1
|
Fei S, Xu M, Liu Z, Xie H, Yu Y, Chu Y, Zhu L, Fang Z, Jin Y, Yao Y, Chen Y. Molecular epidemiological study of exosomes circZNF609, circPUM1, IGF2 with ischemic stroke. BMC Cardiovasc Disord 2025; 25:215. [PMID: 40133811 PMCID: PMC11934478 DOI: 10.1186/s12872-025-04663-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Ischemic stroke (IS) is a common cardiovascular disease (CVD). Insulin-like growth factor 2 (IGF2), circZNF609, and circPUM1 are involved in metabolic regulation, vascular health, neuroprotection, and inflammation modulation and are relevant to IS mechanisms. This study investigated the effects of plasma exosomal expression of circZNF609, circPUM1, and IGF2 on IS. METHODS The expression of circZNF609, circPUM1, and IGF2 mRNA in exosomes was detected in 145 patients with IS and 290 controls using real-time qPCR in a cross-sectional study. Q1-Q4 represents the quartile groups based on the target gene expression levels. RESULTS There was no significant difference in the expression levels of circZNF609 and circPUM1 in the plasma exosomes between the IS and control groups (P > 0.05). However, a nonlinear relationship between the expression levels of circZNF609 in the IS group (P < 0.05). Exosomal IGF2 mRNA expression in the IS group was significantly lower than that in the control group (P = 0.043). The multifactorial adjusted results showed that in the case-control study of IS, circZNF609 in plasma exosomes was associated with a reduced risk of disease in group Q2 (adjusted OR: 0.565; P = 0.035) compared to that in group Q1, the low-expression group. In plasma exosomes, circZNF609 expression in group Q4 was associated with a reduced risk of disease in group Q1 (adjusted OR: 0.654; P = 0.004) compared to that in group Q1 (low expression). Plasma exosomes with IGF2 showed a reduced risk in the Q4 group with high IGF2 expression compared to that in the Q1 group with low IGF2 expression (adjusted OR: 0.543; P = 0.042). CONCLUSIONS This study suggests that the low expression of circZNF609, circPUM1, and IGF2 in peripheral blood plasma exosomes could pose a potential risk for IS and serve as biomarkers for clinical treatment.
Collapse
Affiliation(s)
- Suhai Fei
- School of Public Health, Wannan Medical College, Wuhu, China
- The Fourth People'S Hospital of Wuhu, Wuhu, China
| | - Miao Xu
- School of Public Health, Wannan Medical College, Wuhu, China
| | - ZhenFeng Liu
- School of Public Health, Wannan Medical College, Wuhu, China
| | - Haining Xie
- School of Public Health, Wannan Medical College, Wuhu, China
| | - Yue Yu
- School of Public Health, Wannan Medical College, Wuhu, China
| | - Yinghu Chu
- School of Public Health, Wannan Medical College, Wuhu, China
| | - Lijun Zhu
- School of Public Health, Wannan Medical College, Wuhu, China
| | - Zhengmei Fang
- School of Public Health, Wannan Medical College, Wuhu, China
| | - Yuelong Jin
- School of Public Health, Wannan Medical College, Wuhu, China
| | - Yingshui Yao
- School of Public Health, Wannan Medical College, Wuhu, China.
| | - Yan Chen
- School of Public Health, Wannan Medical College, Wuhu, China.
| |
Collapse
|
2
|
Zhang PJ, Luo C, Chen J, Yang J, Wu Q, Chen L, Wang H, Wu J, Zhang HF. Clinical value and role of long non-coding RNA PSMB8-AS1 in the progress of ischemic stroke in patients with hypertension. Neuroscience 2025; 569:114-122. [PMID: 39894434 DOI: 10.1016/j.neuroscience.2025.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Hypertension is a common risk factors for ischemic stroke (IS), with the widely involvement of long non-coding RNAs (lncRNAs). The expression pattern and clinical significance of lncRNA PSMB8-AS1 was examined in essential hypertension (EH) patients with or without IS, as well as its role and mechanism in IS-induced neuron cell injury. Serum PSMB8-AS1 levels in 260 EH cases without IS and 280 participants with IS were detected via reverse transcription - quantitative polymerase chain reaction (RT-qPCR). The outcome during 12-month follow-up period was recorded. Receiver operating characteristic (ROC) curve and Kaplan - Meier (K-M) plot were drawn to evaluate diagnostic and prognostic values. HT22 cells were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) condition for cell function experiments. The cell viability, apoptosis, and inflammatory response were detected. Elevated expression of PSMB8-AS1 can differentiate IS from EH patients, and was independently related to the poor functional prognosis. Patients with high PSMB8-AS1 expression were likely to relapse during the 12-month follow-up period. In vitro, PSMB8-AS1 knockdown attenuated OGD/R-induced neuron cell apoptosis and inflammatory response, which was returned by microRNA-22-3p downregulation. PI3K-Akt signaling was of significance during the progress based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. PSMB8-AS1 acts as a novel biomarker for the diagnosis of IS in EH patients. Elevated PSMB8-AS1 is associated with worse neurological outcomes and higher recurrence rates of IS patients. LncRNA PSMB8-AS1 knockdown might have a promising role in attenuating OGD/R-induced neuron cell injury, that might be related to miR-22-3p.
