1
|
Ye Y, Li M, Pan Q, Fang X, Yang H, Dong B, Yang J, Zheng Y, Zhang R, Liao Z. Machine learning-based classification of deubiquitinase USP26 and its cell proliferation inhibition through stabilizing KLF6 in cervical cancer. Comput Biol Med 2024; 168:107745. [PMID: 38064851 DOI: 10.1016/j.compbiomed.2023.107745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/31/2023] [Accepted: 11/20/2023] [Indexed: 01/10/2024]
Abstract
OBJECTIVE We aim to accurately distinguish ubiquitin-specific proteases (USPs) from other members within the deubiquitinating enzyme families based on protein sequences. Additionally, we seek to elucidate the specific regulatory mechanisms through which USP26 modulates Krüppel-like factor 6 (KLF6) and assess the subsequent effects of this regulation on both the proliferation and migration of cervical cancer cells. METHODS All the deubiquitinase (DUB) sequences were classified into USPs and non-USPs. Feature vectors, including 188D, n-gram, and 400D dimensions, were extracted from these sequences and subjected to binary classification via the Weka software. Next, thirty human USPs were also analyzed to identify conserved motifs and ascertained evolutionary relationships. Experimentally, more than 90 unique DUB-encoding plasmids were transfected into HeLa cell lines to assess alterations in KLF6 protein levels and to isolate a specific DUB involved in KLF6 regulation. Subsequent experiments utilized both wild-type (WT) USP26 overexpression and shRNA-mediated USP26 knockdown to examine changes in KLF6 protein levels. The half-life experiment was performed to assess the influence of USP26 on KLF6 protein stability. Immunoprecipitation was applied to confirm the USP26-KLF6 interaction, and ubiquitination assays to explore the role of USP26 in KLF6 deubiquitination. Additional cellular assays were conducted to evaluate the effects of USP26 on HeLa cell proliferation and migration. RESULTS 1. Among the extracted feature vectors of 188D, 400D, and n-gram, all 12 classifiers demonstrated excellent performance. The RandomForest classifier demonstrated superior performance in this assessment. Phylogenetic analysis of 30 human USPs revealed the presence of nine unique motifs, comprising zinc finger and ubiquitin-specific protease domains. 2. Through a systematic screening of the deubiquitinase library, USP26 was identified as the sole DUB associated with KLF6. 3. USP26 positively regulated the protein level of KLF6, as evidenced by the decrease in KLF6 protein expression upon shUSP26 knockdown in both 293T and Hela cell lines. Additionally, half-life experiments demonstrated that USP26 prolonged the stability of KLF6. 4. Immunoprecipitation experiments revealed a strong interaction between USP26 and KLF6. Notably, the functional interaction domain was mapped to amino acids 285-913 of USP26, as opposed to the 1-295 region. 5. WT USP26 was found to attenuate the ubiquitination levels of KLF6. However, the mutant USP26 abrogated its deubiquitination activity. 6. Functional biological assays demonstrated that overexpression of USP26 inhibited both proliferation and migration of HeLa cells. Conversely, knockdown of USP26 was shown to promote these oncogenic properties. CONCLUSIONS 1. At the protein sequence level, members of the USP family can be effectively differentiated from non-USP proteins. Furthermore, specific functional motifs have been identified within the sequences of human USPs. 2. The deubiquitinating enzyme USP26 has been shown to target KLF6 for deubiquitination, thereby modulating its stability. Importantly, USP26 plays a pivotal role in the modulation of proliferation and migration in cervical cancer cells.
