1
|
Ren J, Cheng S, Ren F, Gu H, Wu D, Yao X, Tan M, Huang A, Chen J. Epigenetic regulation and its therapeutic potential in hepatitis B virus covalently closed circular DNA. Genes Dis 2025; 12:101215. [PMID: 39534573 PMCID: PMC11555349 DOI: 10.1016/j.gendis.2024.101215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/25/2023] [Accepted: 12/05/2023] [Indexed: 11/16/2024] Open
Abstract
Human hepatitis B virus (HBV) infection is the major cause of acute and chronic hepatitis B, liver cirrhosis, and hepatocellular carcinoma. Although the application of prophylactic vaccination programs has successfully prevented the trend of increasing HBV infection prevalence, the number of HBV-infected people remains very high. Approved therapeutic management efficiently suppresses viral replication; however, HBV infection is rarely completely resolved. The major reason for therapeutic failure is the persistence of covalently closed circular DNA (cccDNA), which forms viral minichromosomes by combining with histone and nonhistone proteins in the nucleus. Increasing evidence indicates that chromatin-modifying enzymes, viral proteins, and noncoding RNAs are essential for modulating the function of cccDNA. Therefore, a deeper understanding of the regulatory mechanism underlying cccDNA transcription will contribute to the development of a cure for chronic hepatitis B. This review summarizes the current knowledge of cccDNA biology, the regulatory mechanisms underlying cccDNA transcription, and novel anti-HBV approaches for eliminating cccDNA transcription.
Collapse
Affiliation(s)
- Jihua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Shengtao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Fang Ren
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400000, China
| | - Huiying Gu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Daiqing Wu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Xinyan Yao
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Ailong Huang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| |
Collapse
|
2
|
Zhang Y, Cao W, Wang S, Zhang L, Li X, Zhang Z, Xie Y, Li M. Epigenetic modification of hepatitis B virus infection and related hepatocellular carcinoma. Virulence 2024; 15:2421231. [PMID: 39460469 PMCID: PMC11583590 DOI: 10.1080/21505594.2024.2421231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/18/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
Hepatitis B virus (HBV) infection poses a challenge to global public health. Persistent liver infection with HBV is associated with an increased risk of developing severe liver disease. The complex interaction between the virus and the host is the reason for the persistent presence of HBV and the risk of tumor development. Chronic liver inflammation, integration of viral genome with host genome, expression of HBx protein, and viral genotype are all key participants in the pathogenesis of hepatocellular carcinoma (HCC). Epigenetic regulation in HBV-associated HCC involves complex interactions of molecular mechanisms that control gene expression and function without altering the underlying DNA sequence. These epigenetic modifications can significantly affect the onset and progression of HCC. This review summarizes recent research on the epigenetic regulation of HBV persistent infection and HBV-HCC development, including DNA methylation, histone modification, RNA modification, non-coding RNA, etc. Enhanced knowledge of these mechanisms will offer fresh perspectives and potential targets for intervention tactics in HBV-HCC.
Collapse
Affiliation(s)
- Yaqin Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Weihua Cao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shiyu Wang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xinxin Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ziyu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
3
|
Tepjanta P, Fujiyama K, Misaki R, Kimkong I. The N-linked glycosylation modifications in the hepatitis B surface protein impact cellular autophagy, HBV replication, and HBV secretion. PLoS One 2024; 19:e0299403. [PMID: 38489292 PMCID: PMC10942060 DOI: 10.1371/journal.pone.0299403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
N-linked glycosylation is a pivotal post-translational modification that significantly influences various aspects of protein biology. Autophagy, a critical cellular process, is instrumental in cell survival and maintenance. The hepatitis B virus (HBV) has evolved mechanisms to manipulate this process to ensure its survival within host cells. Significantly, post-translational N-linked glycosylation in the large surface protein of HBV (LHBs) influences virion assembly, infectivity, and immune evasion. This study investigated the role of N-linked glycosylation of LHBs in autophagy, and its subsequent effects on HBV replication and secretion. LHBs plasmids were constructed by incorporating single-, double-, and triple-mutated N-linked glycosylation sites through amino acid substitutions at N4, N112, and N309. In comparison to the wild-type LHBs, N-glycan mutants, including N309Q, N4-309Q, N112-309Q, and N4-112-309Q, induced autophagy gene expression and led to autophagosome accumulation in hepatoma cells. Acridine orange staining of cells expressing LHBs mutations revealed impaired lysosomal acidification, suggesting potential blockage of autophagic flux at later stages. Furthermore, N-glycan mutants increased the mRNA expression of HBV surface antigen (HBsAg). Notably, N309Q significantly elevated HBx oncogene level. The LHBs mutants, particularly N309Q and N112-309Q, significantly enhanced HBV replication, whereas N309Q, N4-309Q, and N4-112-309Q markedly increased HBV progeny secretion. Remarkably, our findings demonstrated that autophagy is indispensable for the impact of N-linked glycosylation mutations in LHBs on HBV secretion, as evidenced by experiments with a 3-methyladenine (3-MA) inhibitor. Our study provides pioneering insights into the interplay between N-linked glycosylation mutations in LHBs, host autophagy, and the HBV life cycle. Additionally, we offer a new clue for further investigation into carcinogenesis of hepatocellular carcinoma (HCC). These findings underscore the potential of targeting either N-linked glycosylation modifications or the autophagic pathway for the development of innovative therapies against HBV and/or HCC.
