insufficiency. J Child Neurol 2025; 40:91-98. [PMID: 39380442 PMCID: PMC11783970 DOI: 10.1177/08830738241284057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/19/2023] [Accepted: 08/25/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Vitamin D deficiency has been associated with headaches in adults, but data for children with headaches are sparse. OBJECTIVE To describe vitamin D levels in children with headaches. METHODS We retrospectively analyzed serum 25(OH)D concentrations in children aged 2-17 years with headaches compared to children with epilepsy at the Children's Hospital of Eastern Ontario between October 1, 2014, and August 19, 2021. Serum 25(OH)D <50 nmol/L was classified as insufficient. RESULTS Vitamin D concentrations of 353 children (117 with headaches; 236 with epilepsy) were analyzed. The median age in years was 10 (interquartile range [IQR] 5, 14); 50.4% of subjects were female. The median serum 25(OH)D was 56 nmol/L (IQR 41, 69) in children with headaches and 70 nmol/L (IQR 50, 95) in children with epilepsy. Vitamin D insufficiency was present in 42% of children with headaches and 25% of children with epilepsy (P = .002). In a multivariable linear regression model adjusting for age, sex and seasonality, children with headaches had serum 25(OH)D concentrations that were on average 9 nmol/L (95% CI-16.76, -0.96) lower compared to children with epilepsy (P = .029). CONCLUSION The prevalence of vitamin D insufficiency is higher in children with headaches compared to children with epilepsy. Prospective studies are needed to assess if vitamin D supplementation may have a therapeutic effect on pediatric headaches.
Collapse
Affiliation(s)
- Éloïse R. Deschênes
- Undergraduate Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Jeffrey Do
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Anne Tsampalieros
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Richard J. Webster
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Nicole Whitley
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Leanne M. Ward
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniela Pohl
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Division of Neurology, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Liu Y, Wang D, Li S, Dong X, Sun J, Li J, Zhang Y, Han Y. Treatment of trigeminal neuralgia by acupuncture combined with Chinese medicine from the perspective of modern medicine: A review. Medicine (Baltimore) 2024; 103:e40318. [PMID: 39496021 PMCID: PMC11537664 DOI: 10.1097/md.0000000000040318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/11/2024] [Indexed: 11/06/2024] Open
Abstract
Trigeminal neuralgia (TN) is characterized by recurrent episodes of transient severe pain in its distribution area, with abrupt onset and termination. With the progression of the disease, patients are prone to concurrent psychiatric disorders, such as anxiety and depression, which seriously affect patients' quality of life. Currently, anticonvulsant drugs are commonly used in clinical practice as the primary treatment, but long-term use of drugs is prone to drug resistance, limiting clinical application. Acupuncture and traditional Chinese medicine (TCM), as alternative and complementary therapies, can make up for the deficiencies in modern medicine and are accepted by patients with the advantages of safety and effectiveness. TCM therapy works by promoting the release of endogenous opioid peptides, adjusting the level of inflammatory factors, and improving negative emotions to exert analgesic effects. This paper discusses the clinical efficacy and safety of acupuncture combined with Chinese medicine in the treatment of TN from the perspective of modern medicine and provides a theoretical basis for seeking better therapeutic targets.
Collapse
Affiliation(s)
- Yue Liu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Dongyan Wang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
- Second Affiliated Hospital of Heilongjiang Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Shenwei Li
- Department of Acupuncture, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Zhejiang Province, China
| | - Xu Dong
- Second Affiliated Hospital of Heilongjiang Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Jiajing Sun
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Jingyi Li
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Ying Zhang
- Second Affiliated Hospital of Heilongjiang Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Yixiao Han
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| |
Collapse
|
5
|
Woldeamanuel YW, Sanjanwala BM, Cowan RP. Deep and unbiased proteomics, pathway enrichment analysis, and protein-protein interaction of biomarker signatures in migraine. Ther Adv Chronic Dis 2024; 15:20406223241274302. [PMID: 39314676 PMCID: PMC11418313 DOI: 10.1177/20406223241274302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/24/2024] [Indexed: 09/25/2024] Open
Abstract
Background Currently, there are no biomarkers for migraine. Objectives We aimed to identify proteomic biomarker signatures for diagnosing, subclassifying, and predicting treatment response in migraine. Design This is a cross-sectional and longitudinal study of untargeted serum and cerebrospinal fluid (CSF) proteomics in episodic migraine (EM; n = 26), chronic migraine (CM; n = 26), and healthy controls (HC; n = 26). Methods We developed classification models for biomarker identification and natural clusters through unsupervised classification using agglomerative hierarchical clustering (AHC). Pathway analysis of differentially expressed proteins was performed. Results Of 405 CSF proteins, the top five proteins that discriminated between migraine patients and HC were angiotensinogen, cell adhesion molecule 3, immunoglobulin heavy variable (IGHV) V-III region JON, insulin-like growth factor binding protein 6 (IGFBP-6), and IGFBP-7. The top-performing classifier demonstrated 100% sensitivity and 75% specificity in differentiating the two groups. Of 229 serum proteins, the top five proteins in classifying patients with migraine were immunoglobulin heavy variable 3-74 (IGHV 3-74), proteoglycan 4, immunoglobulin kappa variable 3D-15, zinc finger protein (ZFP)-814, and mediator of RNA polymerase II transcription subunit 12. The best-performing classifier exhibited 94% sensitivity and 92% specificity. AHC separated EM, CM, and HC into distinct clusters with 90% success. Migraine patients exhibited increased ZFP-814 and calcium voltage-gated channel subunit alpha 1F (CACNA1F) levels, while IGHV 3-74 levels decreased in both cross-sectional and longitudinal serum analyses. ZFP-814 remained upregulated during the CM-to-EM reversion but was suppressed when CM persisted. CACNA1F was pronounced in CM persistence. Pathway analysis revealed immune, coagulation, glucose metabolism, erythrocyte oxygen and carbon dioxide exchange, and insulin-like growth factor regulation pathways. Conclusion Our data-driven study provides evidence for identifying novel proteomic biomarker signatures to diagnose, subclassify, and predict treatment responses for migraine. The dysregulated biomolecules affect multiple pathways, leading to cortical spreading depression, trigeminal nociceptor sensitization, oxidative stress, blood-brain barrier disruption, immune response, and coagulation cascades. Trial registration NCT03231241, ClincialTrials.gov.