Collapse
Affiliation(s)
- Pin-Jing Zhang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang 110840, Liaoning, China
| | - Chen Luo
- Department of Neurosurgery, The First People's Hospital of Jiashan, 314100 Zhejiang, China
| | - Jinli Chen
- Department of Neurology, Tinglin Hospital of Jinshan District, Shanghai 201505, China
| | - Jing Yang
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Quan Wu
- Department of Neurology, Tinglin Hospital of Jinshan District, Shanghai 201505, China
| | - Lilong Chen
- Department of Neurology, Tinglin Hospital of Jinshan District, Shanghai 201505, China
| | - Hui Wang
- Department of Neurology, Tinglin Hospital of Jinshan District, Shanghai 201505, China
| | - Junfeng Wu
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Hai-Feng Zhang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang 110840, Liaoning, China.
| |
Collapse
|
3
|
He SQ, Huang B, Xu F, Yang JJ, Li C, Liu FR, Yuan LQ, Lin X, Liu J. Functions and application of circRNAs in vascular aging and aging-related vascular diseases. J Nanobiotechnology 2025; 23:216. [PMID: 40098005 PMCID: PMC11917153 DOI: 10.1186/s12951-025-03199-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
Circular RNAs (circRNAs), constituting a novel class of endogenous non-coding RNAs generated through the reverse splicing of mRNA precursors, possess the capacity to regulate gene transcription and translation. Recently, the pivotal role of circRNAs in controlling vascular aging, as well as the pathogenesis and progression of aging-related vascular diseases, has garnered substantial attention. Vascular aging plays a crucial role in the increased morbidity and mortality of the elderly. Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are crucial components of the intima and media layers of the vascular wall, respectively, and are closely involved in the mechanisms underlying vascular aging and aging-related vascular diseases. The review aims to provide a comprehensive exploration of the connection between circRNAs and vascular aging, as well as aging-related vascular diseases. Besides, circRNAs, as potential diagnostic markers or therapeutic targets for vascular aging and aging-related vascular diseases, will be discussed thoroughly, along with the challenges and limitations of their clinical application. Investigating the role and molecular mechanisms of circRNAs in vascular aging and aging-related vascular diseases will provide a novel insight into early diagnosis and therapy, and even effective prognosis assessment of these conditions.
Collapse
Affiliation(s)
- Sha-Qi He
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Bei Huang
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Jun-Jie Yang
- Department of Radiology, the Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, China
| | - Cong Li
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Feng-Rong Liu
- Department of Anesthesiology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Xiao Lin
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| | - Jun Liu
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Clinical Research Center for Medical Imaging in Hunan Province, Quality Control Center in Hunan Province, Changsha, 410011, China.
| |
Collapse
|
4
|
Li S, Xu Z, Zhang S, Sun H, Qin X, Zhu L, Jiang T, Zhou J, Yan F, Deng Q. Non-coding RNAs in acute ischemic stroke: from brain to periphery. Neural Regen Res 2025; 20:116-129. [PMID: 38767481 PMCID: PMC11246127 DOI: 10.4103/nrr.nrr-d-23-01292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/09/2023] [Accepted: 12/18/2023] [Indexed: 05/22/2024] Open
Abstract
Acute ischemic stroke is a clinical emergency and a condition with high morbidity, mortality, and disability. Accurate predictive, diagnostic, and prognostic biomarkers and effective therapeutic targets for acute ischemic stroke remain undetermined. With innovations in high-throughput gene sequencing analysis, many aberrantly expressed non-coding RNAs (ncRNAs) in the brain and peripheral blood after acute ischemic stroke have been found in clinical samples and experimental models. Differentially expressed ncRNAs in the post-stroke brain were demonstrated to play vital roles in pathological processes, leading to neuroprotection or deterioration, thus ncRNAs can serve as therapeutic targets in acute ischemic stroke. Moreover, distinctly expressed ncRNAs in the peripheral blood can be used as biomarkers for acute ischemic stroke prediction, diagnosis, and prognosis. In particular, ncRNAs in peripheral immune cells were recently shown to be involved in the peripheral and brain immune response after acute ischemic stroke. In this review, we consolidate the latest progress of research into the roles of ncRNAs (microRNAs, long ncRNAs, and circular RNAs) in the pathological processes of acute ischemic stroke-induced brain damage, as well as the potential of these ncRNAs to act as biomarkers for acute ischemic stroke prediction, diagnosis, and prognosis. Findings from this review will provide novel ideas for the clinical application of ncRNAs in acute ischemic stroke.
Collapse
Affiliation(s)
- Shuo Li
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhaohan Xu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shiyao Zhang
- Department of Neurology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaodan Qin
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lin Zhu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Junshan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Fuling Yan
- Department of Neurology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Qiwen Deng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
5
|
Mehta SL, Arruri V, Vemuganti R. Role of transcription factors, noncoding RNAs, epitranscriptomics, and epigenetics in post-ischemic neuroinflammation. J Neurochem 2024; 168:3430-3448. [PMID: 38279529 PMCID: PMC11272908 DOI: 10.1111/jnc.16055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Post-stroke neuroinflammation is pivotal in brain repair, yet persistent inflammation can aggravate ischemic brain damage and hamper recovery. Following stroke, specific molecules released from brain cells attract and activate central and peripheral immune cells. These immune cells subsequently release diverse inflammatory molecules within the ischemic brain, initiating a sequence of events, including activation of transcription factors in different brain cell types that modulate gene expression and influence outcomes; the interactive action of various noncoding RNAs (ncRNAs) to regulate multiple biological processes including inflammation, epitranscriptomic RNA modification that controls RNA processing, stability, and translation; and epigenetic changes including DNA methylation, hydroxymethylation, and histone modifications crucial in managing the genic response to stroke. Interactions among these events further affect post-stroke inflammation and shape the depth of ischemic brain damage and functional outcomes. We highlighted these aspects of neuroinflammation in this review and postulate that deciphering these mechanisms is pivotal for identifying therapeutic targets to alleviate post-stroke dysfunction and enhance recovery.
