1
|
Jerow LG, Krueger DA, Gross C, Danzer SC. Somatic mosaicism and interneuron involvement in mTORopathies. Trends Neurosci 2025; 48:362-376. [PMID: 40121168 PMCID: PMC12078011 DOI: 10.1016/j.tins.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/27/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025]
Abstract
Somatic mutations in genes regulating mechanistic target of rapamycin (mTOR) pathway signaling can cause epilepsy, autism, and cognitive dysfunction. Research has predominantly focused on mTOR regulation of excitatory neurons in these conditions; however, dysregulated mTOR signaling among interneurons may also be critical. In this review, we discuss clinical evidence for interneuron involvement, and potential mechanisms, known and hypothetical, by which interneurons might come to directly harbor pathogenic mutations. To understand how mTOR hyperactive interneurons might drive dysfunction, we review studies in which mTOR signaling has been selectively disrupted among interneurons and interneuron progenitors in mouse model systems. Complex cellular mosaicism and dual roles for mTOR (hyper)activation in mediating disease pathogenesis and homeostatic responses raise challenging questions for effective treatment of these disorders.
Collapse
Affiliation(s)
- Lilian G Jerow
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA; Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Darcy A Krueger
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Christina Gross
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Steve C Danzer
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA; Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Quatraccioni A, Cases-Cunillera S, Balagura G, Coleman M, Rossini L, Mills JD, Casillas-Espinosa PM, Moshé SL, Sankar R, Baulac S, Noebels JL, Auvin S, O'Brien TJ, Henshall DC, Akman Ö, Galanopoulou AS. WONOEP appraisal: Genetic insights into early onset epilepsies. Epilepsia 2024; 65:3138-3154. [PMID: 39302576 DOI: 10.1111/epi.18124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024]
Abstract
Early onset epilepsies occur in newborns and infants, and to date, genetic aberrations and variants have been identified in approximately one quarter of all patients. With technological sequencing advances and ongoing research, the genetic diagnostic yield for specific seizure disorders and epilepsies is expected to increase. Genetic variants associated with epilepsy include chromosomal abnormalities and rearrangements of various sizes as well as single gene variants. Among these variants, a distinction can be made between germline and somatic, with the latter being increasingly identified in epilepsies with focal cortical malformations in recent years. The identification of the underlying genetic mechanisms of epilepsy syndromes not only revolutionizes the diagnostic schemes but also leads to a better understanding of the diseases and their interrelationships, ultimately providing new opportunities for therapeutic targeting. At the XVI Workshop on Neurobiology of Epilepsy (WONOEP 2022, Talloires, France, July 2022), various etiologies, research models, and mechanisms of genetic early onset epilepsies were presented and discussed.
Collapse
Affiliation(s)
- Anne Quatraccioni
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Silvia Cases-Cunillera
- Neuronal Signaling in Epilepsy and Glioma, Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| | - Ganna Balagura
- Department of Neuroscience, Ophthalmology, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Matthew Coleman
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Laura Rossini
- Epilepsy Unit, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy
| | - James D Mills
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Chalfont St. Peter, UK
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Solomon L Moshé
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, and Department of Neuroscience and Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | - Raman Sankar
- Department of Neurology and Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Jeffrey L Noebels
- Departments of Neurology, Neuroscience, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Stéphane Auvin
- AP-HP, Hôpital Robert-Debré, INSERM NeuroDiderot, DMU Innov-RDB, Neurologie Pédiatrique, member of European Reference Network EpiCARE, Université Paris Cité and Institut Universitaire de France, Paris, France
| | - Terence J O'Brien
- Department of Neuroscience, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria, Australia
| | - David C Henshall
- Department of Physiology and Medical Physics and FutureNeuro SFI Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Özlem Akman
- Department of Physiology, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkey
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
3
|
Drake AW, Jerow LG, Ruksenas JV, McCoy C, Danzer SC. Somatostatin interneuron fate-mapping and structure in a Pten knockout model of epilepsy. Front Cell Neurosci 2024; 18:1474613. [PMID: 39497922 PMCID: PMC11532043 DOI: 10.3389/fncel.2024.1474613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/02/2024] [Indexed: 11/07/2024] Open
Abstract
Disruption of inhibitory interneurons is common in the epileptic brain and is hypothesized to play a pivotal role in epileptogenesis. Abrupt disruption and loss of interneurons is well-characterized in status epilepticus models of epilepsy, however, status epilepticus is a relatively rare cause of epilepsy in humans. How interneuron disruption evolves in other forms of epilepsy is less clear. Here, we explored how somatostatin (SST) interneuron disruption evolves in quadruple transgenic Gli1-CreERT2, Ptenfl/fl, SST-FlpO, and frt-eGFP mice. In these animals, epilepsy develops following deletion of the mammalian target of rapamycin (mTOR) negative regulator phosphatase and tensin homolog (Pten) from a subset of dentate granule cells, while downstream Pten-expressing SST neurons are fate-mapped with green fluorescent protein (GFP). The model captures the genetic complexity of human mTORopathies, in which mutations can be restricted to excitatory neuron lineages, implying that interneuron involvement is later developing and secondary. In dentate granule cell (DGC)-Pten knockouts (KOs), the density of fate-mapped SST neurons was reduced in the hippocampus, but their molecular phenotype was unchanged, with similar percentages of GFP+ cells immunoreactive for SST and parvalbumin (PV). Surviving SST neurons in the dentate gyrus had larger somas, and the density of GFP+ processes in the dentate molecular layer was unchanged despite SST cell loss and expansion of the molecular layer, implying compensatory sprouting of surviving cells. The density of Znt3-immunolabeled puncta, a marker of granule cell presynaptic terminals, apposed to GFP+ processes in the hilus was increased, suggesting enhanced granule cell input to SST neurons. Finally, the percentage of GFP+ cells that were FosB positive was significantly increased, implying that surviving SST neurons are more active. Together, findings suggest that somatostatin-expressing interneurons exhibit a combination of pathological (cell loss) and adaptive (growth) responses to hyperexcitability and seizures driven by upstream Pten KO excitatory granule cells.
