1
|
Nguyen MKL, Pinkenburg C, Du JJ, Bernaus-Esqué M, Enrich C, Rentero C, Grewal T. The multiple facets of Rab proteins modulating the cellular distribution of cholesterol from the late endosomal compartment. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119896. [PMID: 39788156 DOI: 10.1016/j.bbamcr.2025.119896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Cholesterol is an essential lipid that ensures the functional integrity of mammalian cells. Most cells acquire cholesterol via endocytosis of low-density lipoproteins (LDL). Upon reaching late endosomes/lysosomes (LE/Lys), incoming ligands, including LDL-derived cholesterol, are distributed to other organelles. Niemann-Pick Type C1/2 (NPC1/2) proteins, members of the steroidogenic acute regulatory-related lipid transfer domain (StARD) and oxysterol-binding protein (OSBP) families facilitate the cellular distribution of cholesterol. NPC disease, a rare neurodegenerative disorder characterized by LE/Lys-cholesterol accumulation due to loss-of-function NPC1/2 mutations, underscores the physiological importance of LE/Lys-cholesterol distribution. Several Rab-GTPase family members, which play fundamental roles in directional membrane and lipid transport, including Rab7, 8 and 9, are critical for the delivery of cholesterol from LE/Lys to other organelles along vesicular and non-vesicular pathways. The insights gained from these regulatory circuits provide a foundation for the development of therapeutic strategies that could effectively address the cellular pathogenesis triggered by NPC1 deficiency and other lysosomal storage disorders.
Collapse
Affiliation(s)
- Mai Khanh Linh Nguyen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Céline Pinkenburg
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathan James Du
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Marc Bernaus-Esqué
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
2
|
Fu X, Lu H, Gao M, Li P, He Y, He Y, Luo X, Rao X, Liu W. Nitric oxide in the cardio-cerebrovascular system: Source, regulation and application. Nitric Oxide 2024; 152:48-57. [PMID: 39299647 DOI: 10.1016/j.niox.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Nitric oxide (NO) plays a crucial role as a messenger or effector in the body, yet it presents a dual impact on cardio-cerebrovascular health. Under normal physiological conditions, NO exhibits vasodilatory effects, regulates blood pressure, inhibits platelet aggregation, and offers neuroprotective actions. However, in pathological situations, excessive NO production contributes to or worsens inflammation within the body. Moreover, NO may combine with reactive oxygen species (ROS), generating harmful substances that intensify physical harm. This paper succinctly reviews pertinent literature to clarify the in vivo and in vitro origins of NO, its regulatory function in the cardio-cerebrovascular system, and the advantages and disadvantages associated with NO donor drugs, NO delivery systems, and vascular stent materials for treating cardio-cerebrovascular disease. The findings provide a theoretical foundation for the application of NO in cardio-cerebrovascular diseases.
Collapse
Affiliation(s)
- Xiaoming Fu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Haowei Lu
- Department of Pharmacy, The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Meng Gao
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Pinghe Li
- Lanzhou Foci Pharmaceutical Co., Ltd, Lanzhou, 730030, China
| | - Yan He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Yu He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Xiaojian Luo
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| | - Xiaoyong Rao
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| | - Wei Liu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| |
Collapse
|
3
|
Yang J, Jia N, Ou Z, Zhou G, Feng J. The alleviation of variable-frequency aVNS on neuroinflammatory injury in ischemia-reperfusion rats is related to the inhibition of TLR4 expression. Minerva Med 2024; 115:214-215. [PMID: 37401258 DOI: 10.23736/s0026-4806.23.08638-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Affiliation(s)
- Jiaen Yang
- Department of TCM Rehabilitation, People's Hospital of Gaoming District of Foshan City, Foshan, China -
| | - Ning Jia
- Department of TCM Rehabilitation, People's Hospital of Gaoming District of Foshan City, Foshan, China
| | - Zixuan Ou
- Department of TCM Rehabilitation, People's Hospital of Gaoming District of Foshan City, Foshan, China
| | - Guangjin Zhou
- Department of TCM Rehabilitation, People's Hospital of Gaoming District of Foshan City, Foshan, China
| | - Jiaqi Feng
- Department of TCM Rehabilitation, People's Hospital of Gaoming District of Foshan City, Foshan, China
| |
Collapse
|
4
|
Fan G, Liu M, Liu J, Huang Y, Mu W. Traditional Chinese medicines treat ischemic stroke and their main bioactive constituents and mechanisms. Phytother Res 2024; 38:411-453. [PMID: 38051175 DOI: 10.1002/ptr.8033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/12/2023] [Accepted: 09/24/2023] [Indexed: 12/07/2023]
Abstract
Ischemic stroke (IS) remains one of the leading causes of death and disability in humans. Unfortunately, none of the treatments effectively provide functional benefits to patients with IS, although many do so by targeting different aspects of the ischemic cascade response. The advantages of traditional Chinese medicine (TCM) in preventing and treating IS are obvious in terms of early treatment and global coordination. The efficacy of TCM and its bioactive constituents has been scientifically proven over the past decades. Based on clinical trials, this article provides a review of commonly used TCM patent medicines and herbal decoctions indicated for IS. In addition, this paper also reviews the mechanisms of bioactive constituents in TCM for the treatment of IS in recent years, both domestically and internationally. A comprehensive review of preclinical and clinical studies will hopefully provide new ideas to address the threat of IS.
