1
|
Mokkarala P, Wiah S, Unterwald EM, Shi X, Stern DR, Fontana ACK, Salvino JM, Rawls SM. Positive allosteric modulator of GLT-1 reduces methamphetamine hyperlocomotion, sensitization and conditioned place preference in mice. Neurosci Res 2025; 213:156-160. [PMID: 39894415 PMCID: PMC11963643 DOI: 10.1016/j.neures.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
NA-014 is a positive allosteric modulator (PAM) of glutamate transporter subtype 1 (GLT-1) that increases glutamate reuptake. Since enhanced glutamate transmission facilitates methamphetamine (METH) hyperlocomotion, behavioral sensitization, and conditioned place preference (CPP), we hypothesized that NA-014 (60 mg/kg) would reduce these effects in male mice. NA-014 reduced acute ambulation induced by METH and behavioral sensitization during repeated METH. NA-014 given after METH conditioning reduced expression of METH CPP. NA-014 injected during METH conditioning did not affect development of METH CPP, and NA-014 did not affect spatial memory. These results suggest that GLT-1 PAMs reduce METH-induced behavioral effects in mice.
Collapse
Affiliation(s)
- Prateek Mokkarala
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sonita Wiah
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Ellen M Unterwald
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Xiangdang Shi
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Danielle R Stern
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Andreia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Joseph M Salvino
- Medicinal Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Cancer Center Molecular Screening, The Wistar Institute, Philadelphia, PA, USA
| | - Scott M Rawls
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Alanezi AA. Metabolomic Profile Modification in the Cerebellum of Mice Repeatedly Exposed to Khat and Treated with β-Lactamase Inhibitor, Clavulanic Acid. Metabolites 2024; 14:726. [PMID: 39728507 DOI: 10.3390/metabo14120726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Catha edulis, commonly known as khat, is used for its psychoactive effects and is considered a natural amphetamine. The current study investigated the metabolomic profile in the cerebellum of mice after repeated exposure to khat and evaluated the effects of clavulanic acid on the metabolomic profile in the cerebellum in khat-treated mice. METHODS Male C67BL/6 mice that were 6-9 weeks old were recruited and divided into three groups: the control group was treated with 0.9% normal saline for 17 days; the khat group was given khat extract at a dose of 360 mg/kg via the intraperitoneal (i.p) route for 17 days; and another khat group was treated with khat for 17 days and clavulanic acid at a dose of 5 mg/kg for the last 7 days (days 11-17). At the end of the 17th day, the animals were sacrificed, and their brains were immediately collected and stored at -80 °C. The cerebellum region of the brain was isolated in each group by micropuncture using cryostat and underwent a metabolomics study via Gas Chromatography/Mass Spectroscopy (GC/MS). The total peak area ratios of the selected metabolites in the cerebellum after repeated exposure to the khat extract were significantly reduced (p < 0.05) and treatment of the khat group with clavulanic acid significantly increased (all p < 0.05) the total peak areas ratios of the selected metabolites when compared to their corresponding areas in the alternative khat group. These levels of selected metabolites were further confirmed by observing the metabolite peak area ratios and performing a heat map analysis and a principal compartment analysis of the samples in the cerebellum. RESULTS A network analysis of altered metabolites in the cerebellum showed a strong correlation between the different metabolites, which showed that an increase in one metabolite can modulate the levels of others. An analysis using the MetaboAnalyst software revealed the involvement of selected altered metabolites like lactic acid in many signaling pathways, like gluconeogenesis, while enrichment analysis data showed altered pathways for pyruvate metabolism and disease pathogenesis. Finally, a network analysis showed that selected metabolites were linked with other metabolites, indicating drug-drug interactions. CONCLUSIONS The present study showed that repeated exposure of mice to khat altered the levels of various metabolites in the cerebellum which are involved in the pathogenesis of different diseases, signaling pathways, and interactions with the pharmacokinetic profile of other therapeutic drugs. The treatment of khat-treated mice with clavulanic acid positively modified the metabolomics profile in the cerebellum and increased the levels of the altered metabolites.
Collapse
Affiliation(s)
- Abdulkareem A Alanezi
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia
| |
Collapse
|
3
|
Travaglianti S, Alotaibi A, Wong W, Abou-Gharbia M, Childers W, Sari Y. Effects of novel GLT-1 modulator, MC-100093, on neuroinflammatory and neurotrophic biomarkers in mesocorticolimbic brain regions of male alcohol preferring rats exposed chronically to ethanol. Brain Res Bull 2024; 211:110935. [PMID: 38570076 PMCID: PMC11056292 DOI: 10.1016/j.brainresbull.2024.110935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Chronic ethanol consumption can lead to increased extracellular glutamate concentrations in key reward brain regions, such as medial prefrontal cortex (mPFC) and nucleus accumbens (NAc), and consequently leading to oxidative stress and neuroinflammation. Previous studies from our lab tested β-lactam antibiotics and novel beta-lactam non-antibiotic, MC-100093, and showed these β-lactam upregulated the major astrocytic glutamate transporter, GLT-1, and consequently reduced ethanol intake and normalized glutamate homeostasis. This present study tested the effects of novel synthetic β-lactam non-antibiotic drug, MC-100093, in chronic ethanol intake and neuroinflammatory and trophic factors in subregions of the NAc (NAc core and shell) and mPFC (Prelimbic, PL; and Infralimbic, IL) of male P rats. MC-100093 treatment reduced ethanol intake after 5-week drinking regimen. Importantly, MC-100093 attenuated ethanol-induced downregulation of brain derived neurotrophic factor (BDNF) expression in these brain regions. In addition, MC-100093 attenuated ethanol-induced upregulation of pro-inflammatory cytokines such as TNF-a and HMGB1 in all these brain regions. Furthermore, MC-100093 treatment attenuated ethanol-induced increase in RAGE in these brain regions. MC-100093 prevented neuroinflammation caused by ethanol intake as well as increased neurotrophic factor in mesocorticolimbic brain regions. MC-100093 treatment reduced ethanol intake and this behavioral effect was associated with attenuation of reduced trophic factors and increased pro-inflammatory factors. MC-100093 is considered a small molecule that may have potential therapeutic effects for the treatment of the effects of chronic exposure to ethanol.