Collapse
Affiliation(s)
- Suresh L. Mehta
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- William S. Middleton Veterans Hospital, Madison, WI, USA
| |
Collapse
|
6
|
Chen C, Xu J, Huang T, Qian Z. Hsa_circ_0005548 knockdown repairs OGD/R-induced damage in human brain microvascular endothelial cells via miR-362-3p/ETS1 axis. Int J Neurosci 2024; 134:1139-1148. [PMID: 37646218 DOI: 10.1080/00207454.2023.2246100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Ischemic stroke (IS) is a highly prevalent type of stroke with very high rates of disability and death. As the regulatory role of circular RNAs (circRNAs) in various diseases has been revealed, we constructed a stroke cell model to analyze the action mechanism of hsa_circ_0005548 in IS. METHODS The abundance of hsa_circ_0005548, microRNA-362-3p (miR-362-3p) and E26 transformation specific-1 (ETS-1) were measured by real-time quantitative polymerase chain reaction (RT-qPCR) or western blot. We constructed an IS cell model in vitro by oxygen-glucose deprivation/reperfusion (OGD/R) treatment and analyzed cell proliferation, apoptosis and inflammatory response through the use of Cell Counting Kit-8 (CCK8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry and Enzyme-linked immunosorbent assay (ELISA), respectively. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were employed for the analysis of the relationship between miR-362-3p and hsa_circ_0005548 or ETS1. RESULTS The higher abundance of hsa_circ_0005548 and ETS-1 and lower level of miR-362-3p were observed in human brain microvascular endothelial immortalized (HBMEC-IM) cells under OGD/R. Hsa_circ_0005548 downregulation mitigated OGD/R-induced HBMEC-IM cell injury. Mechanistically, hsa_circ_0005548 targeted miR-362-3p. MiR-362-3p knockdown reversed the effect of hsa_circ_0005548 silencing on OGD/R-induced HBMEC-IM cell injury. ETS1 was validated as a direct target of miR-362-3p, and miR-362-3p attenuated OGD/R-induced HBMEC-IM cell injury by ETS1. Moreover, hsa_circ_0005548 modulated ETS1 via miR-362-3p. CONCLUSION Hsa_circ_0005548 knockdown repairs OGD/R-induced HBMEC-IM cell damage via miR-362-3p/ETS1 axis.
Collapse
Affiliation(s)
- Chunlei Chen
- Department of Urology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Jiguo Xu
- Department of Urology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Tianrun Huang
- Department of Urology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Zhuolei Qian
- Department of Neurology, Shanghai municipal Hospital of Traditional Chinese Medicine, Shanghai Unicersity of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Liao L, Chen J, Peng S. hsa_circ_0000047 targeting miR-6720-5p/CYB5R2 axis alleviates inflammation and angiogenesis in diabetic retinopathy. Arch Physiol Biochem 2024; 130:537-545. [PMID: 36971486 DOI: 10.1080/13813455.2023.2190055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/01/2023] [Indexed: 03/29/2023]
Abstract
Context: Diabetic retinopathy (DR) is a common complication of diabetes mellitus (DM). Circular RNAs (circRNAs) act as key regulators of DR development by regulating inflammation and angiogenesis.Objective: This study aimed to elucidate the function and mechanism of hsa_circ_0000047 in DR.Materials and methods: High glucose (HG) was used to induce human retinal microvascular endothelial cells (hRMECs) to construct a DR model in vitro. Qualitative real-time polymerase chain reaction (qRT-PCR) or western blotting were used to detected the levels of hsa_circ_0000047, miR-6720-5p, and CYB5R2 in DR and HG-indeced hRMECs. Cell functional experiments were performed to detect the change of viability, inflammation, migration, invasion, and angiogenesis of HG-induced hRMECs. Besides, the correlation between miR-6720-5p and hsa_circ_0000047/CYB5R2 was confirmed by luciferase assay and Pearson correlation analysis.Results: hsa_circ_0000047 and CYB5R2 were downregulated in DR, whereas miR-6720-5p was upregulated in DR. Cell functional experiments showed that hsa_circ_0000047 overexpression restrained viability, inflammation, migration, invasion, and angiogenesis of HG-induced hRMECs. Regarding mechanism, hsa_circ_0000047 could sponge miR-6720-5p to regulate CYB5R2 expression in hRMECs. Additionally, CYB5R2 knockdown reversed the effects of hsa_circ_0000047 overexpression on HG-induced hRMECs.Conclusion: Our study revealed that hsa_circ_0000047 alleviated inflammation and angiogenesis in HG-induced hRMECs by targeting the miR-6720-5p/CYB5R2 axis, which may be a novel biomarker for DR therapy.
