1
|
Mohammadi MF, Tehrani Fateh S, Ganji M, Mohammadi P, Bahrami T, Ashrafi MR, Hosseinpour S, Heidari M, Garshasbi M, Tavasoli AR. Unraveling neuroimaging insights in developmental epileptic encephalopathy type 25: a comprehensive review of reported cases and a novel SLC13A5 variant. Acta Neurol Belg 2024; 124:1959-1972. [PMID: 39147996 DOI: 10.1007/s13760-024-02611-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/13/2024] [Indexed: 08/17/2024]
Abstract
Developmental and epileptic encephalopathy type 25 with amelogenesis imperfecta (DEE25) is a rare autosomal recessive disorder caused by homozygous or compound heterozygous disease-causing variants in the SLC13A5. These variants can disrupt energy production and delay brain development, leading to DEE25. Key symptoms include refractory seizures, often manifesting in neonates or infants, alongside global developmental delay, intellectual disability, progressive microcephaly, ataxia, spasticity, and speech difficulties. Dental anomalies related to amelogenesis imperfecta are common. Previous studies have typically reported normal or minimally altered early-life brain magnetic resonance imaging (MRI) findings in DEE25. However, our investigation identified a homozygous splice donor variant (NM_177550.5: c.1437 + 1G >T) in SLC13A5 through whole-exome sequencing in two affected siblings (P1 and P2). They displayed developmental delay, cerebral hypotonia, speech delay, recurrent seizures, mild but constant microcephaly, and motor impairments. Significantly, P1 exhibited novel findings on brain magnetic resonance imaging at age 5, including previously unreported extensive persistent hypomyelination. Meanwhile, P2 showed substantial loss of cerebral white matter in the frontoparietal region and delayed myelination at 18 months old. These discoveries broaden the DEE25 imaging spectrum and highlight the clinical heterogeneity even within siblings sharing the same variants.
Collapse
Affiliation(s)
- Mohammad Farid Mohammadi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | | | - Pouria Mohammadi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Myelin Disorders Clinic, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayyeb Bahrami
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mahmoud Reza Ashrafi
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Myelin Disorders Clinic, Tehran University of Medical Sciences, Tehran, Iran
| | - Sareh Hosseinpour
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Myelin Disorders Clinic, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pediatric Neurology, Vali-E-Asr Hospital, Tehran University of medical sciences, Tehran, Iran
| | - Morteza Heidari
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Myelin Disorders Clinic, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ali Reza Tavasoli
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Myelin Disorders Clinic, Tehran University of Medical Sciences, Tehran, Iran.
- Neurology Division, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA.
| |
Collapse
|
2
|
Wang Y, Lilienfeldt N, Hekimi S. Understanding coenzyme Q. Physiol Rev 2024; 104:1533-1610. [PMID: 38722242 PMCID: PMC11495197 DOI: 10.1152/physrev.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 08/11/2024] Open
Abstract
Coenzyme Q (CoQ), also known as ubiquinone, comprises a benzoquinone head group and a long isoprenoid side chain. It is thus extremely hydrophobic and resides in membranes. It is best known for its complex function as an electron transporter in the mitochondrial electron transport chain (ETC) but is also required for several other crucial cellular processes. In fact, CoQ appears to be central to the entire redox balance of the cell. Remarkably, its structure and therefore its properties have not changed from bacteria to vertebrates. In metazoans, it is synthesized in all cells and is found in most, and maybe all, biological membranes. CoQ is also known as a nutritional supplement, mostly because of its involvement with antioxidant defenses. However, whether there is any health benefit from oral consumption of CoQ is not well established. Here we review the function of CoQ as a redox-active molecule in the ETC and other enzymatic systems, its role as a prooxidant in reactive oxygen species generation, and its separate involvement in antioxidant mechanisms. We also review CoQ biosynthesis, which is particularly complex because of its extreme hydrophobicity, as well as the biological consequences of primary and secondary CoQ deficiency, including in human patients. Primary CoQ deficiency is a rare inborn condition due to mutation in CoQ biosynthetic genes. Secondary CoQ deficiency is much more common, as it accompanies a variety of pathological conditions, including mitochondrial disorders as well as aging. In this context, we discuss the importance, but also the great difficulty, of alleviating CoQ deficiency by CoQ supplementation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Noah Lilienfeldt