Collapse
Affiliation(s)
- Shelby Travaglianti
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Ahmed Alotaibi
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Woonyen Wong
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Magid Abou-Gharbia
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Wayne Childers
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Youssef Sari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA.
| |
Collapse
|
4
|
Alasmari MS, Almohammed OA, Hammad AM, Altulayhi KA, Alkadi BK, Alasmari AF, Alqahtani F, Sari Y, Alasmari F. Effects of Beta Lactams on Behavioral Outcomes of Substance Use Disorders: A Meta-Analysis of Preclinical Studies. Neuroscience 2024; 537:58-83. [PMID: 38036059 DOI: 10.1016/j.neuroscience.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
INTRODUCTION Preclinical studies demonstrated that beta-lactams have neuroprotective effects in conditions involving glutamate neuroexcitotoxicity, including substance use disorders (SUDs). This meta-analysis aims to analyze the existing evidences on the effects of beta-lactams as glutamate transporter 1 (GLT-1) upregulators in animal models of SUDs, identification of gaps in the literature, and setting the stage for potential translation into clinical phases. METHODS Meta-analysis was conducted on preclinical studies retrieved systematically from MEDLINE and ScienceDirect databases. Abused substances were identified by refereeing to the National Institute on Drug Abuse (NIDA). The results were quantitatively described with a focus on the behavioral outcomes. Treatment effect sizes were described using standardized mean difference, and they were pooled using random effect model. I2-statistic was used to assess heterogeneity, and Funnel plot and Egger's test were used for assessment of publication bias. RESULTS Literature search yielded a total of 71 studies that were eligible to be included in the analysis. Through these studies, the effects of beta-lactams were evaluated in animal models of nicotine, cannabis, amphetamines, synthetic cathinone, opioids, ethanol, and cocaine use disorders as well as steroids-related aggressive behaviors. Meta-analysis showed that treatments with beta-lactams consistently reduced the pooled undesired effects of the abused substances in several paradigms, including drug-self administration, conditioned place preference, drug seeking behaviors, hyperlocomotion, withdrawal syndromes, tolerance to analgesic effects, hyperalgesia, and hyperthermia. CONCLUSION This meta-analysis revealed that enhancing GLT-1 expression in the brain through beta-lactams seemed to be a promising treatment approach in the context of substance use disorders, as indicated by results in animal models.
Collapse
Affiliation(s)
- Mohammed S Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Saudi Arabia
| | - Omar A Almohammed
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Saudi Arabia
| | - Alaa M Hammad
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Khalid A Altulayhi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Saudi Arabia
| | - Bader K Alkadi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Saudi Arabia
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, the University of Toledo, OH, USA
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Saudi Arabia.
| |
Collapse
|
5
|
Balcazar-Ochoa LG, Ventura-Martínez R, Ángeles-López GE, Gómez-Acevedo C, Carrasco OF, Sampieri-Cabrera R, Chavarría A, González-Hernández A. Clavulanic Acid and its Potential Therapeutic Effects on the Central Nervous System. Arch Med Res 2024; 55:102916. [PMID: 38039802 DOI: 10.1016/j.arcmed.2023.102916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/28/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023]
Abstract
Clavulanic acid (CLAV) is a non-antibiotic β-lactam that has been used since the late 1970s as a β-lactamase inhibitor in combination with amoxicillin, another ß-lactam with antibiotic activity. Its long-observed adverse reaction profile allows it to say that CLAV is a well-tolerated drug with mainly mild adverse reactions. Interestingly, in 2005, it was discovered that β-lactams enhance the astrocytic expression of GLT-1, a glutamate transporter essential for maintaining synaptic glutamate homeostasis involved in several pathologies of the central nervous system (CNS). This finding, along with a favorable pharmacokinetic profile, prompted the appearance of several studies that intended to evaluate the effect of CLAV in preclinical disease models. Studies have revealed that CLAV can increase GLT-1 expression in the nucleus accumbens (NAcc), medial prefrontal cortex (PFC), and spinal cord of rodents, to affect glutamate and dopaminergic neurotransmission, and exert an anti-inflammatory effect by modulating the levels of the cytokines TNF-α and interleukin 10 (IL-10). CLAV has been tested with positive results in preclinical models of epilepsy, addiction, stroke, neuropathic and inflammatory pain, dementia, Parkinson's disease, and sexual and anxiety behavior. These properties make CLAV a potential therapeutic drug if repurposed. Therefore, this review aims to gather information on CLAV's effect on preclinical neurological disease models and to give some perspectives on its potential therapeutic use in some diseases of the CNS.
Collapse
Affiliation(s)
| | - Rosa Ventura-Martínez
- Farmacology Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | | | - Claudia Gómez-Acevedo
- Farmacology Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Omar Francisco Carrasco
- Farmacology Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Raúl Sampieri-Cabrera
- Phyisiology Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anahí Chavarría
- Experimental Medicine Research Unit, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | |
Collapse
|
6
|
Esmaili-Shahzade-Ali-Akbari P, Ghaderi A, Hosseini SMM, Nejat F, Saeedi-Mofrad M, Karimi-Houyeh M, Ghattan A, Etemadi A, Rasoulian E, Khezri A. β_lactam antibiotics against drug addiction: A novel therapeutic option. Drug Dev Res 2023; 84:1411-1426. [PMID: 37602907 DOI: 10.1002/ddr.22110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/25/2023] [Accepted: 08/06/2023] [Indexed: 08/22/2023]
Abstract
Drug addiction as a problem for the health of the individual and the society is the result of a complex process in which there is an interaction between brain nuclei and neurotransmitters (such as glutamate). β-lactam antibiotics, due to their enhancing properties on the glutamate transporter glutamate transporter-1, can affect and counteract the addictive mechanisms of drugs through the regulation of extracellular glutamate. Since glutamate is a key neurotransmitter in the development of drug addiction, it seems that β-lactams can be considered as a promising treatment for addiction. However, more research in this field is necessary to identify other mechanisms involved in their effectiveness. This article is a review of the studies conducted on the effect of β-lactam administration in preventing the development of drug addiction, as well as their possible cellular and molecular mechanisms. This review suggests the clinical use of β-lactam antibiotics that have weak antimicrobial properties (such as clavulanic acid) in the treatment of drug dependence.