Collapse
Affiliation(s)
- Ying Ye
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Meng Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Qilong Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Xin Fang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China; Laboratory of Non-communicable Chronic Disease Control, Fujian Provincial Center for Disease Control and Prevention, Fuzhou, 350012, China
| | - Hong Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Bingying Dong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Jiaying Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Yuan Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Renxiang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Zhijun Liao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
2
|
Zeng B, Lin J, Cai X, Che L, Zeng W, Liu S. Krüppel-Like Factor 6 Downregulation Is Connected with a Poor Prognosis and Tumor Growth in Non-Small-Cell Lung Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3193553. [PMID: 35136416 PMCID: PMC8818409 DOI: 10.1155/2022/3193553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022]
Abstract
PURPOSE Research in this article was performed to explore the biological role and clinical significance of Krüppel-like transcription factor 6 (KLF6) in non-small-cell lung cancer (NSCLC). METHODS KLF6 expression in NSCLC cell lines was analyzed using reverse transcription PCR and Western blot. The expressed KLF6 protein was examined in 50 surgical NSCLC tissues using immunohistochemistry. Statistical analyses were employed for clinical association examinations. CCK8 assay and Annexin V/PI analysis were used to execute cell proliferation and apoptosis in KLF6-overexpression cell lines and the control groups. Cleaved caspase-3 expression was also detected in KLF6-overexpression cells and NSCLC tissues. KLF6 expression correlation with cleaved caspase-3 was also examined. RESULTS It was discovered that downregulation of KLF6 was seen in human NSCLC cell lines. Low KLF6 expression in NSCLC tissues was correlated with poor patient prognosis (P < 0.005); patients with less KLF6 expression possessed a lower cumulative 5-year survival rate. Multivariate analysis showed KLF6 expression as an independent prognostic indicator for NSCLC individuals. Expression levels of KLF6 were associated with NSCLC tumor size (P = 0.041). Overexpression of KLF6 inhibited cell proliferation and stimulated A549 and H322 cell line apoptosis. Cleaved caspase-3 protein had higher expression levels in KLF6-overexpressed cells than in the control group. The KLF6 expression levels were positively related to the cleaved caspase-3 protein expression in NSCLC tissues (r = 0.689, P = 0.001). CONCLUSIONS The results indicate that downregulation of KLF6 is a significant NSCLC progression marker. KLF6 prevents cell growth and promotes cell apoptosis, possibly caspase-3 activations.
Collapse
Affiliation(s)
- Binbin Zeng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Pulmonary and Critical Care Medicine, Huadu District People's Hospital of Guangzhou, Guangzhou, China
| | - Jiaxin Lin
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xingdong Cai
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Li Che
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wei Zeng
- Department of Anatomy, School of Medical College, Jinan University, Guangzhou, China
| | - Shengming Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Sun ZG, Pan F, Shao JB, Yan QQ, Lu L, Zhang N. Kinesin superfamily protein 21B acts as an oncogene in non-small cell lung cancer. Cancer Cell Int 2020; 20:233. [PMID: 32536821 PMCID: PMC7291654 DOI: 10.1186/s12935-020-01323-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/04/2020] [Indexed: 12/25/2022] Open
Abstract
Background Kinesin superfamily proteins (KIFs) serve as microtubule-dependent molecular motors, and are involved in the progression of many malignant tumors. In this study, we aimed to investigate the expression pattern and precise role of kinesin family member 21B (KIF21B) in non-small cell lung cancer (NSCLC). Methods KIF21B expression in 72 cases of NSCLC tissues was measured by immunohistochemical staining (IHC). We used shRNA-KIF21B interference to silence KIF21B in NSCLC H1299 and A549 cells and normal lung epithelial bronchus BEAS-2B cells. The biological roles of KIF21B in the growth and metastasis abilities of NSCLC cells were measured by Cell Counting Kit-8 (CCK8), colony formation and Hoechst 33342/PI, wound-healing, and Transwell assays, respectively. Expression of apoptosis-related proteins was determined using western blot. The effect of KIF21B on tumor growth in vivo was examined using nude mice model. Results KIF21B was up-regulated in NSCLC tissues, and correlated with pathological lymph node and pTNM stage, its high expression was predicted a poor prognosis of patients with NSCLC. Silencing of KIF21B mediated by lentivirus-delivered shRNA significantly inhibited the proliferation ability of H1299 and A549 cells. KIF21B knockdown increased apoptosis in H1299 and A549 cells, down-regulated the expression of Bcl-2 and up-regulated the expression of Bax and active Caspase 3. Moreover, KIF21B knockdown decreased the level of phosphorylated form of Akt (p-Akt) and Cyclin D1 expression in H1299 and A549 cells. In addition, silencing of KIF21B impeded the migration and invasion of H1299 and A549 cells. Further, silencing of KIF 21B dramatically inhibited xenograft growth in BALB/c nude mice. However, silencing of KIF21B did not affect the proliferation, migration and invasion of BEAS-2B cells. Conclusions These results reveal that KIF21B is up-regulated in NSCLC and acts as an oncogene in the growth and metastasis of NSCLC, which may function as a potential therapeutic target and a prognostic biomarker for NSCLC.