Collapse
Affiliation(s)
- Yohannes W. Woldeamanuel
- Division of Headache, Department of Neurology, Mayo Clinic Arizona, 6161 E. Mayo Blvd, Phoenix, AZ, USA
| | - Bharati M. Sanjanwala
- Division of Headache and Facial Pain, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, CA, USA
| | - Robert P. Cowan
- Division of Headache and Facial Pain, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, CA, USA
| |
Collapse
|
6
|
Szmyd B, Wiśniewski K, Jaskólski DJ. Pathogenesis and Therapy of Neurovascular Compression Syndromes: An Editorial. Biomedicines 2024; 12:1486. [PMID: 39062059 PMCID: PMC11275226 DOI: 10.3390/biomedicines12071486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Neurovascular compression syndromes (NVC) remains a challenging disorders resulting from the compression of cranial nerves at the transition zone [...].
Collapse
Affiliation(s)
- Bartosz Szmyd
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153 Lodz, Poland (D.J.J.)
| | | | | |
Collapse
|
7
|
Malicki M, Szmyd BM, Bobeff EJ, Karuga FF, Piotrowski MM, Kościołek D, Wanibuchi S, Radek M, Jaskólski DJ. The Superior Cerebellar Artery: Variability and Clinical Significance. Biomedicines 2023; 11:2009. [PMID: 37509648 PMCID: PMC10376954 DOI: 10.3390/biomedicines11072009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The superior cerebellar artery (SCA) arises from the distal part of the basilar artery and passes by the oculomotor, trochlear, and trigeminal nerves. SCA is known to play a crucial role in the development of trigeminal neuralgia. However, due to its anatomical variability, it may also trigger other neurovascular compression (NVC), including hemifacial spasm, oculomotor nerve palsy, and ocular neuromyotonia. Additionally, it may be associated with ischemic syndromes and aneurysm development, highlighting its clinical significance. The most common anatomical variations of the SCA include duplication, a single vessel origin from the posterior cerebral artery (PCA), and a common trunk with PCA. Rarely observed variants include bifurcation and origin from the internal carotid artery. Certain anatomical variants such as early bifurcation and caudal course of duplicated SCA trunk may increase the risk of NVC. In this narrative review, we aimed to examine the impact of the anatomical variations of SCA on the NVCs based on papers published in Pubmed, Scopus, and Web of Science databases with a snowballing approach. Our review emphasizes the importance of a thorough understanding of the anatomical variability of SCA to optimize the management of patients with NVCs associated with this artery.
Collapse
Affiliation(s)
- Mikołaj Malicki
- Department of Neurosurgery, Spine and Peripheral Nerves Surgery, Medical University of Lodz, Zeromskiego St. 113, 90-549 Lodz, Poland; (M.M.); (M.R.)
| | - Bartosz M. Szmyd
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153 Lodz, Poland; (B.M.S.); (M.M.P.); (D.J.J.)
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Sporna St. 36/50, 91-738 Lodz, Poland
| | - Ernest J. Bobeff
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153 Lodz, Poland; (B.M.S.); (M.M.P.); (D.J.J.)
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Mazowieka St. 6/8, 92-251 Lodz, Poland;
| | - Filip F. Karuga
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Mazowieka St. 6/8, 92-251 Lodz, Poland;
| | - Michał M. Piotrowski
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153 Lodz, Poland; (B.M.S.); (M.M.P.); (D.J.J.)
| | - Dawid Kościołek
- Central Teaching Hospital, Medical University of Lodz, Pomorska St. 251, 92-208 Lodz, Poland;
| | - Sora Wanibuchi
- The Faculty of Medicine, Aichi Medical University, Nagakute 480-1195, Japan;
| | - Maciej Radek
- Department of Neurosurgery, Spine and Peripheral Nerves Surgery, Medical University of Lodz, Zeromskiego St. 113, 90-549 Lodz, Poland; (M.M.); (M.R.)
| | - Dariusz J. Jaskólski
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153 Lodz, Poland; (B.M.S.); (M.M.P.); (D.J.J.)