Collapse
Affiliation(s)
- Patcharin Tepjanta
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Kazuhito Fujiyama
- International Center for Biotechnology (ICBiotech), Osaka University, Osaka, Japan
| | - Ryo Misaki
- International Center for Biotechnology (ICBiotech), Osaka University, Osaka, Japan
| | - Ingorn Kimkong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University – Kasetsart University, Bangkok, Thailand
| |
Collapse
|
4
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Pathogenesis of Hepatocellular Carcinoma: The Interplay of Apoptosis and Autophagy. Biomedicines 2023; 11:1166. [PMID: 37189787 PMCID: PMC10135776 DOI: 10.3390/biomedicines11041166] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is a multifactorial process that has not yet been fully investigated. Autophagy and apoptosis are two important cellular pathways that are critical for cell survival or death. The balance between apoptosis and autophagy regulates liver cell turnover and maintains intracellular homeostasis. However, the balance is often dysregulated in many cancers, including HCC. Autophagy and apoptosis pathways may be either independent or parallel or one may influence the other. Autophagy may either inhibit or promote apoptosis, thus regulating the fate of the liver cancer cells. In this review, a concise overview of the pathogenesis of HCC is presented, with emphasis on new developments, including the role of endoplasmic reticulum stress, the implication of microRNAs and the role of gut microbiota. The characteristics of HCC associated with a specific liver disease are also described and a brief description of autophagy and apoptosis is provided. The role of autophagy and apoptosis in the initiation, progress and metastatic potential is reviewed and the experimental evidence indicating an interplay between the two is extensively analyzed. The role of ferroptosis, a recently described specific pathway of regulated cell death, is presented. Finally, the potential therapeutic implications of autophagy and apoptosis in drug resistance are examined.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, PAGNI University Hospital, University of Crete School of Medicine, 71500 Heraklion, Crete, Greece
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| |
Collapse
|
5
|
Tian Z, Xu C, Yang P, Lin Z, Wu W, Zhang W, Ding J, Ding R, Zhang X, Dou K. Molecular pathogenesis: Connections between viral hepatitis-induced and non-alcoholic steatohepatitis-induced hepatocellular carcinoma. Front Immunol 2022; 13:984728. [PMID: 36189208 PMCID: PMC9520190 DOI: 10.3389/fimmu.2022.984728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Hepatocellular carcinoma(HCC) is the sixth most common cancer in the world and is usually caused by viral hepatitis (HBV and HCV), alcoholic, and non-alcoholic fatty liver disease(NAFLD). Viral hepatitis accounts for 80% of HCC cases worldwide. In addition, With the increasing incidence of metabolic diseases, NAFLD is now the most common liver disease and a major risk factor for HCC in most developed countries. This review mainly described the specificity and similarity between the pathogenesis of viral hepatitis(HBV and HCV)-induced HCC and NAFLD-induced HCC. In general, viral hepatitis promotes HCC development mainly through specific encoded viral proteins. HBV can also exert its tumor-promoting mechanism by integrating into the host chromosome, while HCV cannot. Viral hepatitis-related HCC and NASH-related HCC differ in terms of genetic factors, and epigenetic modifications (DNA methylation, histone modifications, and microRNA effects). In addition, both of them can lead to HCC progression through abnormal lipid metabolism, persistent inflammatory response, immune and intestinal microbiome dysregulation.
Collapse
Affiliation(s)
- Zelin Tian
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Chen Xu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Peijun Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Zhibin Lin
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Wenlong Wu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Wenjie Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Jian Ding
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Rui Ding
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Xuan Zhang, ; Kefeng Dou,
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Xuan Zhang, ; Kefeng Dou,
| |
Collapse
|
6
|
Lin Y, Qiu T, Wei G, Que Y, Wang W, Kong Y, Xie T, Chen X. Role of Histone Post-Translational Modifications in Inflammatory Diseases. Front Immunol 2022; 13:852272. [PMID: 35280995 PMCID: PMC8908311 DOI: 10.3389/fimmu.2022.852272] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a defensive reaction for external stimuli to the human body and generally accompanied by immune responses, which is associated with multiple diseases such as atherosclerosis, type 2 diabetes, Alzheimer’s disease, psoriasis, asthma, chronic lung diseases, inflammatory bowel disease, and multiple virus-associated diseases. Epigenetic mechanisms have been demonstrated to play a key role in the regulation of inflammation. Common epigenetic regulations are DNA methylation, histone modifications, and non-coding RNA expression; among these, histone modifications embrace various post-modifications including acetylation, methylation, phosphorylation, ubiquitination, and ADP ribosylation. This review focuses on the significant role of histone modifications in the progression of inflammatory diseases, providing the potential target for clinical therapy of inflammation-associated diseases.
Collapse
Affiliation(s)
- Yingying Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Guifeng Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yueyue Que
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Wenxin Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yichao Kong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
7
|
Hepatitis B Viral Protein HBx and the Molecular Mechanisms Modulating the Hallmarks of Hepatocellular Carcinoma: A Comprehensive Review. Cells 2022; 11:cells11040741. [PMID: 35203390 PMCID: PMC8870387 DOI: 10.3390/cells11040741] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
With 296 million cases estimated worldwide, chronic hepatitis B virus (HBV) infection is the most common risk factor for hepatocellular carcinoma (HCC). HBV-encoded oncogene X protein (HBx), a key multifunctional regulatory protein, drives viral replication and interferes with several cellular signalling pathways that drive virus-associated hepatocarcinogenesis. This review article provides a comprehensive overview of the role of HBx in modulating the various hallmarks of HCC by supporting tumour initiation, progression, invasion and metastasis. Understanding HBx-mediated dimensions of complexity in driving liver malignancies could provide the key to unlocking novel and repurposed combinatorial therapies to combat HCC.
Collapse
|
8
|
Tsuge M. The association between hepatocarcinogenesis and intracellular alterations due to hepatitis B virus infection. Liver Int 2021; 41:2836-2848. [PMID: 34559952 DOI: 10.1111/liv.15065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis B virus (HBV) infection is a worldwide health problem leading to severe liver dysfunction, including liver cirrhosis and hepatocellular carcinoma. Although current antiviral therapies for chronic HBV infection have been improved and can lead to a strong suppression of viral replication, it is difficult to completely eliminate the virus with these therapies once chronic HBV infection is established in the host. Furthermore, chronic HBV infection alters intracellular metabolism and signalling pathways, resulting in the activation of carcinogenesis in the liver. HBV produces four viral proteins: hepatitis B surface-, hepatitis B core-, hepatitis B x protein, and polymerase; each plays an important role in HBV replication and the intracellular signalling pathways associated with hepatocarcinogenesis. In vitro and in vivo experimental models for analyzing HBV infection and replication have been established, and gene expression analyses using microarrays or next-generation sequencing have also been developed. Thus, it is possible to clarify the molecular mechanisms for intracellular alterations, such as endoplasmic reticulum stress, oxidative stress, and epigenetic modifications. In this review, the impact of HBV viral proteins and intracellular alterations in HBV-associated hepatocarcinogenesis are discussed.