Collapse
Affiliation(s)
- Lin Liao
- Department of Ophthalmology, Wuhan Fourth Hospital, Puai Hospital, Wuhan, China
| | - Jinpeng Chen
- Department of Ophthalmology, Ezhou Central Hospital, Ezhou, China
| | - Sheng Peng
- Department of Cardiology, Wuhan Fourth Hospital, Puai Hospital, Wuhan, China
| |
Collapse
|
8
|
Zhou Y, She R, Mei Z, Liu D, Ge J. Crosstalk between ferroptosis and necroptosis in cerebral ischemia/reperfusion injury and Naotaifang formula exerts neuroprotective effect via HSP90-GCN2-ATF4 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155399. [PMID: 38850632 DOI: 10.1016/j.phymed.2024.155399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/04/2024] [Accepted: 01/28/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Cerebral ischemia/reperfusion injury (CIRI) is a sequence of pathophysiological processes after blood recanalization in the patients with ischemic stroke, and has become the hinder for the rehabilitation. Naotaifang formula (NTF) has exhibited the clinical effectiveness for this disease. However, its action effects and molecular mechanisms against CIRI are not fully elucidated. PURPOSE The research was to clarify the crosstalk between ferroptosis and necroptosis in CIRI, and uncover the mechanism underlying the neuroprotection of NTF. METHODS This study established MCAO/R rat models with various reperfusion times. Western blot, transmission electron microscope, laser speckle imaging, immunofluorescence, immunohistochemistry and pathological staining were conducted to detect and analyze the obtained results. Subsequently, various NTF doses were used to intervene in MCAO/R rats, and biology experiments, such as western blot, Evans blue, immunofluorescence and immunohistochemistry, were used to analyze the efficacy of NTF doses. The effect of NTF was further clarified through in vitro experiments. Eventually, HT22 cells that suffered OGD/R were subjected to pre-treatment with plasmids overexpressing HSP90, MLKL, and GPX4 to indicate the interaction among ferroptosis and necroptosis. RESULTS There was a gradual increase in the Zea Longa score and cerebral infarction volume following CIRI with prolonged reperfusion. Furthermore, the expression of factors associated with pro-ferroptosis and pro-necroptosis was upregulated in the cortex and hippocampus. NTF alleviated ferroptosis and necroptosis in a dose-dependent manner, downregulated HSP90 levels, reduced blood-brain barrier permeability, and thus protected nerve cells from CIRI. The results in vitro research aligned with those of the in vivo research. HSP90 and MLKL overexpression promoted necroptosis and ferroptosis while activating the GCN2-ATF4 pathway. GPX4 overexpression had no effect on necroptosis or the associated signaling pathway. The administration of NTF alone, as well as its combination with the overexpression of HSP90, MLKL, or GPX4 plasmids, decreased the expression levels of factors associated with pro-ferroptosis and pro-necroptosis and reduced the protein levels of the HSP90-GCN2-ATF4 pathway. Moreover, the regulatory effects of the NTF alone group on GSH, ferrous iron, and GCN2 were more significant compared with those of the HSP90 overexpression combination group. CONCLUSION Ferroptosis and necroptosis were gradually aggravated following CIRI with prolonged reperfusion. MLKL overexpression may promote ferroptosis and necroptosis, while GPX4 overexpression may have little effect on necroptosis. HSP90 overexpression accelerated both forms of cell death via the HSP90-GCN2-ATF4 pathway. NTF alleviated ferroptosis and necroptosis to attenuate CIRI by regulating the HSP90-GCN2-ATF4 pathway. Our research provided evidence for the potential of drug development by targeting HSP90, MLKL, and GPX4 to protect against ischemic stroke.
Collapse
Affiliation(s)
- Yue Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Department of Scientific Research, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Changsha 410006, China
| | - Ruining She
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Danhong Liu
- Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Academy of Chinese Medicine, Changsha, Hunan 410013, China.
| |
Collapse
|
9
|
Chen T, Wang C, Zhu W, Yu F, Dong X, Su Y, Huang J, Huo L, Wan P. mm9_circ_014683 regulates microglia polarization through canonical NFκB signaling pathway in diabetic retinopathy. Cell Signal 2024; 117:111121. [PMID: 38417635 DOI: 10.1016/j.cellsig.2024.111121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Diabetic retinopathy (DR) is still the major cause of visual loss in working-aged people, one of the critical pathological processes are retinal microglia-mediated inflammation. Our previous study demonstrated that enhanced M1 microglial polarization was involved in retinal inflammation in DR, but the detailed mechanism needs further investigation. Circular RNAs (circRNAs) are important kind of noncoding RNAs involved in the regulation of various cell biological processes. Herein, the circRNA expression profiles of BV2 mouse microglia treated with or without glucose were detected, and a total of 347 differentially expressed circRNAs were identified in glucose-treated BV2 cells. The key circRNA mm9_circ_014683 increased after glucose stimulation. Inhibiting or overexpressing mm9_circ_014683 showed no effect on the proliferation and apoptosis of microglia. Inhibiting mm9_circ_014683 impeded M1 polarization and promoted M2 polarization, and overexpressing mm9_circ_014683 showed the opposite effect. A total of 216 differentially expressed genes were identified in mm9_circ_014683-knockdown BV2 cells, which were enriched in several signaling pathways, including the NFκB signaling pathway. Moreover, mm9_circ_014683 positively regulated the canonical, NFκB signaling pathway. Besides, mm9_circ_014683 was highly expressed in the retinal microglia of diabetic mice, and intraocular injection of Lv-circRNA inhibited M1 but enhanced M2 retinal microglial polarization. In conclusion, mm9_circ_014683 regulates microglial polarization through the canonical NFκB signaling pathway in diabetic retinopathy. This study may provide insight into the pathogenesis and treatment of DR.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Congyao Wang
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Wenhui Zhu
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Fenfen Yu
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Xia Dong
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Yihua Su
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Jingwen Huang
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Lijun Huo
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China.