| |
Collapse
|
8
|
Charnukha TN, Maryenko IP, Likhachev SA, Kleban HV, Mironov SA. [Dolichoectasia of the basilar artery caused by cystic medial degeneration, as a cause of neurovascular conflict with damage to the trigeminal, facial and vestibulocochlear nerves]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:82-87. [PMID: 38148702 DOI: 10.17116/jnevro202312312282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Cystic medial degeneration (Gsell-Erdheim syndrome, cystic medial necrosis) is considered to be a nonspecific histological manifestation of a group of diseases characterized by degenerative changes in the media, affecting primarily the aorta and adjacent branches, which leads to destruction of the vessel wall, followed by its expansion and, possibly, rupture. The authors describe a case of a 65-year-old female patient with a neurovascular conflict of the three cranial nerves with dolichoectatic basilar artery due to cystic medial degeneration. As a result, the patient has clinical manifestations in the form of hemifacial spasm, trigeminal neuralgia and vestibular paroxysmia. Data from instrumental studies and treatment provided are presented. Neurovascular conflict can be identified in various diseases and is characterized by the complex etiology. The most common clinical manifestations of neurovascular conflict are trigeminal neuralgia, hemifacial spasm, glossopharyngeal neuralgia, and vestibular paroxysmia.
Collapse
Affiliation(s)
- T N Charnukha
- Republican Research and Clinical Center of Neurology and Neurosurgery, Minsk, Republic of Belarus
| | - I P Maryenko
- Republican Research and Clinical Center of Neurology and Neurosurgery, Minsk, Republic of Belarus
| | - S A Likhachev
- Republican Research and Clinical Center of Neurology and Neurosurgery, Minsk, Republic of Belarus
| | - H V Kleban
- Republican Research and Clinical Center of Neurology and Neurosurgery, Minsk, Republic of Belarus
| | - S A Mironov
- Republican Research and Clinical Center of Neurology and Neurosurgery, Minsk, Republic of Belarus
| |
Collapse
|
9
|
Deulofeu M, Peña-Méndez EM, Vaňhara P, Havel J, Moráň L, Pečinka L, Bagó-Mas A, Verdú E, Salvadó V, Boadas-Vaello P. Artificial Neural Networks Coupled with MALDI-TOF MS Serum Fingerprinting To Classify and Diagnose Pathological Pain Subtypes in Preclinical Models. ACS Chem Neurosci 2022; 14:300-311. [PMID: 36584284 PMCID: PMC9853500 DOI: 10.1021/acschemneuro.2c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pathological pain subtypes can be classified as either neuropathic pain, caused by a somatosensory nervous system lesion or disease, or nociplastic pain, which develops without evidence of somatosensory system damage. Since there is no gold standard for the diagnosis of pathological pain subtypes, the proper classification of individual patients is currently an unmet challenge for clinicians. While the determination of specific biomarkers for each condition by current biochemical techniques is a complex task, the use of multimolecular techniques, such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), combined with artificial intelligence allows specific fingerprints for pathological pain-subtypes to be obtained, which may be useful for diagnosis. We analyzed whether the information provided by the mass spectra of serum samples of four experimental models of neuropathic and nociplastic pain combined with their functional pain outcomes could enable pathological pain subtype classification by artificial neural networks. As a result, a simple and innovative clinical decision support method has been developed that combines MALDI-TOF MS serum spectra and pain evaluation with its subsequent data analysis by artificial neural networks and allows the identification and classification of pathological pain subtypes in experimental models with a high level of specificity.
Collapse
Affiliation(s)
- Meritxell Deulofeu
- Research
Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department
of Medical Sciences, University of Girona, Girona, Catalonia 17003, Spain,Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5/A14, 625 00 Brno, Czech Republic,Department
of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Eladia M. Peña-Méndez
- Department
of Chemistry, Analytical Chemistry Division, Faculty of Sciences, University of La Laguna, 38204 San Cristóbal de
La Laguna, Tenerife, Spain
| | - Petr Vaňhara
- Department
of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic,International
Clinical Research Center, St. Anne’s
University Hospital, 656
91 Brno, Czech Republic
| | - Josef Havel
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5/A14, 625 00 Brno, Czech Republic,International
Clinical Research Center, St. Anne’s
University Hospital, 656
91 Brno, Czech Republic
| | - Lukáš Moráň
- Department
of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic,Research
Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 62500 Brno, Czech Republic
| | - Lukáš Pečinka
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5/A14, 625 00 Brno, Czech Republic,International
Clinical Research Center, St. Anne’s
University Hospital, 656
91 Brno, Czech Republic
| | - Anna Bagó-Mas
- Research
Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department
of Medical Sciences, University of Girona, Girona, Catalonia 17003, Spain
| | - Enrique Verdú
- Research
Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department
of Medical Sciences, University of Girona, Girona, Catalonia 17003, Spain
| | - Victoria Salvadó
- Department
of Chemistry, Faculty of Science, University
of Girona, 17071 Girona, Catalonia, Spain,
| | - Pere Boadas-Vaello
- Research
Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department
of Medical Sciences, University of Girona, Girona, Catalonia 17003, Spain,
| |
Collapse
|
10
|
Togha M, Rahimi P, Farajzadeh A, Ghorbani Z, Faridi N, Zahra Bathaie S. Proteomics analysis revealed the presence of inflammatory and oxidative stress markers in the plasma of migraine patients during the pain period. Brain Res 2022; 1797:148100. [PMID: 36174672 DOI: 10.1016/j.brainres.2022.148100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND There is increasing evidence that some biomarkers are implicated in migraine pathogenesis. This study looks at plasma proteome in migraine patients for potential protein biomarkers. METHODS This case-control study has two phases. In phase I, plasma samples were collected from three groups, including twenty-three episodic migraineurs, thirty-five chronic migraineurs, and twenty-nine healthy subjects. In phase II, plasma samples were prepared from two groups, including five episodic and five chronic migraine cases, during the pain and 24 h after the pain-free periods. Two-dimensional gel electrophoresis (2-DE) was performed on plasma proteins. The possible corresponding proteins for the differentially expressed spots between groups investigated by the Melanie software were predicted by 2-DE gels of the EXPASY database. LC-MS/MS additionally analyzed phase II data. RESULTS Expression levels of haptoglobin, clusterin, fibrinogen alpha chain, fibrinogen beta chain, complement c3, transthyretin, α1-microglobulin, and retinol-binding protein 4 were shown considerable changes in migraine patients compared to controls or their pain-free period. CONCLUSION Differences in expression levels for several proteins were observed across groups. Most of these are associated with inflammation, oxidative stress, and neuroprotection, which can be considered potential disease biomarkers. However, further research is necessary for this respect.