Collapse
Affiliation(s)
- Masataka Tsuge
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan.,Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
9
|
Tsuge M. Are Humanized Mouse Models Useful for Basic Research of Hepatocarcinogenesis through Chronic Hepatitis B Virus Infection? Viruses 2021; 13:v13101920. [PMID: 34696350 PMCID: PMC8541657 DOI: 10.3390/v13101920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/19/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a global health problem that can lead to liver dysfunction, including liver cirrhosis and hepatocellular carcinoma (HCC). Current antiviral therapies can control viral replication in patients with chronic HBV infection; however, there is a risk of HCC development. HBV-related proteins may be produced in hepatocytes regardless of antiviral therapies and influence intracellular metabolism and signaling pathways, resulting in liver carcinogenesis. To understand the mechanisms of liver carcinogenesis, the effect of HBV infection in human hepatocytes should be analyzed. HBV infects human hepatocytes through transfer to the sodium taurocholate co-transporting polypeptide (NTCP). Although the NTCP is expressed on the hepatocyte surface in several animals, including mice, HBV infection is limited to human primates. Due to this species-specific liver tropism, suitable animal models for analyzing HBV replication and developing antivirals have been lacking since the discovery of the virus. Recently, a humanized mouse model carrying human hepatocytes in the liver was developed based on several immunodeficient mice; this is useful for analyzing the HBV life cycle, antiviral effects of existing/novel antivirals, and intracellular signaling pathways under HBV infection. Herein, the usefulness of human hepatocyte chimeric mouse models in the analysis of HBV-associated hepatocarcinogenesis is discussed.
Collapse
Affiliation(s)
- Masataka Tsuge
- Natural Science Center for Basic Research and Development, Department of Biomedical Science, Research and Development Division, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; ; Tel.: +81-82-257-1510
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
- Research Center for Hepatology and Gastroenterology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
10
|
Pietropaolo V, Prezioso C, Moens U. Role of Virus-Induced Host Cell Epigenetic Changes in Cancer. Int J Mol Sci 2021; 22:ijms22158346. [PMID: 34361112 PMCID: PMC8346956 DOI: 10.3390/ijms22158346] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor viruses human T-lymphotropic virus 1 (HTLV-1), hepatitis C virus (HCV), Merkel cell polyomavirus (MCPyV), high-risk human papillomaviruses (HR-HPVs), Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpes virus (KSHV) and hepatitis B virus (HBV) account for approximately 15% of all human cancers. Although the oncoproteins of these tumor viruses display no sequence similarity to one another, they use the same mechanisms to convey cancer hallmarks on the infected cell. Perturbed gene expression is one of the underlying mechanisms to induce cancer hallmarks. Epigenetic processes, including DNA methylation, histone modification and chromatin remodeling, microRNA, long noncoding RNA, and circular RNA affect gene expression without introducing changes in the DNA sequence. Increasing evidence demonstrates that oncoviruses cause epigenetic modifications, which play a pivotal role in carcinogenesis. In this review, recent advances in the role of host cell epigenetic changes in virus-induced cancers are summarized.
Collapse
Affiliation(s)
- Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy;
- Correspondence: (V.P.); (U.M.)
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy;
- IRCSS San Raffaele Roma, Microbiology of Chronic Neuro-Degenerative Pathologies, 00161 Rome, Italy
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
- Correspondence: (V.P.); (U.M.)
| |
Collapse
|
11
|
Sartorius K, An P, Winkler C, Chuturgoon A, Li X, Makarova J, Kramvis A. The Epigenetic Modulation of Cancer and Immune Pathways in Hepatitis B Virus-Associated Hepatocellular Carcinoma: The Influence of HBx and miRNA Dysregulation. Front Immunol 2021; 12:661204. [PMID: 33995383 PMCID: PMC8117219 DOI: 10.3389/fimmu.2021.661204] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/15/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatitis B virus (HBV)-associated hepatocellular carcinoma (HBV-HCC) pathogenesis is fueled by persistent HBV infection that stealthily maintains a delicate balance between viral replication and evasion of the host immune system. HBV is remarkably adept at using a combination of both its own, as well as host machinery to ensure its own replication and survival. A key tool in its arsenal, is the HBx protein which can manipulate the epigenetic landscape to decrease its own viral load and enhance persistence, as well as manage host genome epigenetic responses to the presence of viral infection. The HBx protein can initiate epigenetic modifications to dysregulate miRNA expression which, in turn, can regulate downstream epigenetic changes in HBV-HCC pathogenesis. We attempt to link the HBx and miRNA induced epigenetic modulations that influence both the HBV and host genome expression in HBV-HCC pathogenesis. In particular, the review investigates the interplay between CHB infection, the silencing role of miRNA, epigenetic change, immune system expression and HBV-HCC pathogenesis. The review demonstrates exactly how HBx-dysregulated miRNA in HBV-HCC pathogenesis influence and are influenced by epigenetic changes to modulate both viral and host genome expression. In particular, the review identifies a specific subset of HBx induced epigenetic miRNA pathways in HBV-HCC pathogenesis demonstrating the complex interplay between HBV infection, epigenetic change, disease and immune response. The wide-ranging influence of epigenetic change and miRNA modulation offers considerable potential as a therapeutic option in HBV-HCC.