Collapse
Affiliation(s)
- Austin W. Drake
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Lilian G. Jerow
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Justin V. Ruksenas
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Carlie McCoy
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Steve C. Danzer
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Neuroscience Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
4
|
Rodrigo Marinowic D, Bottega Pazzin D, Prates da Cunha de Azevedo S, Pinzetta G, Victor Machado de Souza J, Tonon Schneider F, Thor Ramos Previato T, Jean Varella de Oliveira F, Costa Da Costa J. Epileptogenesis and drug-resistant in focal cortical dysplasias: Update on clinical, cellular, and molecular markers. Epilepsy Behav 2024; 150:109565. [PMID: 38070410 DOI: 10.1016/j.yebeh.2023.109565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 01/14/2024]
Abstract
Focal cortical dysplasia (FCD) is a cortical malformation in brain development and is considered as one of the major causes of drug-resistant epilepsiesin children and adults. The pathogenesis of FCD is yet to be fully understood. Imaging markers such as MRI are currently the surgeons major obstacle due to the difficulty in delimiting the precise dysplasic area and a mosaic brain where there is epileptogenic tissue invisible to MRI. Also increased gene expression and activity may be responsible for the alterations in cell proliferation, migration, growth, and survival. Altered expressions were found, particularly in the PI3K/AKT/mTOR pathway. Surgery is still considered the most effective treatment option, due to drug-resistance, and up to 60 % of patients experience complete seizure control, varying according to the type and location of FCD. Both genetic and epigenetic factors may be involved in the pathogenesis of FCD, and there is no conclusive evidence whether these alterations are inherited or have an environmental origin.
Collapse
Affiliation(s)
- Daniel Rodrigo Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.
| | - Douglas Bottega Pazzin
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Giulia Pinzetta
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - João Victor Machado de Souza
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernando Tonon Schneider
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Thales Thor Ramos Previato
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fábio Jean Varella de Oliveira
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaderson Costa Da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
5
|
Rahimi S, Salami P, Matulewicz P, Schmuck A, Bukovac A, Ramos-Prats A, Tasan RO, Drexel M. The role of subicular VIP-expressing interneurons on seizure dynamics in the intrahippocampal kainic acid model of temporal lobe epilepsy. Exp Neurol 2023; 370:114580. [PMID: 37884187 DOI: 10.1016/j.expneurol.2023.114580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
The subiculum, a key output region of the hippocampus, is increasingly recognized as playing a crucial role in seizure initiation and spread. The subiculum consists of glutamatergic pyramidal cells, which show alterations in intrinsic excitability in the course of epilepsy, and multiple types of GABAergic interneurons, which exhibit varying characteristics in epilepsy. In this study, we aimed to assess the role of the vasoactive intestinal peptide interneurons (VIP-INs) of the ventral subiculum in the pathophysiology of temporal lobe epilepsy. We observed that an anatomically restricted inhibition of VIP-INs of the ventral subiculum was sufficient to reduce seizures in the intrahippocampal kainic acid model of epilepsy, changing the circadian rhythm of seizures, emphasizing the critical role of this small cell population in modulating TLE. As we expected, permanent unilateral or bilateral silencing of VIP-INs of the ventral subiculum in non-epileptic animals did not induce seizures or epileptiform activity. Interestingly, transient activation of VIP-INs of the ventral subiculum was enough to increase the frequency of seizures in the acute seizure model. Our results offer new perspectives on the crucial involvement of VIP-INs of the ventral subiculum in the pathophysiology of TLE. Given the observed predominant disinhibitory role of the VIP-INs input in subicular microcircuits, modifications of this input could be considered in the development of therapeutic strategies to improve seizure control.