Collapse
Affiliation(s)
- Genhao Fan
- Tianjin University of Chinese Medicine, Tianjin, China
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Menglin Liu
- Tianjin University of Chinese Medicine, Tianjin, China
| | - Jia Liu
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhong Huang
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Mu
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Al-Sultany HHA, Altimimi M, Qassam H, Hadi NR. Cardamonin mitigates kidney injury by modulating inflammation, oxidative stress, and apoptotic signaling in rats subjected to renal ischemia and reperfusion. J Med Life 2023; 16:1852-1856. [PMID: 38585526 PMCID: PMC10994612 DOI: 10.25122/jml-2023-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/23/2023] [Indexed: 04/09/2024] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is a critical health concern that aggravates the pathophysiology of acute kidney injury (AKI), leading to high mortality rates in intensive care units. Cardamonin is a natural compound with anti-inflammatory and antioxidant properties. The current study aimed to evaluate the renoprotective impact of cardamonin against AKI induced by renal IRI. Male rats (n=5 per group) were divided into four groups: the sham group underwent anesthesia and abdominal incision only; the control group experienced bilateral renal artery clamping for 30 minutes followed by 2 hours of reperfusion; the vehicle group received the cardamonin vehicle 30 minutes before ischemia induction; and the cardamonin group was administered 5 mg/kg of cardamonin 30 minutes before ischemia. Blood urea nitrogen (BUN) and creatinine were measured to assess the renal function. Tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), interleukin-6 (IL-6), caspase 3, and F2-isoprostane were assessed in renal tissues. Kidney injury was examined using the hematoxylin and eosin stain method. Compared to the sham group, the control group exhibited significantly higher levels of BUN, creatinine, TNF-α, IL-1β, IL-6, F2-isoprostane, and caspase 3 in renal tissues, along with severe kidney injury as evidenced by histological analysis. Compared to the control group, pretreatment with cardamonin resulted in a significant reduction in these biomarkers and alleviated renal damage. Cardamonin had renoprotective effects against renal ischemia and reperfusion injury via modulating inflammation, oxidative stress, and apoptosis pathways.
Collapse
Affiliation(s)
| | - Murooj Altimimi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq
| | - Heider Qassam
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq
| | - Najah Rayish Hadi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq
| |
Collapse
|
6
|
Qin C, Yang S, Chu YH, Zhang H, Pang XW, Chen L, Zhou LQ, Chen M, Tian DS, Wang W. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7:215. [PMID: 35794095 PMCID: PMC9259607 DOI: 10.1038/s41392-022-01064-1] [Citation(s) in RCA: 392] [Impact Index Per Article: 130.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke is caused primarily by an interruption in cerebral blood flow, which induces severe neural injuries, and is one of the leading causes of death and disability worldwide. Thus, it is of great necessity to further detailly elucidate the mechanisms of ischemic stroke and find out new therapies against the disease. In recent years, efforts have been made to understand the pathophysiology of ischemic stroke, including cellular excitotoxicity, oxidative stress, cell death processes, and neuroinflammation. In the meantime, a plethora of signaling pathways, either detrimental or neuroprotective, are also highly involved in the forementioned pathophysiology. These pathways are closely intertwined and form a complex signaling network. Also, these signaling pathways reveal therapeutic potential, as targeting these signaling pathways could possibly serve as therapeutic approaches against ischemic stroke. In this review, we describe the signaling pathways involved in ischemic stroke and categorize them based on the pathophysiological processes they participate in. Therapeutic approaches targeting these signaling pathways, which are associated with the pathophysiology mentioned above, are also discussed. Meanwhile, clinical trials regarding ischemic stroke, which potentially target the pathophysiology and the signaling pathways involved, are summarized in details. Conclusively, this review elucidated potential molecular mechanisms and related signaling pathways underlying ischemic stroke, and summarize the therapeutic approaches targeted various pathophysiology, with particular reference to clinical trials and future prospects for treating ischemic stroke.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Wei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lian Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Man Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
7
|
Kasindi A, Fuchs DT, Koronyo Y, Rentsendorj A, Black KL, Koronyo-Hamaoui M. Glatiramer Acetate Immunomodulation: Evidence of Neuroprotection and Cognitive Preservation. Cells 2022; 11:1578. [PMID: 35563884 PMCID: PMC9099707 DOI: 10.3390/cells11091578] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Novel, neuroprotective uses of Copaxone (generic name: glatiramer acetate-GA) are being examined, primarily in neurological conditions involving cognitive decline. GA is a well-studied synthetic copolymer that is FDA-approved for immune-based treatment of relapsing remitting multiple sclerosis (RRMS). Clinical studies have explored the potential mechanism of action (MOA) and outcomes of GA immunization in patients. Furthermore, results from these and animal studies suggest that GA has a direct immunomodulatory effect on adaptive and innate immune cell phenotypes and responses. These MOAs have been postulated to have a common neuroprotective impact in several neuroinflammatory and neurodegenerative diseases. Notably, several clinical studies report that the use of GA mitigated MS-associated cognitive decline. Its propensity to ameliorate neuro-proinflammatory and degenerative processes ignites increased interest in potential alternate uses such as in age-related macular degeneration (AMD), amyotrophic lateral sclerosis (ALS), and Alzheimer's disease (AD). Preclinical studies are exploring less frequent subcutaneous administration of GA, such as once weekly or monthly or a single dosing regimen. Indeed, cognitive functions were found to be either preserved, reversed, or improved after the less frequent treatment regimens with GA in animal models of AD. In this systematic review, we examine the potential novel uses of GA across clinical and pre-clinical studies, with evidence for its beneficial impact on cognition. Future investigation in large-size, double-blind clinical trials is warranted to establish the impact of GA immunomodulation on neuroprotection and cognitive preservation in various neurological conditions.