Collapse
Affiliation(s)
- Zhi-Gang Sun
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013 People's Republic of China
| | - Feng Pan
- Department of Ethics Committee, Central Hospital Affiliated to Shandong University, Jinan, 250012 People's Republic of China
| | - Jing-Bo Shao
- Weifang Medical University, Weifang, 261053 People's Republic of China
| | - Qian-Qian Yan
- Department of Oncology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012 People's Republic of China
| | - Lu Lu
- Shandong First Medical University, Jinan, 250013 Shandong China
| | - Nan Zhang
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013 People's Republic of China
| |
Collapse
|
4
|
Jiang X, Zhu Q, Wu P, Zhou F, Chen J. Upregulated Long Noncoding RNA LINC01234 Predicts Unfavorable Prognosis for Colorectal Cancer and Negatively Correlates With KLF6 Expression. Ann Lab Med 2020; 40:155-163. [PMID: 31650732 PMCID: PMC6822002 DOI: 10.3343/alm.2020.40.2.155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/12/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
Background LINC01234, a long noncoding RNA (lncRNA), is overexpressed in several cancers, including colorectal cancer (CRC). We investigated the role of LINC01234 in CRC development and confirmed its correlation with Krüppel-like factor 6 (KLF6), a tumor suppressor gene that is dysregulated in CRC. Methods We tested mRNA levels using quantitative reverse transcription PCR (qRT-PCR). Tissue samples from patients with CRC, inflammatory bowel disease (IBD), hyperplastic polyp, and adenoma were included. Correlations between clinicopathological parameters, overall survival (OS) rate, and LINC01234 were analyzed using Kruskal-Wallis H test. Additionally, cell proliferation, apoptosis, and tumor formation in nude mice were tested to investigate the mechanism of LINC01234. Western blotting was used to determine protein levels. Results LINC01234 expression was significantly upregulated in CRC tissues and CRC cell lines than in non-tumor tissues and normal epithelial cells, respectively. LINC01234 was associated with high tumor stage, larger tumor size, and metastasis. Patients with higher LINC01234 expression showed reduced OS. Cell proliferation was inhibited by LINC01234 knockdown, whereas apoptosis was enhanced. Mice injected with SW480 cells with LINC01234 knockdown displayed decreased tumor volume, weight, and Ki-67 levels compared with those injected with control cells. KLF6 was negatively regulated by LINC01234. Overexpression of KLF6 showed effects similar to those observed following LINC01234 knockdown on cell proliferation and apoptosis. Conclusions LINC01234 could be a prognostic biomarker in CRC patients. Upregulation of LINC01234 in CRC promotes tumor development through negative regulation of KLF6.