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Mahdieh N, Heidari M, Rezaei Z, Tavasoli AR, Hosseinpour S, Rasulinejad M, Dehnavi AZ, Ghahvechi Akbari M, Badv RS, Vafaei E, Mohebbi A, Mohammadi P, Hosseiny SMM, Azizimalamiri R, Nikkhah A, Pourbakhtyaran E, Rohani M, Khanbanha N, Nikbakht S, Movahedinia M, Karimi P, Ghabeli H, Hosseini SA, Rashidi FS, Garshasbi M, Kashani MR, Ghiasvand NM, Zuchner S, Synofzik M, Ashrafi MR. The genetic basis of early-onset hereditary ataxia in Iran: results of a national registry of a heterogeneous population. Hum Genomics 2024; 18:35. [PMID: 38570878 PMCID: PMC10988936 DOI: 10.1186/s40246-024-00598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND To investigate the genetics of early-onset progressive cerebellar ataxia in Iran, we conducted a study at the Children's Medical Center (CMC), the primary referral center for pediatric disorders in the country, over a three-year period from 2019 to 2022. In this report, we provide the initial findings from the national registry. METHODS We selected all early-onset patients with an autosomal recessive mode of inheritance to assess their phenotype, paraclinical tests, and genotypes. The clinical data encompassed clinical features, the Scale for the Assessment and Rating of Ataxia (SARA) scores, Magnetic Resonance Imaging (MRI) results, Electrodiagnostic exams (EDX), and biomarker features. Our genetic investigations included single-gene testing, Whole Exome Sequencing (WES), and Whole Genome Sequencing (WGS). RESULTS Our study enrolled 162 patients from various geographic regions of our country. Among our subpopulations, we identified known and novel pathogenic variants in 42 genes in 97 families. The overall genetic diagnostic rate was 59.9%. Notably, we observed PLA2G6, ATM, SACS, and SCA variants in 19, 14, 12, and 10 families, respectively. Remarkably, more than 59% of the cases were attributed to pathogenic variants in these genes. CONCLUSIONS Iran, being at the crossroad of the Middle East, exhibits a highly diverse genetic etiology for autosomal recessive hereditary ataxia. In light of this heterogeneity, the development of preventive strategies and targeted molecular therapeutics becomes crucial. A national guideline for the diagnosis and management of patients with these conditions could significantly aid in advancing healthcare approaches and improving patient outcomes.
Collapse
Affiliation(s)
- Nejat Mahdieh
- Pediatric Neurology Division, Pediatrics Center of Excellence, Ataxia Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Heidari
- Pediatric Neurology Division, Pediatrics Center of Excellence, Ataxia Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rezaei
- Pediatric Neurology Division, Pediatrics Center of Excellence, Ataxia Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Tavasoli
- Pediatric Neurology Division, Pediatrics Center of Excellence, Ataxia Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Headache Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Sareh Hosseinpour
- Department of Pediatrics, Division of Paediatric Neurology, Vali-E-Asr Hospital, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Rasulinejad
- Pediatric Neurology Division, Pediatrics Center of Excellence, Ataxia Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Zare Dehnavi
- Pediatric Neurology Division, Pediatrics Center of Excellence, Ataxia Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Ghahvechi Akbari
- Physical Medicine and Rehabilitation Department, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Pediatric Neurology Division, Pediatrics Center of Excellence, Ataxia Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Vafaei
- Pediatric Neurology Division, Pediatrics Center of Excellence, Ataxia Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mohebbi
- Pediatric Neurology Division, Pediatrics Center of Excellence, Ataxia Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouria Mohammadi
- Pediatric Neurology Division, Pediatrics Center of Excellence, Ataxia Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyyed Mohammad Mahdi Hosseiny
- Pediatric Neurology Division, Pediatrics Center of Excellence, Ataxia Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Azizimalamiri
- Division of Pediatric Neurology, Department of Pediatrics, Golestan Medical, Educational and Research Center, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Ali Nikkhah