Collapse
Affiliation(s)
- Arielle Kasindi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.K.); (D.-T.F.); (Y.K.); (A.R.); (K.L.B.)
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.K.); (D.-T.F.); (Y.K.); (A.R.); (K.L.B.)
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.K.); (D.-T.F.); (Y.K.); (A.R.); (K.L.B.)
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.K.); (D.-T.F.); (Y.K.); (A.R.); (K.L.B.)
| | - Keith L. Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.K.); (D.-T.F.); (Y.K.); (A.R.); (K.L.B.)
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.K.); (D.-T.F.); (Y.K.); (A.R.); (K.L.B.)
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
8
|
Zhu L, Ding S, Xu L, Wu Z. Ozone treatment alleviates brain injury in cerebral ischemic rats by inhibiting the NF-κB signaling pathway and autophagy. Cell Cycle 2022; 21:406-415. [PMID: 34985377 PMCID: PMC8855843 DOI: 10.1080/15384101.2021.2020961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Stroke is the most frequent cause of disability in developed countries. A common phenomenon of stroke, cerebral ischemia, is threatening many lives worldwide. In addition, ozone treatment was previously reported to exert functions in relieving brain injury. In the current study, the therapeutic effects of ozone on cerebral ischemia are investigated. A rat model of middle cerebral artery occlusion (MCAO) was established. The brain water content was calculated by weighing brain tissues, and the 2, 3, 5-triphenyltetrazolium chloride staining was performed to measure brain infarction volume in rats. A colorimetric assay was conducted to examine expression levels of malondialdehyde, superoxide dismutase, catalase, and glutathione in the rat hippocampus. Reverse transcription quantitative polymerase-chain reaction and Western blot analyses were employed to evaluate expression levels of Beclin1, LC3B, p62, and critical factors implicated in the NF-κB signaling pathway. We found that ozone significantly improved the survival rate of MCAO model rats, reduced the cerebral water content, and decreased the neurological scores of ischemic rats. Ozone markedly reduced cerebral ischemia-induced infarction in ischemic rats. Ozone decreased MDA levels and increased SOD, catalase, and GSH levels in the hippocampus of rats. Ozone significantly inhibited autophagy by decreasing Beclin1 and LC3B expression and increasing p62 expression. The ozone inactivated the NF-κB signaling pathway by decreasing the protein levels of TLR4, p-IKKβ, p-IKBα, and p-p65. We conclude that ozone treatment alleviates the brain injury in ischemic rats by suppressing autophagy and inactivating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Anesthesiology, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Shengyang Ding
- Department of Anesthesiology, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Lingshan Xu
- Department of Anesthesiology, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Zhouquan Wu
- Department of Anesthesiology, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, Changzhou, China,CONTACT Zhouquan Wu Department of Anesthesiology, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, 68 Gehu Middle Road, Wujin District, Changzhou, Jiangsu, China
| |
Collapse
|
9
|
Xie Z, Wei L, Chen J, Chen Z. Calcium dobesilate alleviates renal dysfunction and inflammation by targeting nuclear factor kappa B (NF-κB) signaling in sepsis-associated acute kidney injury. Bioengineered 2022; 13:2816-2826. [PMID: 35038964 PMCID: PMC8974157 DOI: 10.1080/21655979.2021.2024394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) is a serious complication of sepsis that increases mortality and the risk of progression to chronic kidney disease. Oxidative stress and apoptosis are reported to exert critical function in the pathogenesis of sepsis-associated AKI. Calcium dobesilate (CaD) was reported to play a protective role in renal diseases. Therefore, we explored the antioxidant effect and potential mechanism of CaD in lipopolysaccharide (LPS)-induced AKI in mice. We evaluated renal function (blood urea nitrogen (BUN) and serum creatinine (SCr)), histopathology, oxidative stress (superoxide dismutase (SOD) and malondialdehyde (MDA)), inflammation cytokines, and apoptosis in kidneys of mice. The effect of CaD on NF-κB signaling was evaluated by Western blot. Our findings showed that CaD alleviated renal dysfunction and kidney injury, and also reversed upregulated MDA concentration and reduced SOD enzyme activity in AKI mice. Moreover, LPS-induced inflammatory response was attenuated by CaD. CaD treatment also reduced the apoptosis evoked by LPS. Additionally, CaD downregulated phosphorylation of nuclear factor kappa B (NF-κB) signaling components in LPS mice. Conclusively, CaD alleviates renal dysfunction and inflammation by targeting NF-κB signaling in sepsis-associated AKI.