Collapse
Affiliation(s)
- Xiao Jiang
- Department of Ultrasound, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Qiaoying Zhu
- Department of Ultrasound, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China.
| | - Pengxi Wu
- Department of Ultrasound, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Fengsheng Zhou
- Department of Ultrasound, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jun Chen
- Department of Ultrasound, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|
5
|
Shi S, Li D, Li Y, Feng Z, Du Y, Nie Y. LncRNA CR749391 acts as a tumor suppressor to upregulate KLF6 expression via interacting with miR-181a in gastric cancer. Exp Ther Med 2019; 19:569-578. [PMID: 31853323 PMCID: PMC6909595 DOI: 10.3892/etm.2019.8226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 11/30/2018] [Indexed: 01/22/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are novel regulators for post-transcriptional gene expression, and altered lncRNAs function and expression are associated with tumorigenesis and cancer progression, although the biological functions of most lncRNAs in various cancer types and their underlying regulatory interactions have remained largely elusive. Our previous study identified microRNA (miR)-181a as a regulator of Kruppel-like factor 6 (KLF6). In the present study, a bioinformatical analysis was performed to identify the novel lncRNA CR749391 as a potential regulator of miR-181a that contains four putative binding sites. Subsequent in vitro experiments in gastric cancer (GC) cells demonstrated that CR749391 interacted with miR-181a to regulate KLF6 expression. First, a direct binding interaction was confirmed using luciferase reporter and RNA immunoprecipitation and pull-down assays. In addition, CR749391 was observed to be downregulated in GC compared with that of normal gastric cell lines. A functional study also revealed that CR749391 depletion in normal gastric epithelial cells promoted cell viability, migration and invasion, and conferred resistance to apoptosis, whereas ectopic CR749391 overexpression had the opposite effect in GC cells and inhibited in vivo tumor growth. In addition, CR749391 was observed to be downregulated in GC compared with that of normal gastric tissues, which was associated with KLF6 but inversely associated with miR-181a levels. Overall, the CR749391/miR-181a regulatory interaction and association between CR749391 and KLF6 may enhance the current understanding of GC pathogenesis, although CR749391 association with GC prognosis needs further study. The current study could provide a novel approach for lncRNA-mediated targeted GC therapy.
Collapse
Affiliation(s)
- Shengli Shi
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou Key Laboratory of Digestive Disease, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China.,Department of Gastroenterology, Xiaolan People's Hospital of Southern Medical University, Zhangshan, Guangdong 528415, P.R. China
| | - Defeng Li
- Department of Gastroenterology, The 2nd Clinical Medicine College (Shenzhen People's Hospital) of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Yingfei Li
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou Key Laboratory of Digestive Disease, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Zhiqiang Feng
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou Key Laboratory of Digestive Disease, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Yanlei Du
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou Key Laboratory of Digestive Disease, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Yuqiang Nie
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou Key Laboratory of Digestive Disease, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
6
|
Luo D, Chen J, Huang S, Xu J, Song X, Yu P. MicroRNA‑18b acts as an oncogene in gastric cancer by directly targeting Kruppel‑like factor 6. Mol Med Rep 2019; 19:1926-1934. [PMID: 30628682 DOI: 10.3892/mmr.2019.9830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/06/2018] [Indexed: 11/05/2022] Open
Abstract
Gastric cancer (GC) is the fourth most frequently occurring cancer and the second most common cause of cancer‑associated mortality worldwide. An increasing number of studies have reported that microRNAs (miRNAs/miRs) contribute to the regulation of GC development and progression. Therefore, investigation of the miRNAs involved in the development of GC may result in identification of an effective therapeutic target for patients with this malignancy. miR‑18b has been reported to be aberrantly expressed in several types of human cancer. However, the expression pattern, biological role and specific functional mechanism of miR‑18b in GC remains to be elucidated. In the present study, reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis revealed that miR‑18b was significantly upregulated in GC tissues and cell lines compared with normal gastric tissues and the human gastric epithelial immortalized cell line GES‑1, respectively. High miR‑18b expression was significantly associated with lymph node metastasis, invasive depth and the Tumor Node Metastasis stage of patients with GC. Additionally, functional assays indicated that the inhibition of miR‑18b attenuated cell proliferation and invasion in GC. Furthermore, Kruppel‑like factor (KLF)‑6 was identified as a direct target gene of miR‑18b in GC, from the results of bioinformatics analysis, a luciferase reporter assay, RT‑qPCR and western blot analysis. An inverse association was observed between miR‑18b and KLF6 mRNA levels in GC tissues. KLF6 knockdown partially abrogated the effects of miR‑18b inhibition on GC cell proliferation and invasion. Therefore, miR‑18b/KLF6 targeted therapy may provide a promising treatment for patients with GC.