Collapse
Affiliation(s)
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Fatemeh Nejat
- Department of Biology and Health Sciences, Meredith College, Raleigh, North Carolina, USA
| | | | | | - Alireza Ghattan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirreza Etemadi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Elham Rasoulian
- Department of Medical-Surgical Nursing, School of Nursing Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arina Khezri
- Department of Anesthesia, School of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Arab AO, Alasmari F, Albaker AB, Alhazmi HA, Alameen AA, Alagail NM, Alwaeli SA, Rizwan Ahamad S, AlAsmari AF, AlSharari SD. Clavulanic Acid Improves Memory Dysfunction and Anxiety Behaviors through Upregulating Glutamatergic Transporters in the Nucleus Accumbens of Mice Repeatedly Exposed to Khat Extract. Int J Mol Sci 2023; 24:15657. [PMID: 37958641 PMCID: PMC10648086 DOI: 10.3390/ijms242115657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Khat (Catha edulis) is an evergreen shrub whose buds and leaves give a state of delight and euphoria when chewed. Cathinone, an amphetamine-like stimulant that is among the active ingredients in khat, is able to downregulate glutamate transporter subtype I (GLT-1). Neurobehavioral dysfunctions such as altered locomotor activity, anorexia, and nociception have been observed in animals exposed to cathinone. Interestingly, treatment with a β-lactam antibiotic such as ceftriaxone, which upregulates GLT-1, normalizes cathinone-induced conditioned place preference, and alters repetitive movements in rats. However, little is known about the role of the glutamatergic system in memory dysfunction and anxiety-like behaviors in mice exposed to khat. We found here that clavulanic acid, a β-lactam-containing compound and GLT-1 upregulator, would modulate the neurobehavioral changes, including memory impairment and anxiety-like behaviors, associated with repeated exposure of mice to khat. Our data supported that clavulanic acid could improve memory impairment and anxiety-like behaviors through upregulating GLT-1 in the nucleus accumbens (NAc), an effect abolished with a selective GLT-1 blocker. This upregulation was associated with restored glutamate/cystine antiporter expression in the NAc using a Western blotting assay. Cathine and cathinone were identified in khat extract using the gas chromatography technique. Our work provides preclinical insight into the efficacy of β-lactam-containing compounds for the attenuation of neurobehavioral changes induced by khat exposure.
Collapse
Affiliation(s)
- Amal O. Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Awatif B. Albaker
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Alaa Alnoor Alameen
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naser M. Alagail
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Alwaeli
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed Rizwan Ahamad
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shakir D. AlSharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Wong W, Sari Y. Effects of Chronic Hydrocodone Exposure and Ceftriaxone on the Expression of Astrocytic Glutamate Transporters in Mesocorticolimbic Brain Regions of C57/BL Mice. TOXICS 2023; 11:870. [PMID: 37888720 PMCID: PMC10611114 DOI: 10.3390/toxics11100870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/26/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Exposure to opioids can lead to the alteration of several neurotransmitters. Among these neurotransmitters, glutamate is thought to be involved in opioid dependence. Glutamate neurotransmission is mainly regulated by astrocytic glutamate transporters such as glutamate transporter 1 (GLT-1) and cystine/glutamate antiporter (xCT). Our laboratory has shown that exposure to lower doses of hydrocodone reduced the expression of xCT in the nucleus accumbens (NAc) and the hippocampus. In the present study, we investigated the effects of chronic exposure to hydrocodone, and tested ceftriaxone as a GLT-1 upregulator in mesocorticolimbic brain regions such as the NAc, the amygdala (AMY), and the dorsomedial prefrontal cortex (dmPFC). Eight-week-old male mice were divided into three groups: (1) the saline vehicle control group; (2) the hydrocodone group; and (3) the hydrocodone + ceftriaxone group. Mice were injected with hydrocodone (10 mg/kg, i.p.) or saline for 14 days. On day seven, the hydrocodone/ceftriaxone group was injected with ceftriaxone (200 mg/kg, i.p.) for last seven days. Chronic exposure to hydrocodone reduced the expression of GLT-1, xCT, protein kinase B (AKT), extracellular signal-regulated kinases (ERK), and c-Jun N-terminal Kinase (JNK) in NAc, AMY, and dmPFC. However, hydrocodone exposure increased the expression of G-protein-coupled metabotropic glutamate receptors (mGluR5) in the NAc, AMY, and dmPFC. Importantly, ceftriaxone treatment normalized the expression of mGluR5, GLT-1, and xCT in all these brain regions, except for xCT in the AMY. Importantly, ceftriaxone treatment attenuated hydrocodone-induced downregulation of signaling pathways such as AKT, ERK, and JNK expression in the NAc, AMY, and dmPFC. These findings demonstrate that ceftriaxone has potential therapeutic effects in reversing hydrocodone-induced downregulation of GLT-1 and xCT in selected reward brain regions, and this might be mediated through the downstream kinase signaling pathways such as AKT, ERK, and JNK.
Collapse
Affiliation(s)
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA;
| |
Collapse
|
9
|
Hammad AM, Naser A, Amawi H, Hall FS, Tiwari AK, Al-Trad B. Effect of amoxicillin/clavulanic acid in attenuating pregabalin-induced condition place preference. Behav Brain Res 2023; 439:114244. [PMID: 36470419 DOI: 10.1016/j.bbr.2022.114244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Substance abuse is a worldwide problem with serious repercussions for patients and the communities where they live. Pregabalin (Lyrica), is a medication commonly used to treat neuropathic pain. Like other analgesic medications there has been concern about pregabalin abuse and misuse. Although it was initially suggested that pregabalin, like other gabapentinoids, has limited abuse liability, questions still remain concerning this inquiry. Changes in glutamate system homeostasis are a hallmark of adaptations underlying drug dependence, including down-regulation of the glutamate transporter 1 (GLT-1; SLC1A2) and the cystine/glutamate antiporter (xCT; SLC7A11). In this study, it was found that pregabalin (90 mg/kg) produces a conditioned place preference (CPP), indicative of reinforcing effects that suggest a potential for abuse liability. Moreover, like other drugs of abuse, pregabalin also produced alterations in glutamate homeostasis, reducing the mRNA expression of Slc1a2 and Slc7a11 in the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC). Amoxicillin clavulanic acid, a β-lactam antibiotic, blocked the reinforcing effects of pregabalin and normalized glutamate homeostasis. These results suggest that pregabalin has abuse potential that should be examined more critically, and that, moreover, the mechanisms underlying these effects are similar to those of other drugs of abuse, such as heroin and cocaine. Additionally, these results support previous findings showing normalization of glutamate homeostasis by β-lactam drugs that provides a novel potential therapeutic approach for the treatment of drug abuse and dependence.