Collapse
Affiliation(s)
- Zhijuan Xie
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Lanji Wei
- Department of Health Management Center, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China
| | - Jianying Chen
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Zhong Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| |
Collapse
|
10
|
Surfactant protein A enhances the degradation of LPS-induced TLR4 in primary alveolar macrophages involving Rab7, β-arrestin2, and mTORC1. Infect Immun 2021; 90:e0025021. [PMID: 34780278 DOI: 10.1128/iai.00250-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory infections by Gram-negative bacteria are a major cause of global morbidity and mortality. Alveolar macrophages (AMs) play a central role in maintaining lung immune homeostasis and host defense by sensing pathogens via pattern recognition receptors (PRR). The PRR Toll-like receptor (TLR) 4 is a key sensor of lipopolysaccharide (LPS) from Gram-negative bacteria. Pulmonary surfactant is the natural microenvironment of AMs. Surfactant protein A (SP-A), a multifunctional host defense collectin, controls LPS-induced pro-inflammatory immune responses at the organismal and cellular level via distinct mechanisms. We found that SP-A post-transcriptionally restricts LPS-induced TLR4 protein expression in primary AMs from healthy humans, rats, wild-type and SP-A-/- mice by further decreasing cycloheximide-reduced TLR4 protein translation and enhances the co-localization of TLR4 with the late endosome/lysosome. Both effects as well as the SP-A-mediated inhibition of LPS-induced TNFα release are counteracted by pharmacological inhibition of the small GTPase Rab7. SP-A-enhanced Rab7 expression requires β-arrestin2 and, in β-arrestin2-/- AMs and after intratracheal LPS challenge of β-arrestin2-/- mice, SP-A fails to enhance TLR4/lysosome co-localization and degradation of LPS-induced TLR4. In SP-A-/- mice, TLR4 levels are increased after pulmonary LPS challenge. SP-A-induced activation of mechanistic target of rapamycin complex 1 (mTORC1) kinase requires β-arrestin2 and is critically involved in degradation of LPS-induced TLR4. The data suggest that SP-A post-translationally limits LPS-induced TLR4 expression in primary AMs by lysosomal degradation comprising Rab7, β-arrestin2, and mTORC1. This study may indicate a potential role of SP-A-based therapeutic interventions in unrestricted TLR4-driven immune responses to lower respiratory tract infections caused by Gram-negative bacteria.
Collapse
|
11
|
Zhang Y, Li D, Zeng Q, Feng J, Fu H, Luo Z, Xiao B, Yang H, Wu M. LRRC4 functions as a neuron-protective role in experimental autoimmune encephalomyelitis. Mol Med 2021; 27:44. [PMID: 33932995 PMCID: PMC8088686 DOI: 10.1186/s10020-021-00304-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leucine rich repeat containing 4 (LRRC4), also known as netrin-G ligand-2 (NGL-2), belongs to the superfamily of LRR proteins and serves as a receptor for netrin-G2. LRRC4 regulates the formation of excitatory synapses and promotes axon differentiation. Mutations in LRRC4 occur in Autism Spectrum Disorder (ASD) and intellectual disability. Multiple sclerosis (MS) is a chronic neuroinflammatory disease with spinal cords demyelination and neurodegeneration. Here, we sought to investigate whether LRRC4 is involved in spinal cords neuron-associated diseases. METHODS LRRC4 was detected in the CNS of experimental autoimmune encephalomyelitis (EAE) mice by the use of real-time PCR and western blotting. LRRC4-/- mice were created and immunized with myelin oligodendrocyte glycoprotein peptide (MOG)35-55. Pathological changes in spinal cords of LRRC4-/- and WT mice 15 days after immunization were examined by using hematoxylin and eosin (H&E), Luxol Fast Blue (LFB) staining and immunohistochemistry. The number of Th1/Th2/Th17/Treg cells in spleens and blood were measured with flow cytometry. Differential gene expression in the spinal cords from WT and LRRC4-/- mice was analyzed by using RNA sequencing (RNA-seq). Adeno-associated virus (AAV) vectors were used to overexpress LRRC4 (AAV-LRRC4) and were injected into EAE mice to assess the therapeutic effect of AAV-LRRC4 ectopic expression on EAE. RESULTS We report that LRRC4 is mainly expressed in neuron of spinal cords, and is decreased in the spinal cords of the EAE mice. Knockout of LRRC4 have a disease progression quickened and exacerbated with more severe myelin degeneration and infiltration of leukocytes into the spinal cords. We also first found that Rab7b is high expressed in EAE mice, and the deficiency of LRRC4 induces the elevated NF-κB p65 by up-regulating Rab7b, and up-regulation of IL-6, IFN-γ and down-regulation of TNF-α, results in more severe Th1 immune response in LRRC4-/- mice. Ectopic expression of LRRC4 alleviates the clinical symptoms of EAE mice and protects the neurons from immune damages. CONCLUSIONS We identified a neuroprotective role of LRRC4 in the progression of EAE, which may be used as a potential target for auxiliary support therapeutic treatment of MS.