Collapse
Affiliation(s)
- Kurt Sartorius
- Hepatitis Virus Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa.,Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa.,Department of Surgery, University of KwaZulu-Natal Gastrointestinal Cancer Research Centre, Durban, South Africa
| | - Ping An
- Basic Research Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Cheryl Winkler
- Basic Research Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Xiaodong Li
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Julia Makarova
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia.,Higher School of Economics University, Moscow, Russia
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
12
|
Zeisel MB, Guerrieri F, Levrero M. Host Epigenetic Alterations and Hepatitis B Virus-Associated Hepatocellular Carcinoma. J Clin Med 2021; 10:jcm10081715. [PMID: 33923385 PMCID: PMC8071488 DOI: 10.3390/jcm10081715] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary malignancy of the liver and a leading cause of cancer-related deaths worldwide. Although much progress has been made in HCC drug development in recent years, treatment options remain limited. The major cause of HCC is chronic hepatitis B virus (HBV) infection. Despite the existence of a vaccine, more than 250 million individuals are chronically infected by HBV. Current antiviral therapies can repress viral replication but to date there is no cure for chronic hepatitis B. Of note, inhibition of viral replication reduces but does not eliminate the risk of HCC development. HBV contributes to liver carcinogenesis by direct and indirect effects. This review summarizes the current knowledge of HBV-induced host epigenetic alterations and their association with HCC, with an emphasis on the interactions between HBV proteins and the host cell epigenetic machinery leading to modulation of gene expression.
Collapse
Affiliation(s)
- Mirjam B. Zeisel
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), 69003 Lyon, France;
- Correspondence: (M.B.Z.); (M.L.)
| | - Francesca Guerrieri
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), 69003 Lyon, France;
| | - Massimo Levrero
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), 69003 Lyon, France;
- Hospices Civils de Lyon, Hôpital Croix Rousse, Service d’Hépato-Gastroentérologie, 69004 Lyon, France
- Correspondence: (M.B.Z.); (M.L.)
| |
Collapse
|
13
|
Bernard BJ, Nigam N, Burkitt K, Saloura V. SMYD3: a regulator of epigenetic and signaling pathways in cancer. Clin Epigenetics 2021; 13:45. [PMID: 33637115 PMCID: PMC7912509 DOI: 10.1186/s13148-021-01021-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Chromatin modifiers and their implications in oncogenesis have been an exciting area of cancer research. These are enzymes that modify chromatin via post-translational modifications such as methylation, acetylation, sumoylation, phosphorylation, in addition to others. Depending on the modification, chromatin modifiers can either promote or repress transcription. SET and MYN-domain containing 3 (SMYD3) is a chromatin modifier that has been implicated in the development and progression of various cancer types. It was first reported to tri-methylate Histone 3 Lysine 4 (H3K4), a methylation mark known to promote transcription. However, since this discovery, other histone (H4K5 and H4K20, for example) and non-histone (VEGFR, HER2, MAP3K2, ER, and others) substrates of SMYD3 have been described, primarily in the context of cancer. This review aims to provide a background on basic characteristics of SMYD3, such as its protein structure and tissue expression profiles, discuss reported histone and non-histone substrates of SMYD3, and underscore prognostic and functional implications of SMYD3 in cancer. Finally, we briefly discuss ongoing efforts to develop inhibitors of SMYD3 for future therapeutic use. It is our hope that this review will help synthesize existing research on SMYD3 in an effort to propel future discovery.
Collapse
Affiliation(s)
- Benjamin J Bernard
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, 41 Medlars Drive, Bethesda, MD, 20852, USA
| | - Nupur Nigam
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, 41 Medlars Drive, Bethesda, MD, 20852, USA
| | | | - Vassiliki Saloura
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, 41 Medlars Drive, Bethesda, MD, 20852, USA.
| |
Collapse
|
14
|
Epstein-Barr Virus Promotes B Cell Lymphomas by Manipulating the Host Epigenetic Machinery. Cancers (Basel) 2020; 12:cancers12103037. [PMID: 33086505 PMCID: PMC7603164 DOI: 10.3390/cancers12103037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Epstein-Barr Virus (EBV)-induced lymphomas have a significant global incidence, given the widespread infection to the human population. EBV adopts several mechanisms to replicate and persist in the host, by hijacking its epigenetic machinery. The main topic of this review details the current insights of EBV interactions with the host epigenetic system, and it will be discussed the potential relationship between the EBV-induced chronic inflammation and the dysregulation of epigenetic modifiers that might lead to tumorigenesis. Promising novel therapies against several types of cancer involve the use of epigenetic modifier inhibitors. To design new therapeutical strategies targeting lymphomas, it is crucial to conduct exhaustive reaserch on the regulation of these enzymes. Abstract During the past decade, the rapid development of high-throughput next-generation sequencing technologies has significantly reinforced our understanding of the role of epigenetics in health and disease. Altered functions of epigenetic modifiers lead to the disruption of the host epigenome, ultimately inducing carcinogenesis and disease progression. Epstein–Barr virus (EBV) is an endemic herpesvirus that is associated with several malignant tumours, including B-cell related lymphomas. In EBV-infected cells, the epigenomic landscape is extensively reshaped by viral oncoproteins, which directly interact with epigenetic modifiers and modulate their function. This process is fundamental for the EBV life cycle, particularly for the establishment and maintenance of latency in B cells; however, the alteration of the host epigenetic machinery also contributes to the dysregulated expression of several cellular genes, including tumour suppressor genes, which can drive lymphoma development. This review outlines the molecular mechanisms underlying the epigenetic manipulation induced by EBV that lead to transformed B cells, as well as novel therapeutic interventions to target EBV-associated B-cell lymphomas.
Collapse
|
15
|
Binh MT, Hoan NX, Giang DP, Tong HV, Bock CT, Wedemeyer H, Toan NL, Bang MH, Kremsner PG, Meyer CG, Song LH, Velavan TP. Upregulation of SMYD3 and SMYD3 VNTR 3/3 polymorphism increase the risk of hepatocellular carcinoma. Sci Rep 2020; 10:2797. [PMID: 32071406 PMCID: PMC7029004 DOI: 10.1038/s41598-020-59667-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 02/03/2020] [Indexed: 12/24/2022] Open
Abstract
SMYD3 (SET and MYND domain-containing protein 3) is involved in histone modification, which initiates oncogenesis by activating transcription of multiple downstream genes. To investigate associations of variable numbers of tandem repeats (VNTR) variants in the SMYD3 gene promoter, SMYD3 serum levels and SMYD3 mRNA expression in hepatitis B virus (HBV) infection and clinical progression of related liver disease. SMYD3 VNTRs were genotyped in 756 HBV patients and 297 healthy controls. SMYD3 serum levels were measured in 293 patients and SMYD3 mRNA expression was quantified in 48 pairs of hepatocellular tumor and adjacent non-tumor liver tissues. Genotype SYMD3 VNTR 3/3 was more frequent among HCC patients than in controls (Padjusted = 0.037). SMYD3 serum levels increased according to clinical progression of liver diseases (P = 0.01); HCC patients had higher levels than non-HCC patients (P = 0.04). Among patients with SMYD3 VNTR 3/3, HCC patients had higher SMYD3 levels than others (P < 0.05). SMYD3 mRNA expression was up-regulated in HCC tumor tissues compared to other tissues (P = 0.008). In conclusion, upregulation of SMYD3 correlates with the occurrence of HCC and SMYD3 VNTR 3/3 appears to increase the risk of HCC through increasing SMYD3 levels. SMYD3 may be an indicator for HCC development in HBV patients.