Collapse
Affiliation(s)
- Sadegh Rahimi
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Pariya Salami
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Pawel Matulewicz
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Armin Schmuck
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anneliese Bukovac
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Arnau Ramos-Prats
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ramon Osman Tasan
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Meinrad Drexel
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
6
|
Galvão IC, Kandratavicius L, Messias LA, Athié MCP, Assis-Mendonça GR, Alvim MKM, Ghizoni E, Tedeschi H, Yasuda CL, Cendes F, Vieira AS, Rogerio F, Lopes-Cendes I, Veiga DFT. Identifying cellular markers of focal cortical dysplasia type II with cell-type deconvolution and single-cell signatures. Sci Rep 2023; 13:13321. [PMID: 37587190 PMCID: PMC10432381 DOI: 10.1038/s41598-023-40240-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023] Open
Abstract
Focal cortical dysplasia (FCD) is a brain malformation that causes medically refractory epilepsy. FCD is classified into three categories based on structural and cellular abnormalities, with FCD type II being the most common and characterized by disrupted organization of the cortex and abnormal neuronal development. In this study, we employed cell-type deconvolution and single-cell signatures to analyze bulk RNA-seq from multiple transcriptomic studies, aiming to characterize the cellular composition of brain lesions in patients with FCD IIa and IIb subtypes. Our deconvolution analyses revealed specific cellular changes in FCD IIb, including neuronal loss and an increase in reactive astrocytes (astrogliosis) when compared to FCD IIa. Astrogliosis in FCD IIb was further supported by a gene signature analysis and histologically confirmed by glial fibrillary acidic protein (GFAP) immunostaining. Overall, our findings demonstrate that FCD II subtypes exhibit differential neuronal and glial compositions, with astrogliosis emerging as a hallmark of FCD IIb. These observations, validated in independent patient cohorts and confirmed using immunohistochemistry, offer novel insights into the involvement of glial cells in FCD type II pathophysiology and may contribute to the development of targeted therapies for this condition.
Collapse
Affiliation(s)
- Isabella C Galvão
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Ludmyla Kandratavicius
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Lauana A Messias
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Maria C P Athié
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Guilherme R Assis-Mendonça
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Marina K M Alvim
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Enrico Ghizoni
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Helder Tedeschi
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Clarissa L Yasuda
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Fernando Cendes
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - André S Vieira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Fabio Rogerio
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Iscia Lopes-Cendes
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Diogo F T Veiga
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil.
| |
Collapse
|
7
|
Zheng Y, Xu C, Sun J, Ming W, Dai S, Shao Y, Qiu X, Li M, Shen C, Xu J, Fei F, Fang J, Jiang X, Zheng G, Hu W, Wang Y, Wang S, Ding M, Chen Z. Excitatory somatostatin interneurons in the dentate gyrus drive a widespread seizure network in cortical dysplasia. Signal Transduct Target Ther 2023; 8:186. [PMID: 37193687 DOI: 10.1038/s41392-023-01404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/19/2023] [Accepted: 03/05/2023] [Indexed: 05/18/2023] Open
Abstract
Seizures due to cortical dysplasia are notorious for their poor prognosis even with medications and surgery, likely due to the widespread seizure network. Previous studies have primarily focused on the disruption of dysplastic lesions, rather than remote regions such as the hippocampus. Here, we first quantified the epileptogenicity of the hippocampus in patients with late-stage cortical dysplasia. We further investigated the cellular substrates leading to the epileptic hippocampus, using multiscale tools including calcium imaging, optogenetics, immunohistochemistry and electrophysiology. For the first time, we revealed the role of hippocampal somatostatin-positive interneurons in cortical dysplasia-related seizures. Somatostatin-positive were recruited during cortical dysplasia-related seizures. Interestingly, optogenetic studies suggested that somatostatin-positive interneurons paradoxically facilitated seizure generalization. By contrast, parvalbumin-positive interneurons retained an inhibitory role as in controls. Electrophysiological recordings and immunohistochemical studies revealed glutamate-mediated excitatory transmission from somatostatin-positive interneurons in the dentate gyrus. Taken together, our study reveals a novel role of excitatory somatostatin-positive neurons in the seizure network and brings new insights into the cellular basis of cortical dysplasia.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Cenglin Xu
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Jinyi Sun
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenjie Ming
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Sijie Dai
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuying Shao
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Menghan Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chunhong Shen
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jinghong Xu
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Fan Fei
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiajia Fang
- Department of Neurology, Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Xuhong Jiang
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Guoqing Zheng
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China
| | - Weiwei Hu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi Wang
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Shuang Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Meiping Ding
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Zhong Chen
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|