Collapse
Affiliation(s)
- Mansoureh Togha
- Headache Department, Iranian Center of Neurological Researches, Institute of Neuroscience, Tehran University of Medical Sciences, Tehran, Iran; Neurology Ward, Sina Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Rahimi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Natural Products and Medicinal Plants, Tarbiat Modares University, Tehran, Iran
| | - Asghar Farajzadeh
- Department of Clinical Laboratory Sciences, Islamic Azad University, Ardabil, Iran
| | - Zeinab Ghorbani
- Department of Clinical Nutrition, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nassim Faridi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Natural Products and Medicinal Plants, Tarbiat Modares University, Tehran, Iran
| | - S Zahra Bathaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Natural Products and Medicinal Plants, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
11
|
Schott Andersen AS, Maarbjerg S, Noory N, Heinskou TB, Forman JL, Cruccu G, Ashina M, Bendtsen L. Safety and efficacy of erenumab in patients with trigeminal neuralgia in Denmark: a double-blind, randomised, placebo-controlled, proof-of-concept study. Lancet Neurol 2022; 21:994-1003. [PMID: 36113495 DOI: 10.1016/s1474-4422(22)00294-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Trigeminal neuralgia is a severe facial pain disorder that is difficult to treat. Erenumab, a monoclonal antibody against the calcitonin gene-related peptide (CGRP) receptor, has proven efficacy in migraine. Erenumab modulates sensory processing in peripheral trigeminal pain pathways in mice and was reported to be effective for patients with trigeminal neuralgia in open-label studies. We aimed to evaluate the efficacy of erenumab in patients with trigeminal neuralgia. METHODS We did a randomised, double-blind, placebo-controlled trial in adults (aged 18-85 years) with idiopathic or classic trigeminal neuralgia as defined by the 3rd edition of the International Classification of Headache Disorders. The trial was based at the Danish Headache Center, Copenhagen University Hospital. Eligible participants had no clinically significant cerebrovascular or cardiovascular disease, had self-reported pain intensity of at least 4 on the 11-point Numeric Rating Scale (0=no pain, 10=worst pain imaginable), and had at least three daily pain paroxysms. After a 1-week pre-screening period, patients entered a 4-week baseline period. Participants who met pain inclusion criteria at the end of the baseline period were randomly assigned (1:1) to receive subcutaneous injections of either erenumab 140 mg or placebo and entered the 4-week follow-up period. Randomisation was done in blocks of 10 using a computer-generated schedule by a third-party company. Participants and assessors were masked to treatment allocation, and erenumab and placebo were packed in identical prefilled syringes. The primary outcome was the number of responders, defined as patients who had a reduction of at least 30% in mean average daily pain intensity during the follow-up period compared with during the baseline period, analysed in the intention-to-treat population. This trial is registered with the European Union Drug Regulating Authorities Clinical Trials Database, EudraCT number 2019-000848-95. FINDINGS We assessed 860 patients for suitability and excluded 741 between Oct 28, 2019, and Sept 13, 2021. 119 participants entered a 1-week pre-screening period and 26 were excluded, 93 participants entered a 4-week baseline period with 13 excluded before randomisation, and 80 participants were randomly assigned to erenumab 140 mg (n=40) or placebo (n=40). There was no difference between groups in the number of responders at 4 weeks in the intention-to-treat population (14 [35%] of 40 with erenumab vs 18 [45%] of 40 with placebo; estimated effect size -10% [95% CI -31 to 11]; p=0·36). 20 (50%) of 40 participants reported adverse events in each group. The most common adverse events were constipation (28%) and headache (10%) in the erenumab group, and headache (13%), constipation (10%), and abdominal pain (10%) in the placebo group. INTERPRETATION Erenumab did not reduce pain intensity compared with placebo in patients with trigeminal neuralgia and CGRP probably does not have an important role in paroxysmal pain. Well tolerated, effective treatments in trigeminal neuralgia are still needed. FUNDING Novartis.