Collapse
Affiliation(s)
- Mai Thanh Binh
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research (VGCARE), Hanoi, Vietnam
- 108 Military Central Hospital, Hanoi, Vietnam
| | - Nghiem Xuan Hoan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research (VGCARE), Hanoi, Vietnam
- 108 Military Central Hospital, Hanoi, Vietnam
| | - Dao Phuong Giang
- Vietnamese-German Center for Medical Research (VGCARE), Hanoi, Vietnam
- 108 Military Central Hospital, Hanoi, Vietnam
| | - Hoang Van Tong
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research (VGCARE), Hanoi, Vietnam
- Vietnam Military Medical University, Hanoi, Vietnam
| | - C-Thomas Bock
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology and Hepatology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Nguyen Linh Toan
- Vietnamese-German Center for Medical Research (VGCARE), Hanoi, Vietnam
- Vietnam Military Medical University, Hanoi, Vietnam
| | | | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Christian G Meyer
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research (VGCARE), Hanoi, Vietnam
- Duy Tan University, Da Nang, Vietnam
| | - Le Huu Song
- Vietnamese-German Center for Medical Research (VGCARE), Hanoi, Vietnam
- 108 Military Central Hospital, Hanoi, Vietnam
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
- Vietnamese-German Center for Medical Research (VGCARE), Hanoi, Vietnam.
- Duy Tan University, Da Nang, Vietnam.
| |
Collapse
|
16
|
Chen Z, Yu W, Zhou Q, Zhang J, Jiang H, Hao D, Wang J, Zhou Z, He C, Xiao Z. A Novel lncRNA IHS Promotes Tumor Proliferation and Metastasis in HCC by Regulating the ERK- and AKT/GSK-3β-Signaling Pathways. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:707-720. [PMID: 31128422 PMCID: PMC6535504 DOI: 10.1016/j.omtn.2019.04.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) are involved in a variety of biological processes such as tumor proliferation and metastasis. A close relationship between hepatitis B virus X protein (HBx) and SMYD3 in promoting the proliferation and metastasis of hepatocellular carcinoma (HCC) was recently reported. However, the exact oncogenic mechanism of HBx-SMYD3 remains unknown. In this study, by performing lncRNA microarray analysis, we identified a novel lncRNA that was regulated by both HBx and SMYD3, and we named it lncIHS (lncRNA intersection between HBx microarray and SMYD3 microarray). lncIHS was overexpressed in HCC and decreased the survival rate of HCC patients. Knockdown of lncIHS inhibited HCC cell migration, invasion, and proliferation, and vice versa. Further study showed that lncIHS positively regulated the expression of epithelial mesenchymal transition (EMT)-related markers c-Myc and Cyclin D1, as well as the activation of the ERK- and AKT-signaling pathways. lncIHS exerted its oncogenic effect through ERK and AKT signaling. Moreover, results from transcriptome-sequencing analysis and mass spectrometry showed that lncIHS regulated multiple genes that were the upstream molecules of the ERK- and AKT-signaling pathways. Therefore, our findings suggest a regulatory network of ERK and AKT signaling through lncIHS, which is downstream of HBx-SMYD3, and they indicate that lncIHS may be a potential target for treating HCC.
Collapse
Affiliation(s)
- Zheng Chen
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wei Yu
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qiming Zhou
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jianlong Zhang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Hai Jiang
- Department of General Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Dake Hao
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Jie Wang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zhenyu Zhou
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Chuanchao He
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Zhiyu Xiao
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
17
|
Rajajeyabalachandran G, Kumar S, Murugesan T, Ekambaram S, Padmavathy R, Jegatheesan SK, Mullangi R, Rajagopal S. Therapeutical potential of deregulated lysine methyltransferase SMYD3 as a safe target for novel anticancer agents. Expert Opin Ther Targets 2016; 21:145-157. [PMID: 28019723 DOI: 10.1080/14728222.2017.1272580] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION SET and MYND domain containing-3 (SMYD3) is a member of the lysine methyltransferase family of proteins, and plays an important role in the methylation of various histone and non-histone targets. Proper functioning of SMYD3 is very important for the target molecules to determine their different roles in chromatin remodeling, signal transduction and cell cycle control. Due to the abnormal expression of SMYD3 in tumors, it is projected as a prognostic marker in various solid cancers. Areas covered: Here we elaborate on the general information, structure and the pathological role of SMYD3 protein. We summarize the role of SMYD3-mediated protein interactions in oncology pathways, mutational effects and regulation of SMYD3 in specific types of cancer. The efficacy and mechanisms of action of currently available SMYD3 small molecule inhibitors are also addressed. Expert opinion: The findings analyzed herein demonstrate that aberrant levels of SMYD3 protein exert tumorigenic effects by altering the epigenetic regulation of target genes. The partial involvement of SMYD3 in some distinct pathways provides a vital opportunity in targeting cancer effectively with fewer side effects. Further, identification and co-targeting of synergistic oncogenic pathways is suggested, which could provide much more beneficial effects for the treatment of solid cancers.