| | - Pengxia Wan
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China.
| |
Collapse
|
10
|
Carnwath TP, Demel SL, Prestigiacomo CJ. Genetics of ischemic stroke functional outcome. J Neurol 2024; 271:2345-2369. [PMID: 38502340 PMCID: PMC11055934 DOI: 10.1007/s00415-024-12263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/21/2024]
Abstract
Ischemic stroke, which accounts for 87% of cerebrovascular accidents, is responsible for massive global burden both in terms of economic cost and personal hardship. Many stroke survivors face long-term disability-a phenotype associated with an increasing number of genetic variants. While clinical variables such as stroke severity greatly impact recovery, genetic polymorphisms linked to functional outcome may offer physicians a unique opportunity to deliver personalized care based on their patient's genetic makeup, leading to improved outcomes. A comprehensive catalogue of the variants at play is required for such an approach. In this review, we compile and describe the polymorphisms associated with outcome scores such as modified Rankin Scale and Barthel Index. Our search identified 74 known genetic polymorphisms spread across 48 features associated with various poststroke disability metrics. The known variants span diverse biological systems and are related to inflammation, vascular homeostasis, growth factors, metabolism, the p53 regulatory pathway, and mitochondrial variation. Understanding how these variants influence functional outcome may be helpful in maximizing poststroke recovery.
Collapse
Affiliation(s)
- Troy P Carnwath
- University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Stacie L Demel
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Charles J Prestigiacomo
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| |
Collapse
|
11
|
You JR, Wen ZJ, Tian JW, Lv XB, Li R, Li SP, Xin H, Li PF, Zhang YF, Zhang R. Crosstalk between ubiquitin ligases and ncRNAs drives cardiovascular disease progression. Front Immunol 2024; 15:1335519. [PMID: 38515760 PMCID: PMC10954775 DOI: 10.3389/fimmu.2024.1335519] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Cardiovascular diseases (CVDs) are multifactorial chronic diseases and have the highest rates of morbidity and mortality worldwide. The ubiquitin-proteasome system (UPS) plays a crucial role in posttranslational modification and quality control of proteins, maintaining intracellular homeostasis via degradation of misfolded, short-lived, or nonfunctional regulatory proteins. Noncoding RNAs (ncRNAs, such as microRNAs, long noncoding RNAs, circular RNAs and small interfering RNAs) serve as epigenetic factors and directly or indirectly participate in various physiological and pathological processes. NcRNAs that regulate ubiquitination or are regulated by the UPS are involved in the execution of target protein stability. The cross-linked relationship between the UPS, ncRNAs and CVDs has drawn researchers' attention. Herein, we provide an update on recent developments and perspectives on how the crosstalk of the UPS and ncRNAs affects the pathological mechanisms of CVDs, particularly myocardial ischemia/reperfusion injury, myocardial infarction, cardiomyopathy, heart failure, atherosclerosis, hypertension, and ischemic stroke. In addition, we further envision that RNA interference or ncRNA mimics or inhibitors targeting the UPS can potentially be used as therapeutic tools and strategies.
Collapse
Affiliation(s)
- Jia-Rui You
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Zeng-Jin Wen
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Jia-Wei Tian
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiao-Bing Lv
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Rong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Shu-Ping Li
- Department of Cardiology, The Affiliated Qingdao Third People’s Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Rui Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
12
|
Bao H, Zhang Q, Li Y, Nie C. CircDLGAP4 overexpression ameliorates neuronal injury in Parkinson's disease by binding to EIF4A3 and increasing HMGA2 expression. J Biochem Mol Toxicol 2024; 38:e23530. [PMID: 37822284 DOI: 10.1002/jbt.23530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/04/2023] [Accepted: 08/25/2023] [Indexed: 10/13/2023]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disease, and its prevalence increases steadily with age. Circular RNAs (circRNAs) are involved in various neurodegenerative diseases. Here, we aimed to explore the role of circRNA DLG-associated protein 4 (circDLGAP4) in 1-methyl-4-phenylpyridinium ion (MPP+ )-induced neuronal injury in PD. SH-SY5Y cells were treated with MPP+ to establish PD cell models. The levels of circDLGAP4 and high mobility group AT-hook 2 (HMGA2) in SH-SY5Y cells were detected. SH-SY5Y cell viability and apoptosis were detected. The levels of inflammatory damage (IL-1β, IL-6, TNF-α) and oxidative stress (reactive oxygen species, lactate dehydrogenase, superoxide dismutase, and malondialdehyde)-related factors were measured. The binding of eukaryotic initiation factor 4A3 (EIF4A3) to circDLGAP4 and HMGA2 was analyzed using RNA pull-down or RNA immunoprecipitation. The stability of HMGA2 was detected after actinomycin D treatment, and its effects on neuronal injury were tested. CircDLGAP4 expression was decreased in MPP+ -induced SH-SY5Y cells. CircDLGAP4 upregulation restored cell activity, decreased apoptosis, and reduced inflammatory damage and oxidative stress in PD cell models. CircDLGAP4 bound to EIF4A3 to increase HMGA2 expression and stability. Silencing HMGA2 attenuated the protective effect of circDLGAP4 overexpression. Overall, circDLGAP4 upregulated HMGA2 by recruiting EIF4A3, thus increasing the mRNA stability of HMGA2 and alleviating neuronal injury in PD.