Collapse
Affiliation(s)
| | - Stine Maarbjerg
- Danish Headache Centre, Department of Neurology, Copenhagen University Hospital, Glostrup, Denmark
| | - Navid Noory
- Danish Headache Centre, Department of Neurology, Copenhagen University Hospital, Glostrup, Denmark
| | - Tone Bruvik Heinskou
- Danish Headache Centre, Department of Neurology, Copenhagen University Hospital, Glostrup, Denmark
| | - Julie Lyng Forman
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Giorgio Cruccu
- Department of Neurology and Psychiatry, University of Rome-La Sapienza, Rome, Italy
| | - Messoud Ashina
- Danish Headache Centre, Department of Neurology, Copenhagen University Hospital, Glostrup, Denmark
| | - Lars Bendtsen
- Danish Headache Centre, Department of Neurology, Copenhagen University Hospital, Glostrup, Denmark.
| |
Collapse
|
12
|
Szmyd B, Sołek J, Błaszczyk M, Jankowski J, Liberski PP, Jaskólski DJ, Wysiadecki G, Karuga FF, Gabryelska A, Sochal M, Tubbs RS, Radek M. The Underlying Pathogenesis of Neurovascular Compression Syndromes: A Systematic Review. Front Mol Neurosci 2022; 15:923089. [PMID: 35860499 PMCID: PMC9289473 DOI: 10.3389/fnmol.2022.923089] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Neurovascular compression syndromes (NVC) are challenging disorders resulting from the compression of cranial nerves at the root entry/exit zone. Clinically, we can distinguish the following NVC conditions: trigeminal neuralgia, hemifacial spasm, and glossopharyngeal neuralgia. Also, rare cases of geniculate neuralgia and superior laryngeal neuralgia are reported. Other syndromes, e.g., disabling positional vertigo, arterial hypertension in the course of NVC at the CN IX-X REZ and torticollis, have insufficient clinical evidence for microvascular decompression. The exact pathomechanism leading to characteristic NVC-related symptoms remains unclear. Proposed etiologies have limited explanatory scope. Therefore, we have examined the underlying pathomechanisms stated in the medical literature. To achieve our goal, we systematically reviewed original English language papers available in Pubmed and Web of Science databases before 2 October 2021. We obtained 1694 papers after eliminating duplicates. Only 357 original papers potentially pertaining to the pathogenesis of NVC were enrolled in full-text assessment for eligibility. Of these, 63 were included in the final analysis. The systematic review suggests that the anatomical and/or hemodynamical changes described are insufficient to account for NVC-related symptoms by themselves. They must coexist with additional changes such as factors associated with the affected nerve (e.g., demyelination, REZ modeling, vasculature pathology), nucleus hyperexcitability, white and/or gray matter changes in the brain, or disturbances in ion channels. Moreover, the effects of inflammatory background, altered proteome, and biochemical parameters on symptomatic NVC cannot be ignored. Further studies are needed to gain better insight into NVC pathophysiology.
Collapse
Affiliation(s)
- Bartosz Szmyd
- Department of Neurosurgery, Spine and Peripheral Nerve Surgery, Medical University of Lodz, Lodz, Poland
| | - Julia Sołek
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Lodz, Poland
| | - Maciej Błaszczyk
- Department of Neurosurgery, Spine and Peripheral Nerve Surgery, Medical University of Lodz, Lodz, Poland
| | - Jakub Jankowski
- Department of Neurosurgery, Spine and Peripheral Nerve Surgery, Medical University of Lodz, Lodz, Poland
| | - Paweł P. Liberski
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Dariusz J. Jaskólski
- Department of Neurosurgery and Neurooncology, Medical University of Lodz, Lodz, Poland
| | - Grzegorz Wysiadecki
- Department of Normal and Clinical Anatomy, Medical University of Lodz, Lodz, Poland
| | - Filip F. Karuga
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - R. Shane Tubbs
- Department of Neurosurgery and Ochsner Neuroscience Institute, Ochsner Health System, New Orleans, LA, United States
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Anatomical Sciences, St. George's University, St. George's, Grenada
- University of Queensland, Brisbane, QLD, Australia
| | - Maciej Radek
- Department of Neurosurgery, Spine and Peripheral Nerve Surgery, Medical University of Lodz, Lodz, Poland
- *Correspondence: Maciej Radek
| |
Collapse
|
13
|
Teruel A, Romero-Reyes M. Interplay of Oral, Mandibular, and Facial Disorders and Migraine. Curr Pain Headache Rep 2022; 26:517-523. [PMID: 35567662 DOI: 10.1007/s11916-022-01054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF THE REVIEW Migraine and other primary headache disorders can be localized in the face resembling facial or dental pain, indicating the influence of the trigeminovascular system in the structures innervated by the maxillary (V2) and mandibulary (V3) branches of the trigeminal nerve. Disorders of oral and craniofacial structures may influence primary headache disorders. In the current article, we review the potential links of this interplay. RECENT FINDINGS This interplay may be related to anatomy, with the trigeminal pathway and the involvement of both peripheral and central mechanisms, and the presence of calcitonin gene-related peptide (CGRP), a key mediator in migraine pathophysiology. CGRP is also involved in the pathophysiology of temporomandibular disorders (TMD) and their comorbidity with migraine and is also implicated in dental and periodontal pathology. Inflammatory and pathological processes of these structures and their trigeminal nociceptive pathways may influence the trigeminovascular system and consequently may exacerbate or even potentially trigger migraine.