Collapse
Affiliation(s)
| | - Swetha Kumar
- a Bioinformatics, Jubilant Biosys Ltd ., Bangalore , India
| | | | | | | | | | | | | |
Collapse
|
18
|
HBx-upregulated lncRNA UCA1 promotes cell growth and tumorigenesis by recruiting EZH2 and repressing p27Kip1/CDK2 signaling. Sci Rep 2016; 6:23521. [PMID: 27009634 PMCID: PMC4806364 DOI: 10.1038/srep23521] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/09/2016] [Indexed: 12/11/2022] Open
Abstract
It is well accepted that HBx plays the major role in hepatocarcinogenesis associated with hepatitis B virus (HBV) infections. However, little was known about its role in regulating long noncoding RNAs (lncRNAs), a large group of transcripts regulating a variety of biological processes including carcinogenesis in mammalian cells. Here we report that HBx upregulates UCA1 genes and downregulates p27 genes in hepatic LO2 cells. Further studies show that the upregulated UCA1 promotes cell growth by facilitating G1/S transition through CDK2 in both hepatic and hepatoma cells. Knock down of UCA1 in HBx-expressing hepatic and hepatoma cells resulted in markedly increased apoptotic cells by elevating the cleaved caspase-3 and caspase-8. More importantly, UCA1 is found to be physically associated with enhancer of zeste homolog 2 (EZH2), which suppresses p27Kip1 through histone methylation (H3K27me3) on p27Kip1 promoter. We also show that knockdown of UCA1 in hepatoma cells inhibits tumorigenesis in nude mice. In a clinic study, UCA1 is found to be frequently up-regulated in HBx positive group tissues in comparison with the HBx negative group, and exhibits an inverse correlation between UCA1 and p27Kip1 levels. Our findings demonstrate an important mechanism of hepatocarcinogenesis through the signaling of HBx-UCA1/EZH2-p27Kip1 axis, and a potential target of HCC.
Collapse
|
19
|
Dong S, Zhang P. [Advances of histone methyltransferase SMYD3 in tumors]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2014; 17:689-94. [PMID: 25248712 PMCID: PMC6000504 DOI: 10.3779/j.issn.1009-3419.2014.09.09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Shangwen Dong
- Department of Cardiothoracic Surgery, Tianjin General Hospital, Tianjin 300052, China
| | - Peng Zhang
- Department of Cardiothoracic Surgery, Tianjin General Hospital, Tianjin 300052, China;Tianjin Lung Cancer Research Institute, Tianjin 300052, China
| |
Collapse
|
20
|
Wu DH, Tai S. Molecular mechanism of hepatitis B virus X-associated hepatocarcinogenesis. Shijie Huaren Xiaohua Zazhi 2014; 22:3773-3779. [DOI: 10.11569/wcjd.v22.i25.3773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant diseases and has the fourth highest mortality rate worldwide. Chronic hepatitis B virus (HBV) infection is one of the most important etiological factors for HCC. Current studies show that the hepatitis B virus X (HBX) gene plays an important role in the development of HBV-associated HCC. HBX protein is a multifunctional regulator. Though interacting with different host factors, HBX takes part in many cell physiological activities, such as signal transduction, gene transcription, cell cycle progression, apoptosis and autophagy. This review will discuss the biological role of HBX protein in the development of HCC based on the current state of knowledge on this protein.
Collapse
|
21
|
Anestopoulos I, Voulgaridou GP, Georgakilas AG, Franco R, Pappa A, Panayiotidis MI. Epigenetic therapy as a novel approach in hepatocellular carcinoma. Pharmacol Ther 2014; 145:103-19. [PMID: 25205159 DOI: 10.1016/j.pharmthera.2014.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/02/2014] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver malignancy and one with high fatality. Its 5-year survival rate remains low and thus, there is a need for improvement of current treatment strategies as well as development of novel targeted methodologies in order to optimize existing therapeutic protocols. To this end, only recently, it was discovered that its pathophysiology also involves epigenetic alterations in DNA methylation, histone modifications and/or non-coding microRNA patterns. Unlike genetic events, epigenetic alterations are reversible and thus potentially considered to be an alternative option in cancer treatment protocols. In this review, we describe the general characteristics and resulted major alterations of the epigenetic machinery as well as current state of progress of epigenetic therapy (via different single or combinatorial experimental approaches) in HCC.
Collapse
Affiliation(s)
- Ioannis Anestopoulos
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Alexandros G Georgakilas
- School of Applied Mathematical & Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Rodrigo Franco
- Redox Biology Center, School of Veterinary Medicine & Biomedical Sciences, Redox Biology Center, University of Nebraska-Lincoln, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | |
Collapse
|
22
|
Li S, Kong L, Yu X, Zheng Y. Host-virus interactions: from the perspectives of epigenetics. Rev Med Virol 2014; 24:223-41. [PMID: 24677359 DOI: 10.1002/rmv.1783] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/23/2013] [Accepted: 01/16/2014] [Indexed: 12/25/2022]
Abstract
Chromatin structure and histone modifications play key roles in gene regulation. Some virus genomes are organized into chromatin-like structure, which undergoes different histone modifications facilitating complex functions in virus life cycles including replication. Here, we present a comprehensive summary of recent research in this field regarding the interaction between viruses and host epigenetic factors with emphasis on how chromatin modifications affect viral gene expression and virus infection. We also describe the strategies employed by viruses to manipulate the host epigenetic program to facilitate virus replication as well as the underlying mechanisms. Together, knowledge from this field not only generates novel insights into virus life cycles but may also have important therapeutic implications.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA, USA
| | | | | | | |
Collapse
|
23
|
Feitelson MA, Bonamassa B, Arzumanyan A. The roles of hepatitis B virus-encoded X protein in virus replication and the pathogenesis of chronic liver disease. Expert Opin Ther Targets 2014; 18:293-306. [PMID: 24387282 DOI: 10.1517/14728222.2014.867947] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Hepatitis B virus (HBV) is a major cause of chronic liver disease (CLD) and hepatocellular carcinoma (HCC) worldwide. More than 350 million people are at risk for HCC, and with few treatment options available, therapeutic approaches to targets other than the virus polymerase will be needed. This review suggests that the HBV-encoded X protein, HBx, would be an outstanding target because it contributes to the biology and pathogenesis of HBV in three fundamental ways. AREAS COVERED First, HBx is a trans-activating protein that stimulates virus gene expression and replication, thereby promoting the development and persistence of the carrier state. Second, HBx partially blocks the development of immune responses that would otherwise clear the virus, and protects infected hepatocytes from immune-mediated destruction. Thus, HBx contributes to the development of CLD without virus clearance. Third, HBx alters patterns of host gene expression that make possible the emergence of HCC. The selected literature cited is from the National Library of Medicine (Pubmed and Medline). EXPERT OPINION Understanding the mechanisms, whereby HBx supports virus replication and promotes pathogenesis, suggests that HBx will be an important therapeutic target against both virus replication and CLD aimed at the chemoprevention of HCC.