Collapse
Affiliation(s)
- Haiping Bao
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiang Zhang
- Department of Rehabilitation Medicine, Sinopharm (Dalian) Rehabilitation Hospital, Dalian, China
| | - Yu Li
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chen Nie
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
13
|
Gao Y, Fang C, Wang J, Ye Y, Li Y, Xu Q, Kang X, Gu L. Neuroinflammatory Biomarkers in the Brain, Cerebrospinal Fluid, and Blood After Ischemic Stroke. Mol Neurobiol 2023; 60:5117-5136. [PMID: 37258724 DOI: 10.1007/s12035-023-03399-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
The most frequent type of stroke, known as ischemic stroke (IS), is a significant global public health issue. The pathological process of IS and post-IS episodes has not yet been fully explored, but neuroinflammation has been identified as one of the key processes. Biomarkers are objective indicators used to assess normal or pathological processes, evaluate responses to treatment, and predict outcomes, and some biomarkers can also be used as therapeutic targets. After IS, various molecules are produced by different cell types, such as microglia, astrocytes, infiltrating leukocytes, endothelial cells, and damaged neurons, that participate in the neuroinflammatory response within the ischemic brain region. These molecules may either promote or inhibit neuroinflammation and may be released into extracellular spaces, including cerebrospinal fluid (CSF) and blood, due to reasons such as BBB damage. These neuroinflammatory molecules should be valued as biomarkers to monitor whether their expression levels in the blood, CSF, and brain correlate with the diagnosis and prognosis of IS patients or whether they have potential as therapeutic targets. In addition, although some molecules do not directly participate in the process of neuroinflammation, they have been reported to have potential diagnostic or therapeutic value against post-IS neuroinflammation, and these molecules will also be listed. In this review, we summarize the neuroinflammatory biomarkers in the brain, CSF, and blood after an IS episode and the potential value of these biomarkers for the diagnosis, treatment, and prognosis of IS patients.
Collapse
Affiliation(s)
- Yikun Gao
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Congcong Fang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jin Wang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yina Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qingxue Xu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xianhui Kang
- Department of Anesthesia, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310006, China.
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
14
|
Siracusa C, Vono N, Morano MB, Sabatino J, Leo I, Eyileten C, Cianflone E, Postula M, Torella D, De Rosa S. Clinical Application of Circular RNAs as Biomarkers in Acute Ischemic Stroke. J Pers Med 2023; 13:jpm13050839. [PMID: 37241009 DOI: 10.3390/jpm13050839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Despite the substantial improvement in diagnosis and treatment within the last decades, ischemic stroke still represents a challenge, responsible still for a high burden of morbidity and mortality. Among the unmet clinical needs are the difficulties in identifying those subjects with the greatest risk of developing a stroke, the challenges in obtaining a timely diagnosis, the prompt recognition of the different clinical forms of stroke, the assessment of the response to treatments and the prognostic assessment. All these issues might be improved with appropriate smart biomarkers that could better inform clinical management. The present article offers an overview of the potential role of circular RNAs as disease biomarkers in stroke. A systematic approach was adopted to gather all potentially relevant information in order to provide a panoramic view on this class of promising molecules.
Collapse
Affiliation(s)
- Chiara Siracusa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Niccolò Vono
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Maria Benedetta Morano
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Jolanda Sabatino
- Department of Children and Woman's Health, University of Padua, 35121 Padua, Italy
| | - Isabella Leo
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Ceren Eyileten
- Centre for Preclinical Research and Technology, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 02-097 Warsaw, Poland
- Genomics Core Facility, Center of New Technologies, University of Warsaw, 00-927 Warsaw, Poland
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Marek Postula
- Centre for Preclinical Research and Technology, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| |
Collapse
|
15
|
Circular RNAs in Ischemic Stroke: Biological Role and Experimental Models. Biomolecules 2023; 13:biom13020214. [PMID: 36830585 PMCID: PMC9953235 DOI: 10.3390/biom13020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Ischemic stroke is among the leading causes of morbidity, disability, and mortality worldwide. Despite the recent progress in the management of acute ischemic stroke, timely intervention still represents a challenge. Hence, strategies to counteract ischemic brain injury during and around the acute event are still lacking, also due to the limited knowledge of the underlying mechanisms. Despite the increasing understanding of the complex pathophysiology underlying ischemic brain injury, some relevant pieces of information are still required, particularly regarding the fine modulation of biological processes. In this context, there is emerging evidence that the modulation of circular RNAs, a class of highly conserved non-coding RNA with a closed-loop structure, are involved in pathophysiological processes behind ischemic stroke, unveiling a number of potential therapeutic targets and possible clinical biomarkers. This paper aims to provide a comprehensive overview of experimental studies on the role of circular RNAs in ischemic stroke.