Collapse
Affiliation(s)
- Yan Zhang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Di Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China
| | - Qiuming Zeng
- Internal Medicine-Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jianbo Feng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China
| | - Haijuan Fu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China
| | - Zhaohui Luo
- Internal Medicine-Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bo Xiao
- Internal Medicine-Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huan Yang
- Internal Medicine-Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
12
|
Wang X, Fang Y, Huang Q, Xu P, Lenahan C, Lu J, Zheng J, Dong X, Shao A, Zhang J. An updated review of autophagy in ischemic stroke: From mechanisms to therapies. Exp Neurol 2021; 340:113684. [PMID: 33676918 DOI: 10.1016/j.expneurol.2021.113684] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
Stroke is a leading cause of mortality and morbidity worldwide. Understanding the underlying mechanisms is important for developing effective therapies for treating stroke. Autophagy is a self-eating cellular catabolic pathway, which plays a crucial homeostatic role in the regulation of cell survival. Increasing evidence shows that autophagy, observed in various cell types, plays a critical role in brain pathology after ischemic stroke. Therefore, the regulation of autophagy can be a potential target for ischemic stroke treatment. In the present review, we summarize the recent progress that research has made regarding autophagy and ischemic stroke, including common signaling pathways, the role of autophagic subtypes (e.g. mitophagy, pexophagy, aggrephagy, endoplasmic reticulum-phagy, and lipophagy) in ischemic stroke, as well as the current methods for autophagy detection and potential therapeutic strategy.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qingxia Huang
- Department of Echocardiography, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Penglei Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, USA; Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingwei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao Dong
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China; Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Song W, Wang T, Shi B, Wu Z, Wang W, Yang Y. Neuroprotective effects of microRNA-140-5p on ischemic stroke in mice via regulation of the TLR4/NF-κB axis. Brain Res Bull 2021; 168:8-16. [PMID: 33246036 DOI: 10.1016/j.brainresbull.2020.10.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 02/09/2023]
Abstract
BACKGROUND AND AIM Ischemic stroke is one of the main causes of death worldwide and permanent global disability. On the basis of existing literature data, the study was carried out in an effort to explore how miR-140-5p affects ischemic stroke and whether the mechanism relates to toll-like receptor-4 (TLR4) and nuclear factor-kappa B (NF-κB). METHODS Firstly, middle cerebral artery occlusion (MCAO) was performed to establish mouse models of ischemic stroke in vivo, while primary neurons were exposed to oxygen-glucose deprivation (OGD) to set up an ischemic stroke model in vitro. RT-qPCR was then applied to detect the miR-140-5p expression patterns, whereas Western blot was adopted to detect the expression patterns of TLR4, NF-κB, and apoptosis-related factors. In addition, based gain-function of experiments using miR-140-5p mimic and TLR4 over-expression plasmid, neurological function score, TTC staining, TUNEL staining, as well as flow cytometry were carried out to evaluate the effects of miR-140-5p and TLR4 on MCAO mice and OGD neurons. Moreover, dual-luciferase reporter assay was applied to validate the targeting relationship between miR-140-5p and TLR4. RESULTS Initial findings revealed that miR-140-5p was poorly-expressed, while TLR4 was highly-expressed in ischemic stroke. It was verified that miR-140-5p targeted TLR4 and downregulated its expression. MiR-140-5p over-expression was observed to inhibit the apoptosis of neurons under OGD exposure and restrain the progression of ischemic stroke, while TLR4 over-expression promoted the apoptosis and disease progression. Besides, miR-140-5p over-expression led to a decrease in NF-κB protein levels, which were increased by TLR4 over-expression. CONCLUSION In conclusion, our data indicates that miR-140-5p over-expression may be instrumental for the therapeutic targeting of ischemic stroke by alleviating neuron injury with the involvement of the TLR4/NF-κB axis.
Collapse
Affiliation(s)
- Wenjun Song
- Department of Neurology, The Second Affiliated Hospital of Lanzhou University, Lanzhou, 730030, PR China.
| | - Tiancheng Wang
- Department of Neurology, The Second Affiliated Hospital of Lanzhou University, Lanzhou, 730030, PR China
| | - Bei Shi
- Department of Neurology, The Second Affiliated Hospital of Lanzhou University, Lanzhou, 730030, PR China
| | - Zhijun Wu
- Department of Neurology, The Second Affiliated Hospital of Lanzhou University, Lanzhou, 730030, PR China
| | - Wenjie Wang
- Department of Neurology, The Second Affiliated Hospital of Lanzhou University, Lanzhou, 730030, PR China
| | - Yanhong Yang
- Department of Neurology, The Second Affiliated Hospital of Lanzhou University, Lanzhou, 730030, PR China
| |
Collapse
|
14
|
When Rab GTPases meet innate immune signaling pathways. Cytokine Growth Factor Rev 2021; 59:95-100. [PMID: 33608190 DOI: 10.1016/j.cytogfr.2021.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
Ras-related protein in brain (Rab) GTPases, the subfamily of small GTP-binding proteins superfamily, play a vital role in regulating and controlling vesicles' transport between different membrane-bound organelles. As the first-line defense against invading pathogens, the host's innate immune system recognizes various pathogen-associated molecular patterns through a series of membrane-bound or cytoplasmic pathogen recognition receptors to activate the downstream signaling pathway and induce the type I interferons (IFN-I). Numerous studies have demonstrated that Rab GTPases participate in innate immunity by regulating transmembrane signals' transduction and the transport, adhesion, anchoring, and fusion of vesicles. However, the underlying mechanism of Rab GTPases regulating innate immunity is not entirely understood. A comprehensive understanding of the interplay between the Rab GTPases and innate immunity will help develop novel therapeutics against microbial infections and chronic inflammations.