Collapse
Affiliation(s)
- Mark A Feitelson
- Temple University, College of Science and Technology, Department of Biology , Room 409 BioLife Science Building, 1900 N. 12th Street, Philadelphia, PA 19122 , USA +1 215 204 8434 ; +1 215 204 8359 ;
| | | | | |
Collapse
|
24
|
Herceg Z, Lambert MP, van Veldhoven K, Demetriou C, Vineis P, Smith MT, Straif K, Wild CP. Towards incorporating epigenetic mechanisms into carcinogen identification and evaluation. Carcinogenesis 2013; 34:1955-67. [PMID: 23749751 DOI: 10.1093/carcin/bgt212] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Remarkable progress in the field of epigenetics has turned academic, medical and public attention to the potential applications of these new advances in medicine and various fields of biomedical research. The result is a broader appreciation of epigenetic phenomena in the a etiology of common human diseases, most notably cancer. These advances also represent an exciting opportunity to incorporate epigenetics and epigenomics into carcinogen identification and safety assessment. Current epigenetic studies, including major international sequencing projects, are expected to generate information for establishing the 'normal' epigenome of tissues and cell types as well as the physiological variability of the epigenome against which carcinogen exposure can be assessed. Recently, epigenetic events have emerged as key mechanisms in cancer development, and while our search of the Monograph Volume 100 revealed that epigenetics have played a modest role in evaluating human carcinogens by the International Agency for Research on Cancer (IARC) Monographs so far, epigenetic data might play a pivotal role in the future. Here, we review (i) the current status of incorporation of epigenetics in carcinogen evaluation in the IARC Monographs Programme, (ii) potential modes of action for epigenetic carcinogens, (iii) current in vivo and in vitro technologies to detect epigenetic carcinogens, (iv) genomic regions and epigenetic modifications and their biological consequences and (v) critical technological and biological issues in assessment of epigenetic carcinogens. We also discuss the issues related to opportunities and challenges in the application of epigenetic testing in carcinogen identification and evaluation. Although the application of epigenetic assays in carcinogen evaluation is still in its infancy, important data are being generated and valuable scientific resources are being established that should catalyse future applications of epigenetic testing.
Collapse
Affiliation(s)
- Zdenko Herceg
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, F-69008 Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hepatitis B virus X protein-induced aberrant epigenetic modifications contributing to human hepatocellular carcinoma pathogenesis. Mol Cell Biol 2013; 33:2810-6. [PMID: 23716588 DOI: 10.1128/mcb.00205-13] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the most prevalent malignant diseases worldwide, and the majority of cases are related to hepatitis B virus (HBV) infection. Interactions between the HBV-encoded X (HBx) protein and host factors are known to play major roles in the onset and progression of HBV-related HCC. These dynamic molecular mechanisms are extremely complex and lead to prominent changes in the host genetic and epigenetic architecture. This review summarizes the current knowledge about HBx-induced epigenetic changes, including aberrations in DNA methylation, histone modifications, and microRNA expression, and their roles in HBV-infected liver cells and HBV-related HCC. Moreover, the HBx-mediated epigenetic control of HBV covalently closed circular DNA (cccDNA) is also discussed. Although this field of study is relatively new, the accumulated evidence has indicated that the epigenetic events induced by HBx play important roles in the development of HBV-related HCC. Ongoing research will help to identify practical applications of the HBV-related epigenetic signatures as biomarkers for early HCC detection or as potential targets to prevent and treat HBV-related HCC.
Collapse
|
26
|
Zhou YM, Zhang XF, Cao L, Li B, Sui CJ, Li YM, Yin ZF. MCM7 expression predicts post-operative prognosis for hepatocellular carcinoma. Liver Int 2012; 32:1505-9. [PMID: 22784096 DOI: 10.1111/j.1478-3231.2012.02846.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/04/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dysregulation of minichromosome maintenance protein 7 (MCM7) was previously identified in multiple human malignancies. The clinical significance of MCM7 expression is yet to be delineated in patients with hepatocellular carcinoma (HCC). METHODS Paired cancerous and non-cancerous specimens from 87 patients with HCC who underwent resection were used for the immunohistochemical evaluation of MCM7 expression. Effect of sorafenib on the expression of MCM7 was tested in two human HCC cell lines SMMC-7721 and PLC/PRF/5. RESULTS Non-cancerous tissues were negative for immunohistochemical staining for MCM7 expression. Nuclear MCM7 was expressed in 42 of 87 HCC (48.2%) and was correlated with hepatitis B virus infection (P = 0.020), intrahepatic metastasis (P = 0.022) and vascular invasion (P = 0.013). Moreover, its expression was correlated with shorter overall survival (P = 0.033). Multivariate analysis showed that MCM7 expression was an independent prognostic factor for overall survival(P = 0.041). Sorafenib inhibited the expression of MCM7 in a concentration-dependent manner in vitro. CONCLUSIONS The current findings suggested that MCM7 expression may be a useful predictor of prognosis in patients with HCC after resection. Adjuvant therapy with sorafenib might be a valuable therapeutic strategy for MCM7-positive HCC patients.