Collapse
Affiliation(s)
- Alaa M Hammad
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan.
| | - Asma'a Naser
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 21163, Jordan
| | - Haneen Amawi
- Department of Clinical Pharmacy and Pharmacy Practice, College of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| | - F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Bahaa Al-Trad
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 21163, Jordan
| |
Collapse
|
10
|
Abulseoud OA, Alasmari F, Hussein AM, Sari Y. Ceftriaxone as a Novel Therapeutic Agent for Hyperglutamatergic States: Bridging the Gap Between Preclinical Results and Clinical Translation. Front Neurosci 2022; 16:841036. [PMID: 35864981 PMCID: PMC9294323 DOI: 10.3389/fnins.2022.841036] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Dysregulation of glutamate homeostasis is a well-established core feature of neuropsychiatric disorders. Extracellular glutamate concentration is regulated by glutamate transporter 1 (GLT-1). The discovery of a beta-lactam antibiotic, ceftriaxone (CEF), as a safe compound with unique ability to upregulate GLT-1 sparked the interest in testing its efficacy as a novel therapeutic agent in animal models of neuropsychiatric disorders with hyperglutamatergic states. Indeed, more than 100 preclinical studies have shown the efficacy of CEF in attenuating the behavioral manifestations of various hyperglutamatergic brain disorders such as ischemic stroke, amyotrophic lateral sclerosis (ALS), seizure, Huntington’s disease, and various aspects of drug use disorders. However, despite rich and promising preclinical data, only one large-scale clinical trial testing the efficacy of CEF in patients with ALS is reported. Unfortunately, in that study, there was no significant difference in survival between placebo- and CEF-treated patients. In this review, we discussed the translational potential of preclinical efficacy of CEF based on four different parameters: (1) initiation of CEF treatment in relation to induction of the hyperglutamatergic state, (2) onset of response in preclinical models in relation to onset of GLT-1 upregulation, (3) mechanisms of action of CEF on GLT-1 expression and function, and (4) non-GLT-1-mediated mechanisms for CEF. Our detailed review of the literature brings new insights into underlying molecular mechanisms correlating the preclinical efficacy of CEF. We concluded here that CEF may be clinically effective in selected cases in acute and transient hyperglutamatergic states such as early drug withdrawal conditions.
Collapse
Affiliation(s)
- Osama A. Abulseoud
- Department of Psychiatry and Psychology, Alex School of Medicine at Mayo Clinic, Phoenix, AZ, United States
- *Correspondence: Osama A. Abulseoud,
| | - Fawaz Alasmari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdelaziz M. Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
- Youssef Sari,
| |
Collapse
|
11
|
Philogene-Khalid HL, Morrison MF, Darbinian N, Selzer ME, Schroeder J, Rawls SM. The GLT-1 enhancer clavulanic acid suppresses cocaine place preference behavior and reduces GCPII activity and protein levels in the rat nucleus accumbens. Drug Alcohol Depend 2022; 232:109306. [PMID: 35051699 PMCID: PMC8885893 DOI: 10.1016/j.drugalcdep.2022.109306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/21/2021] [Accepted: 01/10/2022] [Indexed: 12/18/2022]
Abstract
The β-lactam antibiotic ceftriaxone (CTX) is a glutamate transporter subtype 1 (GLT-1) enhancer that reduces cocaine reinforcing efficacy and relapse in rats, but pharmacokinetic liabilities limit translational utility. An attractive alternative is clavulanic acid (CLAV), a structurally related β-lactamase inhibitor and component of FDA-approved Augmentin. CLAV retains the GLT-1 enhancing effects of CTX but displays greater oral bioavailability, brain penetrability and negligible antibacterial activity. CLAV reduces morphine conditioned place preference (CPP) and ethanol consumption in rats, but knowledge about the efficacy of CLAV in preclinical models of drug addiction remains sparse. Here, we investigated effects of CLAV (10 mg/kg, IP) on the acquisition, expression, and maintenance of cocaine CPP in rats, and on two glutamate biomarkers associated with cocaine dependence, GLT-1 and glutamate carboxypeptidase II (GCPII). CLAV administered during cocaine conditioning (10 mg/kg, IP x 4 d) did not affect the development of cocaine CPP. However, a single CLAV injection, administered after the conditioning phase, reduced the expression of cocaine CPP. In rats with established cocaine preference, repeated CLAV administration facilitated extinction of cocaine CPP. In the nucleus accumbens, acute CLAV exposure reduced GCPII protein levels and activity, and a 10-d CLAV treatment regimen enhanced GLT-1 levels. These results suggest that CLAV reduces expression and maintenance of cocaine CPP but lacks effect against development of CPP. Moreover, the ability of a single injection of CLAV to reduce both GCPII activity and protein levels, as well as expression of cocaine CPP, points toward studying GCPII as a therapeutic target of CLAV.