Collapse
Affiliation(s)
- Antonia Teruel
- Head Pain Institute, 9481 E Ironwood Square Dr. Scottsdale, Scottsdale, AZ, 85258, USA
| | - Marcela Romero-Reyes
- Brotman Facial Pain Clinic, Department of Neural and Pain Sciences, University of Maryland, School of Dentistry, 650 W. Baltimore St. 8th Floor, Baltimore, MD, 21201, USA.
| |
Collapse
|
14
|
Ghodasara P, Satake N, Sadowski P, Kopp S, Mills PC. Investigation of cattle plasma proteome in response to pain and inflammation using next generation proteomics technique, SWATH-MS. Mol Omics 2021; 18:133-142. [PMID: 34860232 DOI: 10.1039/d1mo00354b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pain assessment in farm animals has primarily relied on a combination of behavioral and physiological responses, although these are relatively subjective and difficult to quantify. It is essential to develop more effective biomarkers of pain in production animals since they are frequently exposed to routine surgical husbandry procedures. More effective biomarkers of pain would improve welfare, limit the loss of productivity associated with pain and permit better assessment of analgesics. This study aimed to investigate the use of a modern mass spectrometry data independent acquisition strategy, termed Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS), to detect candidate protein biomarkers that are known to associate with nociceptive and inflammatory processes in cattle, which could then be used to assess the efficacy of potential analgesics. Calves were randomly divided into two groups that were either surgically dehorned or subjected to restraint stress, without provision of anaesthesia or analgesia in accordance with current industry standards. Samples were analysed before and after dehorning at multiple timepoints. Significant changes in protein concentrations were detected predominantly at 24 and 96 h following dehorning, including kininogens, proteins associated with the coagulation and complement cascades and serine protease inhibitors. Gene ontology analysis revealed that the identified candidate biomarkers were associated with stress, wound healing, immune response, blood coagulation and the inflammatory and acute phase responses, which could be expected following surgical damage to tissues, but can now be more objectively assessed. These results offer more definitive and quantitative monitoring of response to tissue injury induced pain and inflammation.
Collapse
Affiliation(s)
- Priya Ghodasara
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, Australia.,VIDO-InterVac, University of Saskatchewan, Saskatoon, Canada
| | - Nana Satake
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, Australia.,School of Agriculture and Food Sciences, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Pawel Sadowski
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Steven Kopp
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, Australia
| | - Paul C Mills
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, Australia
| |
Collapse
|
15
|
Parascandolo E, Levinson K, Rizzoli P, Sharon R. Efficacy of Erenumab in the Treatment of Trigeminal Neuralgia: A Retrospective Case Series. Neurol Clin Pract 2021; 11:227-231. [PMID: 34484889 DOI: 10.1212/cpj.0000000000001075] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022]
Abstract
Objective Trigeminal neuralgia (TN) is a chronic, often refractory, pain condition, which adversely affects the lives of patients. Current treatments are only mildly effective. Anti-calcitonin gene-related peptide (CGRP) monoclonal antibodies have been successfully studied in the treatment of migraines. CGRP plays a role in both TN and migraine. It is prudent to attempt CGRP monoclonal antibody therapy in TN. Erenumab, a human anti-CGRP monoclonal antibody medication, modulates CGRP, which is elevated in patients with TN. The primary objective of this study was to evaluate the efficacy of erenumab for patients with TN. Methods Retrospective analysis was performed on data collected from 10 patients diagnosed with TN and treated with erenumab for 6 months. Pain was tracked using a numeric pain rating scale (NPRS) from 0 to 10. The effect of erenumab on NPRS after 6 months' time was the primary end point. Secondary end points included side effects to therapy, improvement in headache frequency in those with comorbid migraine, evaluating mood following therapy, and global mood improvement using scale (worse, no change, improved). Results Nine of 10 patients (90.0%) reported improvement in pain severity and in global mood improvement. Three patients reported resolution of anxiety and/or depression. Side effects were minimal, with 3 patients reporting constipation, injection site reactions, or both. Conclusions Based on these results, erenumab appears to be an efficacious treatment option for patients with refractory TN. Patients experienced improvement in pain, reduced frequency of headache, and improvement in mood. Treatment was well tolerated with only mild side effects reported. Classification of Evidence This study provides Class IV evidence that erenumab increases the probability of improved pain control in patients with medication-resistant TN.