Collapse
Affiliation(s)
- Yan-Ming Zhou
- Department of Hepato-Biliary-Pancreato-Vascular Surgery, First affiliated Hospital of Xiamen University, Xiamen, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Luo L, Chen S, Gong Q, Luo N, Lei Y, Guo J, He S. Hepatitis B virus X protein modulates remodelling of minichromosomes related to hepatitis B virus replication in HepG2 cells. Int J Mol Med 2012; 31:197-204. [PMID: 23128981 DOI: 10.3892/ijmm.2012.1165] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/14/2012] [Indexed: 11/05/2022] Open
Abstract
Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) is organised into minichromosomes by histone and non-histone proteins. Remodelling of minichromosomes is crucial for the regulation of HBV replication, which is dependent on the presence of the hepatitis B virus X protein (HBx). However, the mechanisms of HBx-dependent HBV replication remain obscure. The objective of this study was to investigate the mechanism of HBx-dependent HBV replication through the pathway of chromatin remodelling. The role of HBx was investigated by transfecting human HepG2 cells with the linear full-length HBV genome (wild-type) or HBx-deficient mutant HBV DNA (HBx mutant). Our results showed that although the formation of cccDNA was not affected by HBx, HBV replication, transcription and antigen secretion were all significantly reduced, resulting from the absence of HBx. The acetylation, mono-methylation and phosphorylation of cccDNA-bound histone H3 were associated with HBV replication. In addition, the levels of cccDNA-bound methylated, phosphorylated and acetylated histone H3 decreased sharply in HBx mutant HBV DNA. HBx modulated not only the status of acetylation but also the methylation and phosphorylation of histone H3 bound to the cccDNA during HBV replication in HepG2 cells. These findings suggest that HBx plays an important role in modulating the remodelling of minichromosomes related to HBV replication and it may regulate viral replication through the pathway of chromatin remodelling.
Collapse
Affiliation(s)
- Li Luo
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | | | | | | | | | | | | |
Collapse
|
28
|
Zimonjic DB, Popescu NC. Role of DLC1 tumor suppressor gene and MYC oncogene in pathogenesis of human hepatocellular carcinoma: potential prospects for combined targeted therapeutics (review). Int J Oncol 2012; 41:393-406. [PMID: 22580498 PMCID: PMC3583004 DOI: 10.3892/ijo.2012.1474] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 02/17/2012] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer death, and its incidence is increasing worldwide in an alarming manner. The development of curative therapy for advanced and metastatic HCC is a high clinical priority. The HCC genome is complex and heterogeneous; therefore, the identification of recurrent genomic and related gene alterations is critical for developing clinical applications for diagnosis, prognosis and targeted therapy of the disease. This article focuses on recent research progress and our contribution in identifying and deciphering the role of defined genetic alterations in the pathogenesis of HCC. A significant number of genes that promote or suppress HCC cell growth have been identified at the sites of genomic reorganization. Notwithstanding the accumulation of multiple genetic alterations, highly recurrent changes on a single chromosome can alter the expression of oncogenes and tumor suppressor genes (TSGs) whose deregulation may be sufficient to drive the progression of normal hepatocytes to malignancy. A distinct and highly recurrent pattern of genomic imbalances in HCC includes the loss of DNA copy number (associated with loss of heterozygosity) of TSG-containing chromosome 8p and gain of DNA copy number or regional amplification of protooncogenes on chromosome 8q. Even though 8p is relatively small, it carries an unusually large number of TSGs, while, on the other side, several oncogenes are dispersed along 8q. Compelling evidence demonstrates that DLC1, a potent TSG on 8p, and MYC oncogene on 8q play a critical role in the pathogenesis of human HCC. Direct evidence for their role in the genesis of HCC has been obtained in a mosaic mouse model. Knockdown of DLC1 helps MYC in the induction of hepatoblast transformation in vitro, and in the development of HCC in vivo. Therapeutic interventions, which would simultaneously target signaling pathways governing both DLC1 and MYC functions in hepatocarcinogenesis, could result in progress in the treatment of liver cancer.
Collapse
Affiliation(s)
- Drazen B Zimonjic
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
29
|
Wang DD, Jiang H, Zhao WY, Song MQ, You FP, Yang YF, Chen LB, Yang L. Correlation between microRNA-377 and histone methyltransferase SMYD3 expression in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2010; 18:1902-1906. [DOI: 10.11569/wcjd.v18.i18.1902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of microRNA-377 (miR-377) and histone methyltransferase SMYD3 in hepatocellular carcinoma (HCC) and to analyze their correlation.METHODS: Quantitative real-time PCR was performed to detect miR-377 expression in different liver tissues and cell lines. Quantitative real-time PCR and Western blot were employed to detect the expression of SMYD3 (a target gene of miR-377) mRNA and protein, respectively. After transfection of HepG2 cells with a miR-377 mimic, quantitative real-time PCR and Western blot were used to detect the expression of SMYD3 mRNA and protein, respectively.
RESULTS: MiR-377 mRNA was underexpressed in HCC and tumor-adjacent tissue compared to normal liver tissue (0.331 ± 0.059 and 0.139 ± 0.064 vs 0.874 ± 0.178, both P < 0.05). MiR-377 mRNA was also underexpressed in HepG2 cells compared to L-02 cells (0.145 ± 0.021 vs 0.868 ± 0.194, P < 0.05). SMYD3 mRNA and protein were overexpressed in HCC and tumor-adjacent tissue compared to normal liver tissue (mRNA: 3.836 ± 0.137 and 5.836 ± 0.965 vs 1.235 ± 0.332, both P < 0.05; protein: 0.381 ± 0.020 and 0.484 ± 0.030 vs 0.252 ± 0.015, both P < 0.05). SMYD3 mRNA and protein were overexpressed in HepG2 cells compared to L-02 cells (mRNA: 0.845 ± 0.047 vs 0.348 ± 0.134, P < 0.05; protein: 0.575 ± 0.008 vs 0.259 ± 0.007, P < 0.05). SMYD3 mRNA and protein expression in HepG2 cells was down-regulated after transfection of an miR-377 mimic (mimic vs empty control & negative control: mRNA, 0.125 ± 0.010 vs 0.857 ± 0.1635 and 0.779 ± 0.167; protein, 0.092 ± 0.026 vs 0.347 ± 0.040 and 0.383±0.054; all P < 0.05).
CONCLUSION: miR-377 is down-regulated and its target gene SMYD3 is overexpressed in HCC, which suggests that miR-377 down-regulation promotes the carcinogenesis of hepatocellular carcinoma by up-regulating SMYD3 expression.
Collapse
|