Collapse
Affiliation(s)
- Helene L. Philogene-Khalid
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Corresponding author at: Department of Psychiatry, Medical Arts Building Suite 305, Temple University, 100 East Lehigh Ave., Philadelphia, PA 19125-1012, United States.
| | - Mary F. Morrison
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Department of Psychiatry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Nune Darbinian
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Michael E. Selzer
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Joseph Schroeder
- Behavioral Neuroscience Program, Connecticut College, New London, CT, USA
| | - Scott M. Rawls
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
12
|
Wang Z, Zhu X, Ni X, Wen Y, Shang D. Knowledge atlas of the involvement of glutamate and GABA in alcohol use disorder: A bibliometric and scientometric analysis. Front Psychiatry 2022; 13:965142. [PMID: 36032235 PMCID: PMC9411946 DOI: 10.3389/fpsyt.2022.965142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Abnormal neurotransmission of glutamate and γ-aminobutyric acid (GABA) is a key characteristic of alcohol-related disorders. To track research output, we conducted a bibliometric analysis to explore the current status and trends in this field over the past decades. METHODS Studies related to neurotransmitters and alcohol use disorder published in English from 2005-2021 were retrieved from the Web of Science Core Collection and Scopus databases. The R-bibliometrix package was used for a descriptive analysis of the publications. Citespace, WOSviewer, and R-bibliometrix were used to construct networks of countries/institutions/authors based on co-authorship, co-citation analysis of cited references and co-occurrence as well as burst detection of keywords. RESULTS A total of 4,250 unique articles and reviews were included in the final analysis. The annual growth rate of publications was 5.4%. The USA was the most productive country in this field, contributing nearly half of the total documents. The top ten most productive institutions were all located in the USA. The most frequent worldwide collaboration was between the USA and Italy. The most productive and influential institution was the University of California. The author contributing the most productions to this field was Marisa Roberto from the Scripps Research Institute. The top co-cited reference was a review titled "Neurocircuitry of addiction." The top journal in terms of the number of records and citations was Alcoholism: Clinical and Experimental Research. Comprehensive analyses have been conducted over past decades based on co-cited reference analysis, including modulators, transporters, receptor subtypes, and animal models. In recent years, the research frontiers have been shifting to the identification of risk factors/biomarkers, drug development for alcohol use disorder, and mechanisms related to alcoholic and non-alcoholic fatty liver. CONCLUSION Our bibliometric analysis shows that glutamate and GABA continue to be of interest in alcohol use disorder. The focus has evolved from mechanisms and medications related to glutamate and GABA in alcohol use disorder, to novel drug development, risk factor/biomarker identification targeting neurotransmitters, and the mechanisms of related diseases.
Collapse
Affiliation(s)
- Zhanzhang Wang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiuqing Zhu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaojia Ni
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuguan Wen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dewei Shang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Stafford AM, Yamamoto BK, Phillips TJ. Combined and sequential effects of alcohol and methamphetamine in animal models. Neurosci Biobehav Rev 2021; 131:248-269. [PMID: 34543650 PMCID: PMC8642292 DOI: 10.1016/j.neubiorev.2021.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 11/16/2022]
Abstract
Comorbid drug use, often alcohol with other drugs, poses significant health and societal concerns. Methamphetamine is among the illicit drugs most often co-used with alcohol. The current review examines the animal literature for impacts of comorbid alcohol and methamphetamine exposure. We found evidence for additive or synergistic effects of combined or sequential exposure on behavior and physiology. Dopaminergic, serotonergic, and glutamatergic systems are all impacted by combined exposure to alcohol and methamphetamine and cyclooxygenase-2 activity plays an important role in their combined neurotoxic effects. Adverse consequences of comorbid exposure include altered brain development with prenatal exposure, impaired learning and memory, motor deficits, gastrotoxicity, hepatotoxicity, and augmented intake under some conditions. Given high susceptibility to drug experimentation in adolescence, studies of co-exposure during the adolescent period and of how adolescent exposure to one drug impacts later use or sensitivity to the other drug should be a priority. Further, to gain traction on prevention and treatment, additional research to identify motivational and neurobiological drivers and consequences of comorbid use is needed.
Collapse
Affiliation(s)
- Alexandra M Stafford
- Department of Behavioral Neuroscience, Portland Alcohol Abuse Research Center and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA.
| | - Bryan K Yamamoto
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tamara J Phillips
- Department of Behavioral Neuroscience, Portland Alcohol Abuse Research Center and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA; Veterans Affairs Portland Health Care System, Portland, OR, USA
| |
Collapse
|
14
|
Effects of ceftriaxone on ethanol drinking and GLT-1 expression in ethanol dependence and relapse drinking. Alcohol 2021; 92:1-9. [PMID: 33465464 DOI: 10.1016/j.alcohol.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/11/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
Abstract
Repeated cycles of chronic intermittent ethanol (CIE) exposure increase voluntary consumption of alcohol (ethanol) in mice. Previous reports from our laboratory show that CIE increases extracellular glutamate in the nucleus accumbens (NAc) and that manipulating accumbal glutamate concentrations will alter ethanol drinking, indicating that glutamate homeostasis plays a crucial role in ethanol drinking in this model. A number of studies have shown that ceftriaxone increases GLT-1 expression, the major glutamate transporter, and that treatment with this antibiotic reduces ethanol drinking. The present studies examined the effects of ceftriaxone on ethanol drinking and GLT-1 in a mouse model of ethanol dependence and relapse drinking. The results show that ceftriaxone did not influence drinking at any dose in either ethanol-dependent or non-dependent mice. Further, ceftriaxone did not increase GLT-1 expression in the accumbens core or shell, with the exception of the ethanol-dependent mice receiving the highest dose of ceftriaxone. Interestingly, ethanol-dependent mice treated with only vehicle displayed reduced expression of GLT-1 in the accumbens shell and of the presynaptic mGlu2 receptor in the accumbens core. The reduced expression of the major glutamate transporter (GLT-1), as well as a receptor that regulates glutamate release (mGlu2), may help explain, at least in part, increased glutamatergic transmission in this model of ethanol dependence and relapse drinking.