Collapse
|
15
|
Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci 2020; 78:1233-1261. [PMID: 33057840 PMCID: PMC7904555 DOI: 10.1007/s00018-020-03656-y] [Citation(s) in RCA: 792] [Impact Index Per Article: 158.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/25/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Toll-like receptor (TLR) 4 belongs to the TLR family of receptors inducing pro-inflammatory responses to invading pathogens. TLR4 is activated by lipopolysaccharide (LPS, endotoxin) of Gram-negative bacteria and sequentially triggers two signaling cascades: the first one involving TIRAP and MyD88 adaptor proteins is induced in the plasma membrane, whereas the second engaging adaptor proteins TRAM and TRIF begins in early endosomes after endocytosis of the receptor. The LPS-induced internalization of TLR4 and hence also the activation of the TRIF-dependent pathway is governed by a GPI-anchored protein, CD14. The endocytosis of TLR4 terminates the MyD88-dependent signaling, while the following endosome maturation and lysosomal degradation of TLR4 determine the duration and magnitude of the TRIF-dependent one. Alternatively, TLR4 may return to the plasma membrane, which process is still poorly understood. Therefore, the course of the LPS-induced pro-inflammatory responses depends strictly on the rates of TLR4 endocytosis and trafficking through the endo-lysosomal compartment. Notably, prolonged activation of TLR4 is linked with several hereditary human diseases, neurodegeneration and also with autoimmune diseases and cancer. Recent studies have provided ample data on the role of diverse proteins regulating the functions of early, late, and recycling endosomes in the TLR4-induced inflammation caused by LPS or phagocytosis of E. coli. In this review, we focus on the mechanisms of the internalization and intracellular trafficking of TLR4 and CD14, and also of LPS, in immune cells and discuss how dysregulation of the endo-lysosomal compartment contributes to the development of diverse human diseases.
Collapse
Affiliation(s)
- Anna Ciesielska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland.
| | - Marta Matyjek
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| |
Collapse
|
16
|
Fan X, Elkin K, Shi Y, Zhang Z, Cheng Y, Gu J, Liang J, Wang C, Ji X. Schisandrin B improves cerebral ischemia and reduces reperfusion injury in rats through TLR4/NF-κB signaling pathway inhibition. Neurol Res 2020; 42:693-702. [PMID: 32657248 DOI: 10.1080/01616412.2020.1782079] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
It has been established that poor outcomes in ischemic stroke patients are associated with the post-reperfusion inflammatory response and up-regulation of TLR4. Therefore, suppression of the TLR4 signaling pathway constitutes a potential neuroprotective therapeutic strategy. Schisandrin B, a compound extracted from Schisandra chinensis, has been shown to possess anti-inflammatory and neuroprotective properties. However, the mechanism remains unclear. In the present study, the therapeutic effect of schisandrin B was assessed following cerebral ischemia and reperfusion (I/R) injury in a model of middle cerebral artery occlusion and reperfusion (MCAO/R) in rats. The effects of schisandrin B were investigated with particular emphasis on TLR4 signal transduction and on the inflammatory response. Schisandrin B treatment conferred significant protection against MCAO/R injury, as evidenced by decreases in infarct volume, neurological score, and the number of apoptotic neurons and inflammatory signaling molecules. ABBREVIATIONS I/R: schemia/reperfusion; IL: interleukin; MCAO/R: middle cerebral artery occlusion and reperfusion; NF-κB: nuclear; TLR4: Toll-like receptor 4; TNF-α: tumor necrosis factor-α.
Collapse
Affiliation(s)
- Xingjuan Fan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University , Beijing, China.,Department of Neurology, Affiliated Hospital of Nantong University , Nantong, China
| | - Kenneth Elkin
- Department of Neurosurgery, Wayne State University School of Medicine , Detroit, MI, USA
| | - Yunwei Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University , Nantong, China
| | - Zhihong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University , Nantong, China
| | - Yaqin Cheng
- Department of Neurology, Affiliated Hospital of Nantong University , Nantong, China
| | - Jingxiao Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University , Nantong, China
| | - Jiale Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University , Nantong, China
| | - Caiping Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University , Nantong, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University , Beijing, China
| |
Collapse
|
17
|
Ma H, Su D, Wang Q, Chong Z, Zhu Q, He W, Wang W. Phoenixin 14 inhibits ischemia/reperfusion-induced cytotoxicity in microglia. Arch Biochem Biophys 2020; 689:108411. [PMID: 32450066 DOI: 10.1016/j.abb.2020.108411] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 12/23/2022]
Abstract
The process of ischemia/reperfusion (IR) in ischemic stroke often leads to significant cell death and permanent neuronal damage. Safe and effective treatments are urgently needed to mitigate the damage caused by IR injury. The naturally occurring pleiotropic peptide phoenixin 14 (PNX-14) has recently come to light as a potential treatment for IR injury. In the present study, we examined the effects of PNX-14 on several key processes involved in ischemic injury, such as pro-inflammatory cytokine expression, oxidative stress, and the related cascade mediated through the toll-like receptor 4 (TLR4) pathway, using BV2 microglia exposed to oxygen-glucose deprivation and reoxygenation (OGD/R). Our results demonstrate an acute ability of PNX-14 to regulate the expression levels of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). PNX-14 also prevented oxidative stress by reducing the generation of reactive oxygen species (ROS) and increasing the level of the antioxidant glutathione (GSH). Importantly, PNX-14 inhibited high-mobility group box 1 (HMGB1)/TLR4/myeloid differentiation primary response 88 (MyD88)/nuclear factor-κB (NF-κB) signaling pathway, by inhibiting the activation of TLR4 and preventing the nuclear translocation of p65 protein. We further confirmed the cerebroprotective effects of PNX-14 in an MCAO rat model, which resulted in reduced infarct volume and decreased microglia activation. Together, the results of this study implicate a possible protective role of PNX-14 against various aspects of IR injury in vitro.