Collapse
|
16
|
Li L, Zhang D, Yao W, Wu Z, Cheng J, Ji Y, Dong L, Zhao C, Wang H. Ligustrazine exerts neuroprotective effects via circ_0008146/miR-709/Cx3cr1 axis to inhibit cell apoptosis and inflammation after cerebral ischemia/reperfusion injury. Brain Res Bull 2022; 190:244-255. [PMID: 36244580 DOI: 10.1016/j.brainresbull.2022.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Ligustrazine is a traditional Chinese herbal medicine that has long been used to treat cerebral ischemic disorders. However, the molecular mechanisms of ligustrazine in cerebral ischemia/reperfusion (I/R) damage have not been clear elucidated. The aim of this study was to examine the neuroprotective mechanisms of ligustrazine in cerebral I/R. METHODS 9 C57BL/6 mice were randomly divided to three groups: Sham group (n = 3), Middle cerebral artery occlusion (MCAO) group (n = 3), and MCAO + Ligustrazine group (n = 3). The neurological deficit score was evaluated, the cerebral infarct volume was measured by triphenylterazolium chloride (TTC) staining. Differentially expressed (DE) messenger RNAs (mRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) were analyzed using the R package DEseq2 based on P-value < 0.05 and Log2 |fold change (FC)| ≥ 2 in sham group vs MCAO group and MCAO group vs ligustrazine group by high-throughput sequencing. Function enrichment analysis, the protein-protein interaction (PPI) of neurogenesis related genes were performed. The neurogenesis related competitive endogenous RNA (ceRNA) network was constructed. RESULTS The expression of circ_0008146 was considerably higher in the MCAO group than the Sham group, and ligustrazine treatment markedly decreased the expression of circ_0008146 in MCAO. Next, the circ_0008146 ceRNA network was established, including circ_0008146-miR-709-Cx3cr1 ceRNA network. Besides, real time quantitative polymerase chain reaction (RT-qPCR) assay identified that miR-709 expression was considerably lower and Cx3cr1 expression was higher in the MCAO group than Sham group, and ligustrazine treatment markedly increased the miR-709 expression and reduced Cx3cr1 expression in MCAO. Further, silencing of circ_0008146 inhibited the concentration of Interleukin 6 (IL-6), Tumor Necrosis Factor alpha (TNF-α) and reduced neuron cell death and up-regulated miR-709 expression and down-regulated Cx3cr1 expression in Lipopolysaccharide (LPS) induced BV-2 cells. Dual-Luciferase reporter gene assay verified that circ_0008146 targeted miR-709. CONCLUSION Ligustrazine targets circ_0008146/miR-709/Cx3cr1 axis to inhibit cell apoptosis and inflammation after cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Litao Li
- Department of Neurology, Hebei General Hospital, 348 West Heping Road, Shijiazhuang 050051, Hebei, China
| | - DingWen Zhang
- NYU School of Global Public Health, 708 Broadway, New York, NY, USA
| | - Wentao Yao
- Department of Neurology, Hebei General Hospital, 348 West Heping Road, Shijiazhuang 050051, Hebei, China
| | - Zongkai Wu
- Department of Neurology, Hebei General Hospital, 348 West Heping Road, Shijiazhuang 050051, Hebei, China
| | - Jinming Cheng
- Department of Neurology, Hebei General Hospital, 348 West Heping Road, Shijiazhuang 050051, Hebei, China
| | - Yingxiao Ji
- Department of Neurology, Hebei General Hospital, 348 West Heping Road, Shijiazhuang 050051, Hebei, China
| | - Lipeng Dong
- Department of Neurology, Hebei General Hospital, 348 West Heping Road, Shijiazhuang 050051, Hebei, China
| | - Congying Zhao
- Department of Neurology, Hebei General Hospital, 348 West Heping Road, Shijiazhuang 050051, Hebei, China
| | - Hebo Wang
- Department of Neurology, Hebei General Hospital, 348 West Heping Road, Shijiazhuang 050051, Hebei, China.