Collapse
Affiliation(s)
- Dongming Luo
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, P.R. China
| | - Junqiang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shifeng Huang
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, P.R. China
| | - Junyi Xu
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, P.R. China
| | - Xuemin Song
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, P.R. China
| | - Pengcheng Yu
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, P.R. China
| |
Collapse
|
7
|
Zhang N, Li Z, Xiao W, Yang F, Gao W, Sun ZG. KLF6-SV1 is a new prognostic biomarker in postoperative patients with non-small cell lung cancer. Cancer Manag Res 2018; 10:3937-3944. [PMID: 30310314 PMCID: PMC6165774 DOI: 10.2147/cmar.s171805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Objectives Non-small cell lung cancer (NSCLC) is aggressive and associated with a poor prognosis. Recent studies have revealed that several genes are involved in the origin and progression of NSCLC. Kruppel-like factor 6 (KLF6) inactivation has been shown in some malignant tumors. KLF6-SV1, as one of the alternatively spliced KLF6 isoforms, has been found to be correlated with metastatic potential and poor survival in some cancers. The purpose of this study was to investigate the clinical and prognostic significance of KLF6-SV1 expression in NSCLC patients after curative resection. Patients and methods A total of 79 patients were enrolled in this study. Enumeration data were analyzed using the chi-squared test or Fisher’s exact probability test. Measurement data were represented as average±SD and t-test (homoscedasticity) or t’-test (homoscedasticity uneven). Univariate analysis was performed by modeling Kaplan–Meier survival curves. The log-rank test was used to calculate the survival rate. Multivariate analysis was carried out by the use of the Cox proportional hazard model. Results KLF6-SV1 expression was correlated with pN (P<0.05) and pTNM stage (P<0.05). The expression of KLF6-SV1 in the adenocarcinoma group was significantly higher than that in the squamous cell carcinoma group (P<0.05). The 5-year survival rate for 79 NSCLC patients was 40.5%, and it was significantly associated with differentiation (P<0.05), pN (P<0.01), pTNM stage (P<0.01) and high expression of KLF6-SV1 (P<0.01). Cox multivariate regression demonstrated that differentiation, pN and KLF6-SV1 expression were independent factors for the 5-year survival rate. Conclusion KLF6-SV1 expression in adenocarcinoma was significantly higher than that in the squamous cell carcinoma, and high expression of KLF6-SV1 was significantly associated with pN and pTNM stage and poor survival in NSCLC patients.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Zhe Li
- Department of Medical Examination, Jinan Central Hospital Affiliated to Shandong University, Shandong University, Jinan, People's Republic of China
| | - Wei Xiao
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, Shandong University, Jinan, People's Republic of China,
| | - Fei Yang
- Department of Pathology, Jinan Central Hospital Affiliated to Shandong University, Shandong University, Jinan, People's Republic of China
| | - Wei Gao
- Department of Pathology, Jinan Central Hospital Affiliated to Shandong University, Shandong University, Jinan, People's Republic of China
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, Shandong University, Jinan, People's Republic of China,
| |
Collapse
|
8
|
Liu JX, Li W, Li JT, Liu F, Zhou L. Screening key long non-coding RNAs in early-stage colon adenocarcinoma by RNA-sequencing. Epigenomics 2018; 10:1215-1228. [PMID: 30182733 DOI: 10.2217/epi-2017-0155] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM We aim to identify the key long noncoding RNAs (lncRNAs) in early-stage colon adenocarcinoma (COAD). PATIENTS & METHODS Compared with colonic intraepithelial neoplasia, differentially expressed lncRNAs (DElncRNAs) in early-stage COAD were obtained by RNA-sequencing. Our previous work has obtained the differentially expressed mRNAs and miRNAs (DEmRNAs and DEmiRNAs) in early-stage COAD. DEmiRNA-DElncRNA-DEmRNA interaction analysis and functional annotation were performed. Validation of expression and receiver-operating characteristic analyses were performed based on The Cancer Genome Atlas. RESULTS Seventy-nine significantly DElncRNAs in early-stage COAD were obtained. MiR-153-3p-TUG1-DAPK1/ARNT2/KLK3/PLD1/SMAD2 and miR-153-3p-SNHG17-COL11A1/IGFBP3/KLF6 interactions were associated with early-stage COAD. Five DElncRNAs (ELFN1-AS1, LINC01234, SNHG17, UCA1 and LOC101929549) involved in early-stage COAD with potential diagnostic value. CONCLUSION LncRNAs involve in early-stage COAD by interaction with COAD-regulated genes and miRNAs.