- Department of Pediatrics, Division of Paediatric Neurology, Vali-E-Asr Hospital, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pediatrics, Division of Paediatric Neurology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Pourbakhtyaran
- Pediatric Neurology Division, Pediatrics Center of Excellence, Ataxia Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, School of Medicine, Hazrat Rasool-E Akram General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Narges Khanbanha
- Pediatric Neurology Division, Pediatrics Center of Excellence, Ataxia Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Nikbakht
- Pediatric Neurology Division, Pediatrics Center of Excellence, Ataxia Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Movahedinia
- Children Growth Disorders Research Center, Department of Pediatric, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Parviz Karimi
- Department of Pediatric Diseases, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Homa Ghabeli
- Department of Pediatrics, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Ahmad Hosseini
- Department of Pediatrics, Taleghani Children's Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Sadat Rashidi
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Noor M Ghiasvand
- Department of Biology, Grand Valley State University, Allendale, MI, 49401, USA
| | - Stephan Zuchner
- Department of Human Genetics and John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Mahmoud Reza Ashrafi
- Pediatric Neurology Division, Pediatrics Center of Excellence, Ataxia Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pediatrics, Division of Paediatric Neurology, Growth and Development Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Mohammadi MF, Dehghani A, Zarabadi K, Kahani SM, Sayyad S, Ashrafi MR, Heidari M, Mohammadi P, Garshasbi M, Tavasoli AR. Persistent basal ganglia involvement in aminoacylase-1 deficiency: expanding imaging findings and review of literature. Ir J Med Sci 2024; 193:449-456. [PMID: 37523070 DOI: 10.1007/s11845-023-03452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/02/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Aminoacylase-1 deficiency (ACY1D) is an autosomal recessive rare inborn error of metabolism, which is caused by disease-causing variants in the ACY1. This disorder is characterized by increased urinary excretion of specific N-acetyl amino acids. Affected individuals demonstrate heterogeneous clinical manifestations which are primarily neurologic problems. In neuroimaging, corpus callosum hypoplasia, cerebellar vermis atrophy, and delayed myelination of cerebral white matter have been reported. AIMS Finding disease-causing variant and expanding imaging findings in a patient with persistent basal ganglia involvement. METHODS Whole-exome sequencing was performed in order to identify disease-causing variants in an affected 5-year-old male patient who presented with neurologic regression superimposed on neurodevelopmental delay following a febrile illness. He had inability to walk, cognitive impairment, speech delay, febrile-induced seizures, truncal hypotonia, moderate to severe generalized dystonia, and recurrent metabolic decompensation. RESULTS All metabolic tests were normal except for a moderate metabolic acidosis following febrile illnesses. The results of serial brain magnetic resonance imaging (MRI) at ages 1 and 4.5 years revealed persistent bilateral and symmetric abnormal signals in basal ganglia mainly caudate and globus pallidus nuclei with progression over time in addition to a mild supratentorial atrophy. A homozygous missense variant [NM_000666.3: c.1057C>T; p.(Arg353Cys)] was identified in the ACY1, consistent with aminoacylase-1 deficiency. Variant confirmation in patient and segregation analysis in his family were performed using Sanger sequencing. CONCLUSIONS Our findings expanded the phenotype spectrum of ACY1-related neurodegeneration by demonstrating persistent basal ganglia involvement and moderate to severe generalized dystonia.
Collapse
Affiliation(s)
- Mohammad Farid Mohammadi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
- PardisGene Co., Tehran, Iran
| | - Ali Dehghani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kiana Zarabadi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyyed Mohammad Kahani
- PardisGene Co., Tehran, Iran
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Setareh Sayyad
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahmoud Reza Ashrafi
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Heidari
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouria Mohammadi
- PardisGene Co., Tehran, Iran
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ali Reza Tavasoli
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.