Collapse
Affiliation(s)
- Eliot Parascandolo
- Sackler Faculty of Medicine (EP, KL, RS), Tel Aviv University, Israel; Graham Headache Center (PR), Brigham and Women's Faulkner Hospital, Harvard Medical School, Boston, MA; and Department of Neurology (RS), Sheba-Tel HaShomer, Ramat Gan, Israel
| | - Kelsey Levinson
- Sackler Faculty of Medicine (EP, KL, RS), Tel Aviv University, Israel; Graham Headache Center (PR), Brigham and Women's Faulkner Hospital, Harvard Medical School, Boston, MA; and Department of Neurology (RS), Sheba-Tel HaShomer, Ramat Gan, Israel
| | - Paul Rizzoli
- Sackler Faculty of Medicine (EP, KL, RS), Tel Aviv University, Israel; Graham Headache Center (PR), Brigham and Women's Faulkner Hospital, Harvard Medical School, Boston, MA; and Department of Neurology (RS), Sheba-Tel HaShomer, Ramat Gan, Israel
| | - Roni Sharon
- Sackler Faculty of Medicine (EP, KL, RS), Tel Aviv University, Israel; Graham Headache Center (PR), Brigham and Women's Faulkner Hospital, Harvard Medical School, Boston, MA; and Department of Neurology (RS), Sheba-Tel HaShomer, Ramat Gan, Israel
| |
Collapse
|
16
|
Chuinsiri N, Edwards D, Telezhkin V, Nile CJ, Van der Cruyssen F, Durham J. Exploring the roles of neuropeptides in trigeminal neuropathic pain: A systematic review and narrative synthesis of animal studies. Arch Oral Biol 2021; 130:105247. [PMID: 34454375 DOI: 10.1016/j.archoralbio.2021.105247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/02/2021] [Accepted: 08/22/2021] [Indexed: 12/09/2022]
Abstract
OBJECTIVE This systematic review aims to explore the changes in expression of neuropeptides and/or their receptors following experimental trigeminal neuropathic pain in animals. DESIGN MEDLINE, Embase, and Scopus were searched for publications up to 31st March 2021. Study selection and data extraction were completed by two independent reviewers based on the eligibility criteria. The quality of articles was judged based on the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) risk-of-bias tool. RESULTS A total of 19 studies satisfied the eligibility criteria and were included for narrative synthesis. Methods of trigeminal neuropathic pain induction were nerve ligation, nerve compression/crush, nerve transection and dental pulp injury. Animal behaviours used for pain verification were evoked responses to mechanical and thermal stimuli. Non-evoked behaviours, including vertical exploration, grooming and food consumption, were also employed in some studies. Calcitonin gene-related peptide (CGRP) and substance P were the most frequently reported neuropeptides. Overall, unclear to high risk of bias was identified in the included studies. CONCLUSIONS Limited evidence has suggested the pro-nociceptive role of CGRP in trigeminal neuropathic pain. In order to further translational pain research, animal models of trigeminal neuropathic pain and pain validation methods need to be optimised. Complete reporting of future studies based on available guidelines to improve confidence in research is encouraged.
Collapse
Affiliation(s)
- Nontawat Chuinsiri
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - David Edwards
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Vsevolod Telezhkin
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher J Nile
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Fréderic Van der Cruyssen
- Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium; OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University Leuven, Leuven, Belgium
| | - Justin Durham
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
17
|
Gambeta E, Chichorro JG, Zamponi GW. Trigeminal neuralgia: An overview from pathophysiology to pharmacological treatments. Mol Pain 2021; 16:1744806920901890. [PMID: 31908187 PMCID: PMC6985973 DOI: 10.1177/1744806920901890] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The trigeminal nerve (V) is the fifth and largest of all cranial nerves, and it is responsible for detecting sensory stimuli that arise from the craniofacial area. The nerve is divided into three branches: ophthalmic (V1), maxillary (V2), and mandibular (V3); their cell bodies are located in the trigeminal ganglia and they make connections with second-order neurons in the trigeminal brainstem sensory nuclear complex. Ascending projections via the trigeminothalamic tract transmit information to the thalamus and other brain regions responsible for interpreting sensory information. One of the most common forms of craniofacial pain is trigeminal neuralgia. Trigeminal neuralgia is characterized by sudden, brief, and excruciating facial pain attacks in one or more of the V branches, leading to a severe reduction in the quality of life of affected patients. Trigeminal neuralgia etiology can be classified into idiopathic, classic, and secondary. Classic trigeminal neuralgia is associated with neurovascular compression in the trigeminal root entry zone, which can lead to demyelination and a dysregulation of voltage-gated sodium channel expression in the membrane. These alterations may be responsible for pain attacks in trigeminal neuralgia patients. The antiepileptic drugs carbamazepine and oxcarbazepine are the first-line pharmacological treatment for trigeminal neuralgia. Their mechanism of action is a modulation of voltage-gated sodium channels, leading to a decrease in neuronal activity. Although carbamazepine and oxcarbazepine are the first-line treatment, other drugs may be useful for pain control in trigeminal neuralgia. Among them, the anticonvulsants gabapentin, pregabalin, lamotrigine and phenytoin, baclofen, and botulinum toxin type A can be coadministered with carbamazepine or oxcarbazepine for a synergistic approach. New pharmacological alternatives are being explored such as the active metabolite of oxcarbazepine, eslicarbazepine, and the new Nav1.7 blocker vixotrigine. The pharmacological profiles of these drugs are addressed in this review.