Collapse
Affiliation(s)
- Ji-Xi Liu
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Wen Li
- Department of Surgical ICU, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Jing-Tao Li
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Fang Liu
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Lei Zhou
- Department of General Surgery, China-Japan Friendship Hospital, Beijing 100029, PR China
| |
Collapse
|
9
|
Overexpression of the Oncogenic Variant (KLF6-SV1) in Young NPC Patients and Correlation with Lack of E-Cadherin. Anal Cell Pathol (Amst) 2018; 2018:9654067. [PMID: 29854578 PMCID: PMC5964540 DOI: 10.1155/2018/9654067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/27/2018] [Indexed: 01/11/2023] Open
Abstract
Purpose The transcription factor Krüppel-like factor 6 (KLF6) regulates various cellular functions, such as metabolism, cell proliferation, and differentiation. KLF6 plays a key role in the development and progression of multiple human cancers. Methods Fifty primary biopsies and 10 normal nasopharyngeal mucosae were used to analyze by RT-QPCR the expression and the copy number of wtKLF6 and the spliced variants (KLF6-SV1, KLF6-SV2, and KLF6-SV3) in Tunisian patients with nasopharyngeal carcinoma. The expression analysis of E-cadherin and cyclin D1 was conducted by RT-QPCR and Western blot, respectively. Results The wtKLF6 was significantly downexpressed in tumors compared to normal tissues (p = 0.0015), whereas KLF6-SV1 and KLF6-SV2 were overexpressed in tumors compared to wtKLF6 and KLF6-SV3 (p < 0.0001). Copy number variation was reduced in tumors compared to normal tissues (p = 0.0071). Interestingly, KLF6-SV1 is associated with the juvenile form (p = 0.0003) which is more aggressive than the adult form of NPC. Furthermore, the oncogenic variant KLF6-SV1 was overexpressed in tumors lacking the expression of E-cadherin (p = 0.0022) suggesting its role in metastasis and tumor progression. The wtKLF6 is associated negatively with cyclin D1 in tumor tissues (p = 0.048). Conclusion The wtKLF6 was downexpressed in contrast with the oncogenic variants. Overexpression of KLF6-SV1 is associated with young patients, and loss of E-cadherin suggests that this variant correlated with the aggressiveness of NPC.