- Pediatric Headache Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA.
| |
Collapse
|
5
|
Mohammadi MF, Fateh ST, Aghajani H, Bahramy A, Zaheryani SMS, Behroozi J, Kahani SM, Mohammadi P, Garshasbi M. Expression assay of the COLQ in a family with congenital myasthenic syndrome and symptomatic carriers. Clin Case Rep 2023; 11:e8062. [PMID: 37881193 PMCID: PMC10593973 DOI: 10.1002/ccr3.8062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/20/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023] Open
Abstract
Congenital myasthenic syndromes-5 (CMS5) is a rare autosomal recessive heterogeneous disorder, caused by pathogenic variants in the COLQ that lead to skeletal muscle weakness and abnormal fatigability. The onset is usually from birth to childhood. Disease-causing variants in the collagen-like tail subunit are the most explained etiology in synaptic CMS, causing defected acetylcholinesterase. In this study whole-exome sequencing (WES) was performed in an affected boy with muscle weakness, ophthalmoplegia, and bilateral ptosis and gene expression assay by qRT-PCR was performed in entire family. A homozygous nonsense variant in the COLQ [NM_005677.4:c.679C>T], (p.Arg227Ter) was identified in the proband. Segregation analysis by Sanger sequencing confirmed the homozygous state in the proband and heterozygous state in his parents and four of the siblings. The mRNA expression level in the proband was 0.02 of a healthy person, and in the carriers were 0.42 of a healthy person. This study presents an Iranian family with two affected children and eight symptomatic carriers with attenuated mRNA expression. This study provides evidence that carriers of the COLQ disease-causing variants could become symptomatic with some yet unknown pathogenesis mechanism and underscore the importance of further investigations to elucidate this mechanism.
Collapse
Affiliation(s)
- Mohammad Farid Mohammadi
- Department of Cell and Molecular Sciences, Faculty of Biological SciencesKharazmi UniversityTehranIran
| | | | - Hadi Aghajani
- Faculty of Medicine, Tehran Medical Sciences BranchIslamic Azad UniversityTehranIran
| | - Afshin Bahramy
- Department of Medical Genetics, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | | | - Javad Behroozi
- Department of Medical Genetics, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
- Research Center for Cancer Screening and EpidemiologyAJA University of Medical SciencesTehranIran
| | - Seyyed Mohammad Kahani
- Department of Medical Genetics, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Pouria Mohammadi
- Department of Medical Genetics, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
6
|
Hojabri M, Gilani A, Irilouzadian R, Nejad biglari H, Sarmadian R. Adolescence Onset Primary Coenzyme Q10 Deficiency With Rare CoQ8A Gene Mutation: A Case Report and Review of Literature. CLINICAL MEDICINE INSIGHTS-CASE REPORTS 2023; 16:11795476231188061. [PMID: 37476682 PMCID: PMC10354825 DOI: 10.1177/11795476231188061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/25/2023] [Indexed: 07/22/2023]
Abstract
Background Primary deficiency of coenzyme Q10 deficiency-4 (CoQ10D4) is a heterogeneous disorder affecting different age groups. The main clinical manifestation consists of cerebellar ataxia, exercise intolerance, and dystonia. Case report We provide a case of adolescence-onset ataxia, head tremor, and proximal muscle weakness accompanied by psychiatric features and abnormal serum urea (49.4 mg/dL), lactate (7.5 mmol/L), and CoQ10 level (0.4 µg/mL). Brain-MRI demonstrated cerebellar atrophy, thinning of the corpus callosum, and loss of white matter. Whole exome sequencing showed a homozygous missense mutation (c.911C>T; p.A304V) in CoQ8A gene which is a rare mutation and responsible variant of CoQ10D4. After supplementary treatment with CoQ10 50 mg/twice a day for 2 months the clinical symptoms improved. Conclusion These observations highlight the significance of the early diagnosis of potentially treatable CoQ8A mutation as well as patient education and follow-up. Our findings widen the spectrum of CoQ8A phenotypic features so that clinicians be familiar with the disease not only in severe childhood-onset ataxia but also in adolescence with accompanying psychiatric problems.