Collapse
|
15
|
Angoa-Pérez M, Kuhn DM. Evidence for Modulation of Substance Use Disorders by the Gut Microbiome: Hidden in Plain Sight. Pharmacol Rev 2021; 73:571-596. [PMID: 33597276 PMCID: PMC7896134 DOI: 10.1124/pharmrev.120.000144] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The gut microbiome modulates neurochemical function and behavior and has been implicated in numerous central nervous system (CNS) diseases, including developmental, neurodegenerative, and psychiatric disorders. Substance use disorders (SUDs) remain a serious threat to the public well-being, yet gut microbiome involvement in drug abuse has received very little attention. Studies of the mechanisms underlying SUDs have naturally focused on CNS reward circuits. However, a significant body of research has accumulated over the past decade that has unwittingly provided strong support for gut microbiome participation in drug reward. β-Lactam antibiotics have been employed to increase glutamate transporter expression to reverse relapse-induced release of glutamate. Sodium butyrate has been used as a histone deacetylase inhibitor to prevent drug-induced epigenetic alterations. High-fat diets have been used to alter drug reward because of the extensive overlap of the circuitry mediating them. This review article casts these approaches in a different light and makes a compelling case for gut microbiome modulation of SUDs. Few factors alter the structure and composition of the gut microbiome more than antibiotics and a high-fat diet, and butyrate is an endogenous product of bacterial fermentation. Drugs such as cocaine, alcohol, opiates, and psychostimulants also modify the gut microbiome. Therefore, their effects must be viewed on a complex background of cotreatment-induced dysbiosis. Consideration of the gut microbiome in SUDs should have the beneficial effects of expanding the understanding of SUDs and aiding in the design of new therapies based on opposing the effects of abused drugs on the host's commensal bacterial community. SIGNIFICANCE STATEMENT: Proposed mechanisms underlying substance use disorders fail to acknowledge the impact of drugs of abuse on the gut microbiome. β-Lactam antibiotics, sodium butyrate, and high-fat diets are used to modify drug seeking and reward, overlooking the notable capacity of these treatments to alter the gut microbiome. This review aims to stimulate research on substance abuse-gut microbiome interactions by illustrating how drugs of abuse share with antibiotics, sodium butyrate, and fat-laden diets the ability to modify the host microbial community.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, and Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Donald M Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, and Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
16
|
Potential Benefits of N-Acetylcysteine in Preventing Pregabalin-Induced Seeking-Like Behavior. Healthcare (Basel) 2021; 9:healthcare9040376. [PMID: 33805329 PMCID: PMC8066267 DOI: 10.3390/healthcare9040376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 11/24/2022] Open
Abstract
Substance-use disorder is globally prevalent and responsible for numerous social and medical problems. Pregabalin (Lyrica), typically used to treat diabetic neuropathy, has recently emerged as a drug of abuse. Drug abuse is associated with several neuronal changes, including the downregulation of glutamate transporters such as glutamate transporter 1 and cystine/glutamate antiporter. We investigated the effects of N-acetylcysteine, a glutamate transporter 1 and xCT upregulator, on pregabalin addiction using a conditioned place preference paradigm. Pregabalin (60 mg/kg) was found to induce conditioned place preference when compared to a vehicle. A 100 mg/kg dose of N-acetylcysteine was found to block pregabalin-seeking behaviors. These results support previous findings showing that glutamate transporters play an important role in pregabalin-induced seeking behaviors. N-acetylcysteine may represent a beneficial agent in preventing the abuse potential of pregabalin.
Collapse
|
17
|
Alhaddad H, Alasmari F, Alhamadani B, Wong W, Bell RL, Sari Y. Effects of chronic ethanol consumption on the expression of GLT-1 and neuroplasticity-related proteins in the nucleus accumbens of alcohol-preferring rats. Brain Res Bull 2020; 165:272-280. [PMID: 33075417 DOI: 10.1016/j.brainresbull.2020.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/25/2020] [Accepted: 10/09/2020] [Indexed: 11/26/2022]
Abstract
Chronic ethanol exposure induces impairments in CNS excitatory and inhibitory activity. These impairments are associated with glutamatergic dysfunction, including altered neuroplasticity. This study examined the effects of 6-week ethanol (15% and 30% v/v) consumption, by male alcohol-preferring P rats, on protein expression associated with neuroplasticity and glutamate transporter-1 (GLT-1) function. The latter regulates intra- and extra-synaptic glutamate levels. We focused on the shell and core subregions of the nucleus accumbens (Acb); i.e., shell (AcbSh) and core (AcbCo), for these measures. Chronic ethanol exposure increased the expression of BDNF, Arc and phosphorylated (p)-post-synaptic density protein-95 (p-PSD-95) in the AcbSh of P rats. Moreover, the ratio of phospho-neuronal nitric oxide synthase (p-nNOS) to total nNOS was also increased in the AcbSh. These changes in BDNF, Arc and p-nNOS/nNOS ratio were not observed in the AcbCo. Furthermore, chronic ethanol consumption reduced GLT-1 expression in the AcbSh. Alternatively, treatment with ceftriaxone (CEF), a known GLT-1 upregulator, abolished the effect of chronic ethanol consumption on BDNF expression in the AcbSh. Overall, the present findings confirm that chronic ethanol consumption modulates activity-associated synaptic proteins, including BDNF, Arc and nNOS in a subregion-specific (i.e., in the AcbSh but not AcbCo) manner. Thus, alterations in mesocorticolimbic glutamatergic homeostasis and neuroplasticity are possible functional targets for the treatment of alcohol use disorders.
Collapse
Affiliation(s)
- Hasan Alhaddad
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Fawaz Alasmari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA; Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Balsam Alhamadani
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Woonyen Wong
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Richard L Bell
- Department of Psychiatry and Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Youssef Sari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA.
| |
Collapse
|
18
|
Alasmari F, Alhaddad H, Wong W, Bell RL, Sari Y. Ampicillin/Sulbactam Treatment Modulates NMDA Receptor NR2B Subunit and Attenuates Neuroinflammation and Alcohol Intake in Male High Alcohol Drinking Rats. Biomolecules 2020; 10:biom10071030. [PMID: 32664441 PMCID: PMC7407831 DOI: 10.3390/biom10071030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
Exposure to ethanol commonly manifests neuroinflammation. Beta (β)-lactam antibiotics attenuate ethanol drinking through upregulation of astroglial glutamate transporters, especially glutamate transporter-1 (GLT-1), in the mesocorticolimbic brain regions, including the nucleus accumbens (Acb). However, the effect of β-lactam antibiotics on neuroinflammation in animals chronically exposed to ethanol has not been fully investigated. In this study, we evaluated the effects of ampicillin/sulbactam (AMP/SUL, 100 and 200 mg/kg, i.p.) on ethanol consumption in high alcohol drinking (HAD1) rats. Additionally, we investigated the effects of AMP/SUL on GLT-1 and N-methyl-d-aspartate (NMDA) receptor subtypes (NR2A and NR2B) in the Acb core (AcbCo) and Acb shell (AcbSh). We found that AMP/SUL at both doses attenuated ethanol consumption and restored ethanol-decreased GLT-1 and NR2B expression in the AcbSh and AcbCo, respectively. Moreover, AMP/SUL (200 mg/kg, i.p.) reduced ethanol-increased high mobility group box 1 (HMGB1) and receptor for advanced glycation end-products (RAGE) expression in the AcbSh. Moreover, both doses of AMP/SUL attenuated ethanol-elevated tumor necrosis factor-alpha (TNF-α) in the AcbSh. Our results suggest that AMP/SUL attenuates ethanol drinking and modulates NMDA receptor NR2B subunits and HMGB1-associated pathways.