Collapse
Affiliation(s)
- Hongling Ma
- Department of Neurology, Liaocheng People's Hospital of Shandong First Medical University, Liaocheng City, Shandong Province, 252000, China
| | - Daoqing Su
- Department of Neurosurgery, Liaocheng People's Hospital of Shandong First Medical University, Liaocheng City, Shandong Province, 252000, China
| | - Qingdong Wang
- Department of Neurology, Liaocheng People's Hospital of Shandong First Medical University, Liaocheng City, Shandong Province, 252000, China
| | - Zonglei Chong
- Department of Neurosurgery, Liaocheng People's Hospital of Shandong First Medical University, Liaocheng City, Shandong Province, 252000, China
| | - Qiushi Zhu
- Department of Neurosurgery, Liaocheng People's Hospital of Shandong First Medical University, Liaocheng City, Shandong Province, 252000, China
| | - Weibin He
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan City, Hubei Province, 430060, China
| | - Wei Wang
- Department of Neurology, Liaocheng People's Hospital of Shandong First Medical University, Liaocheng City, Shandong Province, 252000, China.
| |
Collapse
|
18
|
Liang Q, Yang J, He J, Chen X, Zhang H, Jia M, Liu K, Jia C, Pan Y, Wei J. Stigmasterol alleviates cerebral ischemia/reperfusion injury by attenuating inflammation and improving antioxidant defenses in rats. Biosci Rep 2020; 40:BSR20192133. [PMID: 32149332 PMCID: PMC7160377 DOI: 10.1042/bsr20192133] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/AIMS The paper aimed to investigate the effects of Stigmasterol on inflammatory factors, antioxidant capacity, and apoptotic signaling pathways in brain tissue of rats with cerebral ischemia/reperfusion (I/R) injury. METHODS The neurological deficits of the rats were analyzed and HE staining was performed. The cerebral infarct volume was calculated by means of TTC staining, and neuronal apoptosis was detected by TUNEL staining. At the same time, the contents of glutathione peroxidase, glutathione, superoxide dismutase (SOD), nitric oxide, and malondialdehyde in brain tissue were measured. The expression of the relevant protein was detected by means of Western blotting. RESULTS The results showed that the neurological deficit score and infarct area of the I/R rats in the soy sterol treatment group were significantly lower than those in the I/R group. Moreover, the levels of carbon monoxide and malondialdehyde in the soysterol group were significantly lower than those in the I/R group, and the expressions of cyclooxygenase-2 (Cox-2) and NF-κB (p65) in the soysterol group were also significantly lower than those in the I/R group. The expression of Nrf2 (nucleus) and heme oxygenase-1 (HO-1) increased significantly, and the activities of antioxidant enzymes and SOD were increased. In addition, the stigmasterol treatment can inhibit apoptosis, down-regulate Bax and cleaved caspase-3 expression, and up-regulate Bcl-Xl expression. CONCLUSION Stigmasterol protects the brain from brain I/R damage by reducing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Qilong Liang
- Department of Neurosurgery, Second Hospital of Lanzhou, Lanzhou City 730046, Gansu Province, P.R. China
| | - Jun Yang
- Department of Neurosurgery, Second Hospital of Lanzhou, Lanzhou City 730046, Gansu Province, P.R. China
| | - Jiaji He
- Department of Neurosurgery, Second Hospital of Lanzhou, Lanzhou City 730046, Gansu Province, P.R. China
| | - Xiaoling Chen
- Department of Neurosurgery, Second Hospital of Lanzhou, Lanzhou City 730046, Gansu Province, P.R. China
| | - Hong Zhang
- Department of Neurosurgery, Second Hospital of Lanzhou, Lanzhou City 730046, Gansu Province, P.R. China
| | - Maolin Jia
- Department of Neurosurgery, Second Hospital of Lanzhou, Lanzhou City 730046, Gansu Province, P.R. China
| | - Kai Liu
- Department of Neurosurgery, Second Hospital of Lanzhou, Lanzhou City 730046, Gansu Province, P.R. China
| | - Chuangchuang Jia
- Department of Neurosurgery, Second Hospital of Lanzhou, Lanzhou City 730046, Gansu Province, P.R. China
| | - Yanhong Pan
- Department of Neurosurgery, Second Hospital of Lanzhou, Lanzhou City 730046, Gansu Province, P.R. China
| | - Jinwang Wei
- Department of Neurosurgery, Second Hospital of Lanzhou, Lanzhou City 730046, Gansu Province, P.R. China
| |
Collapse
|
19
|
Yang XL, Cao CZ, Zhang QX. MiR-195 alleviates oxygen-glucose deprivation/reperfusion-induced cell apoptosis via inhibition of IKKα-mediated NF-κB pathway. Int J Neurosci 2020; 131:755-764. [PMID: 32271641 DOI: 10.1080/00207454.2020.1754212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Increasing evidence confirmed that miRNA plays a critical role in the occurrence and development of ischemic stroke. Here, the aim of this study was to examine the function and mechanisms of miR-195 in vascular endothelial cell apoptosis induced by oxygen-glucose deprivation (OGD). METHODS This study intended to use OGD to simulate ischemia in vitro. The mRNA expression of miR-195, IKKα and NF-κB in human umbilical vein endothelial cells (HUVECs) were detected by RT-qPCR. The proliferation and apoptosis ability of HUVECs were evaluated using MTT assay, colony formation assay and flow cytometry, respectively. Western blot was applied to examine related protein expression. The interaction between miR-195 and IKKα was verified by dual-luciferase reporter gene assay. RESULTS OGD significantly inhibited cell viability and induced cell apoptosis in HUVECs. Meanwhile, OGD treatment notably decreased the expression of miR-195, as well as enhanced NF-κB expression. Moreover, miR-195 directly interacted with IKKα and suppressed its expression. Mechanically, overexpression of miR-195 exhibited pro-proliferation and anti-apoptotic effect on HUVECs treated with OGD through targeting IKKα-mediated NF-κB pathway. At the molecular level, through suppressing IKKα/NF-κB pathway, miR-195 inhibited the expression of pro-apoptotic protein Bax and active caspase-3, but increased the expression of anti-apoptotic Bcl-2 in HUVECs. CONCLUSIONS Our finding uncovers the protective effect of miR-195 on the biological behavior of HUVECs via suppression of the NF-κB pathway induced by IKKα, which may provide a new potential strategy for ischemic stroke clinical treatment.