Collapse
Affiliation(s)
- Eder Gambeta
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Juliana G Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Brazil
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
18
|
Gerdle B, Ghafouri B. Proteomic studies of common chronic pain conditions - a systematic review and associated network analyses. Expert Rev Proteomics 2020; 17:483-505. [DOI: 10.1080/14789450.2020.1797499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Björn Gerdle
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Bijar Ghafouri
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
19
|
Pellesi L, Guerzoni S, Baraldi C, Cainazzo MM, Pini LA, Bellei E. Identification of candidate proteomic markers in the serum of medication overuse headache patients: An exploratory study. Cephalalgia 2020; 40:1070-1078. [PMID: 32347744 DOI: 10.1177/0333102420921847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE OF THE STUDY The pathophysiological mechanism of medication overuse headache is uncertain; no distinctive markers have been described right now. The aim of this study was to conduct proteomic analyses on serum samples from patients with medication overuse headache and healthy individuals. Specifically, mono- (SDS-PAGE) and two-dimensional gel electrophoresis (2-DE) followed by liquid chromatography tandem mass spectrometry (LC-MS/MS) were used to evaluate changes in serum proteins. MAIN FINDINGS By SDS-PAGE, four over-expressed bands were revealed in patients, compared to controls. 2-DE combined with LC-MS/MS analysis allowed confirmation of some proteins preliminarily detected by SDS-PAGE: Hemopexin, alpha-1-acid glycoprotein 1, apolipoprotein A4 and haptoglobin. Moreover, other differential proteins were isolated, mostly increased in MOH patients: Alpha-1-antitrypsin, immunoglobulin heavy constant alpha 1, retinol binding protein and transthyretin. Only one protein, immunoglobulin kappa constant, was decreased in the patients' group. CONCLUSIONS The investigation of the serum proteome can offer a better understanding about biological mechanisms underlying medication overuse headache. Specifically, medication overuse headache shares some serum biochemical markers with chronic pain conditions. Further studies might uncover the relevance of these proteins in medication overuse headache.
Collapse
Affiliation(s)
- Lanfranco Pellesi
- Medical Toxicology, Headache and Drug Abuse Centre, University of Modena and Reggio Emilia, Modena, Italy
| | - Simona Guerzoni
- Medical Toxicology, Headache and Drug Abuse Centre, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Baraldi
- Medical Toxicology, Headache and Drug Abuse Centre, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Michela Cainazzo
- Medical Toxicology, Headache and Drug Abuse Centre, University of Modena and Reggio Emilia, Modena, Italy
| | - Luigi Alberto Pini
- Medical Toxicology, Headache and Drug Abuse Centre, University of Modena and Reggio Emilia, Modena, Italy.,Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Bellei
- Department of Surgery, Medicine, Dentistry and Morphological Science with Transplant Surgery, Oncology and Regenerative Medicine Relevance, Proteomic Lab, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
20
|
Doshi TL, Nixdorf DR, Campbell CM, Raja SN. Biomarkers in Temporomandibular Disorder and Trigeminal Neuralgia: A Conceptual Framework for Understanding Chronic Pain. CANADIAN JOURNAL OF PAIN-REVUE CANADIENNE DE LA DOULEUR 2020; 4:1-18. [PMID: 32923920 PMCID: PMC7486013 DOI: 10.1080/24740527.2019.1709163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this review, we will explore the use of biomarkers in chronic pain, using the examples of two prototypical facial pain conditions: trigeminal neuralgia and temporomandibular disorder. We will discuss the main categories of biomarkers and identify various genetic/genomic, molecular, neuroradiological, and psychophysical biomarkers in both facial pain conditions, using them to compare and contrast features of neuropathic, nonneuropathic, and mixed pain. By using two distinct model facial pain conditions to explore pain biomarkers, we aim to familiarize readers with different types of biomarkers currently being studied in chronic pain and explore how these biomarkers may be used to develop new precision medicine approaches to pain diagnosis, prognosis, and management.
Collapse
Affiliation(s)
- Tina L Doshi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Donald R Nixdorf
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN, USA
| | - Claudia M Campbell
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Srinivasa N Raja
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
21
|
Nowaczewska M, Wiciński M, Osiński S, Kaźmierczak H. The Role of Vitamin D in Primary Headache-from Potential Mechanism to Treatment. Nutrients 2020; 12:E243. [PMID: 31963460 PMCID: PMC7019347 DOI: 10.3390/nu12010243] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/02/2020] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
Some studies have suggested a link between vitamin D and headache; however, the underlying physiological mechanisms are unclear. We aimed to summarize the available evidence on the relationship between vitamin D and the various subtypes of primary headaches, including migraines and tension-type headaches. All articles concerning the association between primary headache and vitamin D published up to October 2019 were retrieved by searching clinical databases, including: EMBASE, MEDLINE, PubMed, Google scholar, and the Cochrane library. All types of studies (i.e., observational, cross-sectional, case-control, and clinical trials) were included. We identified 22 studies investigating serum vitamin D levels in association with headaches. Eight studies also evaluated the effect of vitamin D supplementation on the various headache parameters. Among them, 18 studies showed a link between serum vitamin D levels and headaches, with the strongest connection reported between serum vitamin D levels and migraine. Overall, there is not enough evidence to recommend vitamin D supplementation to all headache patients, but the current literature indicates that it may be beneficial in some patients suffering headaches, mainly migraineurs, to reduce the frequency of headaches, especially in those with vitamin D deficiency.
Collapse
Affiliation(s)
- Magdalena Nowaczewska
- Department of Pathophysiology of Hearing and Balance System, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
- Department of Otolaryngology, Head and Neck Surgery, and Laryngological Oncology, Ludwik Rydygier, Collegium Medicum in Bydgoszcz Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Stanisław Osiński
- Department of Otolaryngology, Head and Neck Surgery, and Laryngological Oncology, Ludwik Rydygier, Collegium Medicum in Bydgoszcz Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Henryk Kaźmierczak
- Department of Otolaryngology, Head and Neck Surgery, and Laryngological Oncology, Ludwik Rydygier, Collegium Medicum in Bydgoszcz Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| |
Collapse
|