Collapse
Affiliation(s)
- Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (H.A.); (W.W.)
| | - Hasan Alhaddad
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (H.A.); (W.W.)
| | - Woonyen Wong
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (H.A.); (W.W.)
| | - Richard L. Bell
- Department of Psychiatry and Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: (R.L.B.); (Y.S.); Tel.: +317-278-8407 (R.L.B.); +419-383-1507 (Y.S.)
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (H.A.); (W.W.)
- Correspondence: (R.L.B.); (Y.S.); Tel.: +317-278-8407 (R.L.B.); +419-383-1507 (Y.S.)
| |
Collapse
|
19
|
Althobaiti YS, Alghorabi A, Alshehri FS, Baothman B, Almalki AH, Alsaab HO, Alsanie W, Gaber A, Almalki H, Alghamdi AS, Basfer A, Althobaiti S, Hardy AMG, Shah ZA. Gabapentin-induced drug-seeking-like behavior: a potential role for the dopaminergic system. Sci Rep 2020; 10:10445. [PMID: 32591630 PMCID: PMC7320158 DOI: 10.1038/s41598-020-67318-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/05/2020] [Indexed: 01/22/2023] Open
Abstract
Drugs of abuse represent a growing public health crisis. Accumulating evidence indicates that gabapentin (GBP), a prescription drug, is prone to misuse, abuse, withdrawal, and dependence. Commonly, drugs of abuse modulate the dopaminergic system to induce addiction. In this study, we used the conditioned place preference (CPP) model to investigate the involvement of the dopamine 1 (D1) receptor on the reward and reinforcement behavior of GBP. Under a CPP paradigm, male BALB/c mice were intraperitoneally injected either saline or 100, 200, or 300 mg/kg of GBP and confined to the injection-paired chamber for 30 min. In the pre-conditioning phase, mice were conditioned for 3 days, and baseline data were collected. In the conditioning phase, mice were given once-daily alternating injections of either GBP or saline for 8 days and subsequently assessed in a post-conditioning test. Injections of 300 mg/kg of GBP significantly increased the time spent in the drug-paired chamber compared to the saline-paired chamber. However, lower doses of GBP (100 and 200 mg/kg) showed no effect. Pre-treatment with SKF-83566, a D1 receptor antagonist, attenuated GBP-induced CPP. Thus, for the first time, we show that GBP can induce CPP through a dopaminergic-dependent mechanism.
Collapse
Affiliation(s)
- Yusuf S Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Health Science Campus, Airport Road, Al Haweiah, PO Box 888, Taif, 21974, Saudi Arabia. .,Addiction and Neuroscience Research Unit, Biomedical Sciences Research Center, Taif University, Taif, Saudi Arabia. .,General Administration for Precursors and Laboratories, Ministry of Interior, General Directorate of Narcotics Control, Riyadh, Saudi Arabia.
| | - Amal Alghorabi
- Addiction and Neuroscience Research Unit, Biomedical Sciences Research Center, Taif University, Taif, Saudi Arabia
| | - Fahad S Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Bandar Baothman
- Addiction and Neuroscience Research Unit, Biomedical Sciences Research Center, Taif University, Taif, Saudi Arabia.,Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Atiah H Almalki
- Addiction and Neuroscience Research Unit, Biomedical Sciences Research Center, Taif University, Taif, Saudi Arabia.,Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Hashem O Alsaab
- Addiction and Neuroscience Research Unit, Biomedical Sciences Research Center, Taif University, Taif, Saudi Arabia.,Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Walaa Alsanie
- Addiction and Neuroscience Research Unit, Biomedical Sciences Research Center, Taif University, Taif, Saudi Arabia.,Department of Clinical Laboratories Science, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ahmed Gaber
- Addiction and Neuroscience Research Unit, Biomedical Sciences Research Center, Taif University, Taif, Saudi Arabia.,Department of Biology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Hussam Almalki
- Addiction and Neuroscience Research Unit, Biomedical Sciences Research Center, Taif University, Taif, Saudi Arabia
| | - Abdulrahman S Alghamdi
- Addiction and Neuroscience Research Unit, Biomedical Sciences Research Center, Taif University, Taif, Saudi Arabia
| | - Ahmad Basfer
- Addiction and Neuroscience Research Unit, Biomedical Sciences Research Center, Taif University, Taif, Saudi Arabia
| | - Sultan Althobaiti
- Department of Pharmaceutical Care, Directorate of Health Affairs, Ministry of Health, Taif, Saudi Arabia
| | - Ana Maria Gregio Hardy
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
20
|
Althobaiti YS, Almalki AH. Effects of environmental enrichment on reinstatement of methamphetamine-induced conditioned place preference. Behav Brain Res 2020; 379:112372. [PMID: 31759048 DOI: 10.1016/j.bbr.2019.112372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The influence of environmental enrichment (EE) on reinstatement to methamphetamine (METH) seeking in rat model was investigated. METHODS Wistar rats were divided to receive saline (1 ml/kg) or METH (1 mg/kg, i.p.) for 8 days during the conditioning training in the conditioned place preference (CPP) paradigm, which is one of the most popular models to study the motivational effects of drugs and non-drug treatments in experimental animals. Rats were then kept in either isolated (IE) or enriched environment (EE) for 30 days during the extinction training. Animals were finally examined for reinstatement provoked by i.p. injections of METH. RESULTS Saline injections during the conditioning phase did not change CPP during reinstatement in animals of IE or EE control groups. METH injections reinstated place preference in the IE animal group. Interestingly, EE significantly blocked this reinstatement effects of METH. CONCLUSION These results show the important role of social interactions and positive environment conditions in preventing reinstatement to drug use.