Collapse
Affiliation(s)
- Xiao-Li Yang
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, P. R. China
| | - Cheng-Zhu Cao
- Department of Physiology, Medical College of Qinghai University, Xining, P. R. China
| | - Qing-Xin Zhang
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, P. R. China
| |
Collapse
|
20
|
Matsuura W, Nakamoto K, Tokuyama S. Involvement of descending pain control system regulated by orexin receptor signaling in the induction of central post-stroke pain in mice. Eur J Pharmacol 2020; 874:173029. [PMID: 32084419 DOI: 10.1016/j.ejphar.2020.173029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/04/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
Central post-stroke pain (CPSP) is a type of neuropathic pain for which the mechanism and relevant drug pathways remain unknown. Recently, it was reported that intracerebroventricular (ICV) administration of orexin-A suppresses pain and ischemia. In this study, we tested the role of orexin-A in CPSP induction in mice. Male ddY mice were subjected to 30 min of bilateral carotid artery occlusion (BCAO). CPSP was assessed by von Frey test. Colocalization of orexin 1 receptor (OX1R) with various neuron markers were determined by double-immunofluorescence. The hindpaw withdrawal responses to mechanical stimuli were significantly increased 3 days post-BCAO compared with those of sham groups. ICV injection of orexin-A dose-dependently suppressed BCAO-induced mechanical allodynia. These effects were inhibited by pre-treatment with SB334867 (an OX1R antagonist; ICV injection), yohimbine (a noradrenaline α2 receptor antagonist; intrathecal (IT) injection), and WAY100635 (a serotonin 5-HT1A receptor antagonist; IT injection), but not TCS OX2 29 (an OX2R antagonist; ICV injection). OX1R colocalized with TH (a noradrenergic neuron marker) and TPH (a serotonergic neuron marker) in the locus ceruleus (LC) and the rostral ventromedial medulla (RVM), respectively. The number of c-Fos positive cells in the LC and the RVM of BCAO mice was increased at 90 min after ICV injection of orexin-A compared to saline group. These results indicate that orexin-A/OX1R signaling plays an important role through activation of the descending pain control system in the induction of CPSP in mice.
Collapse
Affiliation(s)
- Wataru Matsuura
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Kazuo Nakamoto
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Shogo Tokuyama
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan.
| |
Collapse
|
21
|
Abstract
Ischemic strokes occur when a major cerebral artery or its branches are occluded, resulting in activation of inflammatory processes that cause secondary tissue injury, breakdown of the blood–brain barrier, edema or hemorrhage. Treatments that inhibit inflammatory processes may thus be highly beneficial. A key regulator of the inflammatory process is the nuclear factor kappa B (NF-κB) pathway. In its active form, NF-κB regulates expression of proinflammatory and proapoptotic genes. The molecules that interact with NF-κB, and the subunits that compose NF-κB itself, represent therapeutic targets that can be modulated to decrease inflammation. This review focuses on our current understanding of the NF-κB pathway and the potential benefits of inhibiting NF-κB in ischemia-reperfusion injury of the brain.
Collapse
|
22
|
The Role of Ubiquitin-Proteasome Pathway and Autophagy-Lysosome Pathway in Cerebral Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5457049. [PMID: 32089771 PMCID: PMC7016479 DOI: 10.1155/2020/5457049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/24/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022]
Abstract
The ubiquitin-proteasome pathway and autophagy-lysosome pathway are two major routes for clearance of aberrant cellular components to maintain protein homeostasis and normal cellular functions. Accumulating evidence shows that these two pathways are impaired during cerebral ischemia, which contributes to ischemic-induced neuronal necrosis and apoptosis. This review aims to critically discuss current knowledge and controversies on these two pathways in response to cerebral ischemic stress. We also discuss molecular mechanisms underlying the impairments of these protein degradation pathways and how such impairments lead to neuronal damage after cerebral ischemia. Further, we review the recent advance on the understanding of the involvement of these two pathways in the pathological process during many therapeutic approaches against cerebral ischemia. Despite recent advances, the exact role and molecular mechanisms of these two pathways following cerebral ischemia are complex and not completely understood, of which better understanding will provide avenues to develop novel therapeutic strategies for ischemic stroke.
Collapse
|
23
|
Matsuura W, Nakamoto K, Tokuyama S. The Involvement of DDAH1 in the Activation of Spinal NOS Signaling in Early Stage of Mechanical Allodynia Induced by Exposure to Ischemic Stress in Mice. Biol Pharm Bull 2019; 42:1569-1574. [DOI: 10.1248/bpb.b19-00371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Wataru Matsuura
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University
| | - Kazuo Nakamoto
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University
| | - Shogo Tokuyama
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University
| |
Collapse
|