| |
Collapse
|
17
|
Yang K, Zeng L, Ge A, Wang S, Zeng J, Yuan X, Mei Z, Wang G, Ge J. A systematic review of the research progress of non-coding RNA in neuroinflammation and immune regulation in cerebral infarction/ischemia-reperfusion injury. Front Immunol 2022; 13:930171. [PMID: 36275741 PMCID: PMC9585453 DOI: 10.3389/fimmu.2022.930171] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/08/2022] [Indexed: 11/15/2022] Open
Abstract
Cerebral infarction/ischemia-reperfusion injury is currently the disease with the highest mortality and disability rate of cardiovascular disease. Current studies have shown that nerve cells die of ischemia several hours after ischemic stroke, which activates the innate immune response in the brain, promotes the production of neurotoxic substances such as inflammatory cytokines, chemokines, reactive oxygen species and − nitrogen oxide, and mediates the destruction of blood-brain barrier and the occurrence of a series of inflammatory cascade reactions. Meanwhile, the expression of adhesion molecules in cerebral vascular endothelial cells increased, and immune inflammatory cells such as polymorphonuclear neutrophils, lymphocytes and mononuclear macrophages passed through vascular endothelial cells and entered the brain tissue. These cells recognize antigens exposed by the central nervous system in the brain, activate adaptive immune responses, and further mediate secondary neuronal damage, aggravating neurological deficits. In order to reduce the above-mentioned damage, the body induces peripheral immunosuppressive responses through negative feedback, which increases the incidence of post-stroke infection. This process is accompanied by changes in the immune status of the ischemic brain tissue in local and systemic systems. A growing number of studies implicate noncoding RNAs (ncRNAs) as novel epigenetic regulatory elements in the dysfunction of various cell subsets in the neurovascular unit after cerebral infarction/ischemia-reperfusion injury. In particular, recent studies have revealed advances in ncRNA biology that greatly expand the understanding of epigenetic regulation of immune responses and inflammation after cerebral infarction/ischemia-reperfusion injury. Identification of aberrant expression patterns and associated biological effects of ncRNAs in patients revealed their potential as novel biomarkers and therapeutic targets for cerebral infarction/ischemia-reperfusion injury. Therefore, this review systematically presents recent studies on the involvement of ncRNAs in cerebral infarction/ischemia-reperfusion injury and neuroimmune inflammatory cascades, and elucidates the functions and mechanisms of cerebral infarction/ischemia-reperfusion-related ncRNAs, providing new opportunities for the discovery of disease biomarkers and targeted therapy. Furthermore, this review introduces clustered regularly interspaced short palindromic repeats (CRISPR)-Display as a possible transformative tool for studying lncRNAs. In the future, ncRNA is expected to be used as a target for diagnosing cerebral infarction/ischemia-reperfusion injury, judging its prognosis and treatment, thereby significantly improving the prognosis of patients.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Liuting Zeng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiao Yuan
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Guozuo Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, China
- *Correspondence: Jinwen Ge,
| |
Collapse
|
18
|
Prediction of Ischemic Stroke Recurrence Based on COX Proportional Risk Regression Model and Evaluation of the Effectiveness of Patient Intensive Care Interventions. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8392854. [PMID: 35770116 PMCID: PMC9236791 DOI: 10.1155/2022/8392854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 11/17/2022]
Abstract
With the continuous improvement of medical technology and the aging of the population, the death rate of stroke is gradually decreasing, but the recurrence rate is still high, and the number of recurrences is increasing, resulting in disability and other symptoms, which brings great burden and distress to patients and their families. As the number of strokes increases, neurological impairment becomes more and more severe, affecting patients' ability to live, socialize, and work, and seriously reducing their quality of life. Clustered care is a combination of evidence-based linked interventions and a multidisciplinary team providing the best possible care through evidence-based research and highly operational practice, and it can improve outcomes for ischemic stroke patients more than implementation alone. This paper presents a Cox proportional risk regression-based model, using it to build the most used semi-parametric model for multifactorial survival analysis, due to its advantages of both parametric and nonparametric models, and to analyze the factors influencing survival time in study subjects with incomplete data. The proposed strategy has been found to be useful in predicting ischemic stroke recurrence and cluster care interventions for patients.
Collapse
|
19
|
Liu M, Liu X, Zhou M, Guo S, Sun K. Impact of CircRNAs on Ischemic Stroke. Aging Dis 2022; 13:329-339. [PMID: 35371609 PMCID: PMC8947829 DOI: 10.14336/ad.2021.1113] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/13/2021] [Indexed: 12/15/2022] Open
Abstract
Circular RNA (circRNA) is a recently discovered class of endogenous non-coding RNA that is generated by cyclization, driven by intron pairing, and regulated by related regulators. An important biological function of CircRNA is acting as a molecular sponge to significantly alter miRNA levels over a short period. Several studies have shown that circRNA is closely related to stroke. Therefore, a better understanding of CircRNA function and regulatory mechanism in ischemic brain will help us for the early detection, early diagnosis, and early treatment of stroke. Here, we summary the biological characteristics, expression of circRNA, and its effect on outcome after ischemic stroke.
Collapse
Affiliation(s)
- Miaomiao Liu
- Department of Radiology, The Third People’s Hospital of Long Gang District, Shenzhen, China.
- Graduate School of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China.
- Department of Radiology, Baotou Central Hospital, Baotou, Inner Mongolia, China.
| | - Xiaolin Liu
- Department of Radiology, Baotou Central Hospital, Baotou, Inner Mongolia, China.
| | - Maorong Zhou
- Department of Radiology, Baotou Central Hospital, Baotou, Inner Mongolia, China.
| | - Shao Guo
- Department of Radiology, The Third People’s Hospital of Long Gang District, Shenzhen, China.
| | - Kai Sun
- Department of Radiology, The Third People’s Hospital of Long Gang District, Shenzhen, China.
| |
Collapse
|
20
|
Circular RNA ITCH: An Emerging Multifunctional Regulator. Biomolecules 2022; 12:biom12030359. [PMID: 35327551 PMCID: PMC8944968 DOI: 10.3390/biom12030359] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/28/2022] Open
Abstract
In the last decade, numerous circRNAs were discovered by virtue of the RNA-Seq technique. With the deepening of experimental research, circRNAs have brought to light the key biological functions and progression of human diseases. CircRNA ITCH has been demonstrated to be a tumor suppressor in numerous cancers, and recently it was found to play an important role in bone diseases, diabetes mellitus, and cardiovascular diseases. However, the functions of circ-ITCH have not been completely understood. In this review, we comprehensively provide a conceptual framework to elucidate circ-ITCH biological functions of cell proliferation, apoptosis and differentiation, and the pathological mechanisms of inflammation, drug resistance/toxicity, and tumorigenesis. Finally, we summarize its clinical applications in various diseases. This research aimed at clarifying the role of circ-ITCH, which could be a promising therapeutic target.
Collapse
|