Collapse
Affiliation(s)
- Yusuf S Althobaiti
- Taif University, College of Pharmacy, Department of Pharmacology and Toxicology, Taif, Saudi Arabia; Taif University, College of Pharmacy, Addiction and Neuroscience Research Unit, Taif, Saudi Arabia.
| | - Atiah H Almalki
- Taif University, College of Pharmacy, Addiction and Neuroscience Research Unit, Taif, Saudi Arabia; Taif University, College of Pharmacy, Department of Pharmaceutical chemistry, Taif, Saudi Arabia
| |
Collapse
|
21
|
Althobaiti YS, Almalki A, Alsaab H, Alsanie W, Gaber A, Alhadidi Q, Hardy AMG, Nasr A, Alzahrani O, Stary CM, Shah ZA. Pregabalin: Potential for Addiction and a Possible Glutamatergic Mechanism. Sci Rep 2019; 9:15136. [PMID: 31641170 PMCID: PMC6805907 DOI: 10.1038/s41598-019-51556-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/30/2019] [Indexed: 11/16/2022] Open
Abstract
Drug addiction remains a prevalent and fatal disease worldwide that carries significant social and economic impacts. Recent reports suggest illicit pregabalin (Lyrica) use may be increasing among youth, however the addictive potential of pregabalin has not been well established. Drug seeking behavior and chronic drug use are associated with deficits in glutamate clearance and activation of postsynaptic glutamatergic receptors. In the current study, we investigated the abuse potential of pregabalin using conditioned place preference (CPP) paradigm. Different doses of pregabalin (30, 60, 90, and 120 mg/kg) were used to assess the seeking behavior in mice. Glutamate homeostasis is maintained by glutamate transporter type-1 (GLT-1), which plays a vital role in clearing the released glutamate from synapses and drug seeking behavior. Therefore, we investigated the role of glutamate in pregabalin-seeking behavior with ceftriaxone (CEF), a potent GLT-1 upregulator. Mice treated with pregabalin 60 and 90 mg/kg doses demonstrated drug seeking-like behavior, which was significantly blocked by CEF pretreatment. These results suggest that pregabalin-induced CPP was successfully modulated by CEF which could serve as a lead compound for developing treatment for pregabalin abuse.
Collapse
Affiliation(s)
- Yusuf S Althobaiti
- Taif University, College of Pharmacy, Department of Pharmacology and Toxicology, Taif, Saudi Arabia. .,Taif University, College of Pharmacy, Addiction and Neuroscience Research Unit, Taif, Saudi Arabia.
| | - Atiah Almalki
- Taif University, College of Pharmacy, Addiction and Neuroscience Research Unit, Taif, Saudi Arabia.,Taif University, College of Pharmacy, Department of Pharmaceutical chemistry, Taif, Saudi Arabia
| | - Hashem Alsaab
- Taif University, College of Pharmacy, Addiction and Neuroscience Research Unit, Taif, Saudi Arabia.,Taif University, College of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Taif, Saudi Arabia
| | - Walaa Alsanie
- Taif University, College of Pharmacy, Addiction and Neuroscience Research Unit, Taif, Saudi Arabia.,Taif University, Faculty of Applied Medical Sciences, Department of Clinical Laboratories Sciences, Taif, Saudi Arabia
| | - Ahmed Gaber
- Taif University, College of Pharmacy, Addiction and Neuroscience Research Unit, Taif, Saudi Arabia.,Taif University, Faculty of Sciences, Department of Biology, Taif, Saudi Arabia
| | - Qasim Alhadidi
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford Medical School, Stanford University, CA, USA
| | - Ana Maria Gregio Hardy
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, OH, USA
| | - Abdulrahman Nasr
- Taif University, College of Pharmacy, Department of Pharmacology and Toxicology, Taif, Saudi Arabia
| | - Omar Alzahrani
- Taif University, College of Pharmacy, Department of Pharmacology and Toxicology, Taif, Saudi Arabia
| | - Creed M Stary
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford Medical School, Stanford University, CA, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, OH, USA
| |
Collapse
|
22
|
Siemsen BM, Reichel CM, Leong KC, Garcia-Keller C, Gipson CD, Spencer S, McFaddin JA, Hooker KN, Kalivas PW, Scofield MD. Effects of Methamphetamine Self-Administration and Extinction on Astrocyte Structure and Function in the Nucleus Accumbens Core. Neuroscience 2019; 406:528-541. [PMID: 30926546 PMCID: PMC6545487 DOI: 10.1016/j.neuroscience.2019.03.040] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 01/01/2023]
Abstract
Astrocytes provide support for neurons, regulate metabolic processes, and influence neuronal communication in a variety of ways, including through the homeostatic regulation of glutamate. Following 2-h cocaine or methamphetamine self-administration (SA) and extinction, rodents display decreased levels of basal glutamate in the nucleus accumbens core (NAcore), which transitions to elevated glutamate levels during drug seeking. We hypothesized that, like cocaine, this glutamate 'overflow' during methamphetamine seeking arises via decreased expression of the astroglial glutamate transporter GLT-1, and withdrawal of perisynaptic astroglial processes (PAPs) from synapses. As expected, methamphetamine self-administration and extinction decreased the level of contact made by PAPs in the NAcore, yet did not impact glutamate uptake, GLT-1 expression, or the general structural characteristics of astrocytes. Interestingly, systemic administration of N-acetylcysteine (NAC), a drug that both upregulates GLT-1 and promotes glial-glutamate release, reduced cued methamphetamine seeking. In order to test the impact of astrocyte activation and the induction of glial glutamate release within the NAcore, we employed astrocyte-specific expression of designer receptors exclusively activated by designer drugs (DREADDs). We show here that acute activation of Gq-coupled DREADDs in this region inhibited cued methamphetamine seeking. Taken together, these data indicate that cued methamphetamine seeking following two-hour SA is not mediated by deficient glutamate clearance in the NAcore, yet can be inhibited by engaging NAcore astrocytes.
Collapse
Affiliation(s)
- B M Siemsen
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - C M Reichel
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - K C Leong
- Department of Psychology, Trinity University, San Antonio, TX, USA
| | - C Garcia-Keller
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - C D Gipson
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - S Spencer
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - J A McFaddin
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - K N Hooker
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - P W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - M D Scofield
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|