Collapse
Affiliation(s)
- Mahsa Hojabri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Gilani
- Department of Pediatric Surgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Rana Irilouzadian
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Habibe Nejad biglari
- Department of Pediatric Neurology, Kerman University of Medical Sciences, Kerman, Iran
| | - Roham Sarmadian
- Infectious Diseases Research Center, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
7
|
Neuroimaging in Primary Coenzyme-Q10-Deficiency Disorders. Antioxidants (Basel) 2023; 12:antiox12030718. [PMID: 36978966 PMCID: PMC10045115 DOI: 10.3390/antiox12030718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Coenzyme Q10 (CoQ10) is an endogenously synthesized lipid molecule. It is best known for its role as a cofactor within the mitochondrial respiratory chain where it functions in electron transfer and ATP synthesis. However, there are many other cellular pathways that also depend on the CoQ10 supply (redox homeostasis, ferroptosis and sulfide oxidation). The CoQ10 biosynthesis pathway consists of several enzymes, which are encoded by the nuclear DNA. The majority of these enzymes are responsible for modifications of the CoQ-head group (benzoquinone ring). Only three enzymes (PDSS1, PDSS2 and COQ2) are required for assembly and attachment of the polyisoprenoid side chain. The head-modifying enzymes may assemble into resolvable domains, representing COQ complexes. During the last two decades, numerous inborn errors in CoQ10 biosynthesis enzymes have been identified. Thus far, 11 disease genes are known (PDSS1, PDSS2, COQ2, COQ4, COQ5, COQ6, COQ7, COQ8A, COQ8B, COQ9 and HPDL). Disease onset is highly variable and ranges from the neonatal period to late adulthood. CoQ10 deficiency exerts detrimental effects on the nervous system. Potential consequences are neuronal death, neuroinflammation and cerebral gliosis. Clinical features include encephalopathy, regression, movement disorders, epilepsy and intellectual disability. Brain magnetic resonance imaging (MRI) is the most important tool for diagnostic evaluation of neurological damage in individuals with CoQ10 deficiency. However, due to the rarity of the different gene defects, information on disease manifestations within the central nervous system is scarce. This review aims to provide an overview of brain MRI patterns observed in primary CoQ10 biosynthesis disorders and to highlight disease-specific findings.
Collapse
|
8
|
Paprocka J, Nowak M, Chuchra P, Śmigiel R. COQ8A-Ataxia as a Manifestation of Primary Coenzyme Q Deficiency. Metabolites 2022; 12:955. [PMID: 36295857 PMCID: PMC9608955 DOI: 10.3390/metabo12100955] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/19/2022] Open
Abstract
COQ8A-ataxia is a mitochondrial disease in which a defect in coenzyme Q10 synthesis leads to dysfunction of the respiratory chain. The disease is usually present as childhood-onset progressive ataxia with developmental regression and cerebellar atrophy. However, due to variable phenotype, it may be hard to distinguish from other mitochondrial diseases and a wide spectrum of childhood-onset cerebellar ataxia. COQ8A-ataxia is a potentially treatable condition with the supplementation of coenzyme Q10 as a main therapy; however, even 50% may not respond to the treatment. In this study we review the clinical manifestation and management of COQ8A-ataxia, focusing on current knowledge of coenzyme Q10 supplementation and approach to further therapies. Moreover, the case of a 22-month-old girl with cerebellar ataxia and developmental regression will be presented.
Collapse
Affiliation(s)
- Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Magdalena Nowak
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Piotr Chuchra
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Robert Śmigiel
- Department of Family and Pediatric Nursing, Wroclaw Medical University, 51-618 Wrocław, Poland
| |
Collapse
|