Collapse
|
10
|
Kim CK, He P, Bialkowska AB, Yang VW. SP and KLF Transcription Factors in Digestive Physiology and Diseases. Gastroenterology 2017; 152:1845-1875. [PMID: 28366734 PMCID: PMC5815166 DOI: 10.1053/j.gastro.2017.03.035] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 12/14/2022]
Abstract
Specificity proteins (SPs) and Krüppel-like factors (KLFs) belong to the family of transcription factors that contain conserved zinc finger domains involved in binding to target DNA sequences. Many of these proteins are expressed in different tissues and have distinct tissue-specific activities and functions. Studies have shown that SPs and KLFs regulate not only physiological processes such as growth, development, differentiation, proliferation, and embryogenesis, but pathogenesis of many diseases, including cancer and inflammatory disorders. Consistently, these proteins have been shown to regulate normal functions and pathobiology in the digestive system. We review recent findings on the tissue- and organ-specific functions of SPs and KLFs in the digestive system including the oral cavity, esophagus, stomach, small and large intestines, pancreas, and liver. We provide a list of agents under development to target these proteins.
Collapse
Affiliation(s)
- Chang-Kyung Kim
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY
| | - Ping He
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY
| | - Agnieszka B. Bialkowska
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY,Corresponding Authors: Vincent W. Yang & Agnieszka B. Bialkowska, Department of Medicine, Stony Brook University School of Medicine, HSC T-16, Rm. 020; Stony Brook, NY, USA. Tel: (631) 444-2066; Fax: (631) 444-3144; ;
| | - Vincent W. Yang
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY,Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY,Corresponding Authors: Vincent W. Yang & Agnieszka B. Bialkowska, Department of Medicine, Stony Brook University School of Medicine, HSC T-16, Rm. 020; Stony Brook, NY, USA. Tel: (631) 444-2066; Fax: (631) 444-3144; ;
| |
Collapse
|
11
|
Hsu LS, Huang RH, Lai HW, Hsu HT, Sung WW, Hsieh MJ, Wu CY, Lin YM, Chen MK, Lo YS, Chen CJ. KLF6 inhibited oral cancer migration and invasion via downregulation of mesenchymal markers and inhibition of MMP-9 activities. Int J Med Sci 2017; 14:530-535. [PMID: 28638268 PMCID: PMC5479121 DOI: 10.7150/ijms.19024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/15/2017] [Indexed: 12/18/2022] Open
Abstract
Krüppel-like factors can bind to specific DNA motifs and regulate various cellular functions, such as metabolism, cell proliferation, and differentiation. Krüppel-like factor 6 (KLF6), a member of this family, is downregulated in human cancers. Oral cancer is a highly prevalent type in Taiwan. Although KLF6 overexpression in human cancer cells inhibits cell proliferation, induces apoptosis, and attenuates cell migration, the effects of KLF6 on oral cancer remains poorly elucidated. This study investigated the role of KLF6 in oral cancer tumorigenesis. Immunohistochemical staining revealed that nuclear KLF6 level was significantly and inversely associated with tumor size and stages. KLF6 overexpression attenuated the migration and invasion of oral cancer SAS cells. Zymography assay demonstrated that KLF6 inhibited the activities of matrix metalloproteinase 9 (MMP-9) and weakened the expression of mesenchymal markers, such as snail, slug, and vimentin. Our study is the first to provide demonstrate that KLF6 functions as a tumor suppressor gene and prevents the metastasis of oral cancer cells.
Collapse
Affiliation(s)
- Li-Sung Hsu
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital Taichung, Taiwan
| | - Ren-Hung Huang
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Hung-Wen Lai
- Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Hui-Ting Hsu
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichuang, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Wen-Wei Sung
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichuang, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Ju Hsieh
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chong-Yu Wu
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Yueh-Min Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Mu-Kuan Chen
- School of Medicine, Chung Shan Medical University, Taichuang, Taiwan
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Yu-Sheng Lo
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Chih-Jung Chen
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, Chung Shan Medical University, Taichuang, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| |
Collapse
|
12
|
Barber A, Farmer K, Martin KR, Smith PD. Retinal regeneration mechanisms linked to multiple cancer molecules: A therapeutic conundrum. Prog Retin Eye Res 2016; 56:19-31. [PMID: 27586058 DOI: 10.1016/j.preteyeres.2016.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 11/26/2022]
Abstract
Over the last decade, a large number of research articles have been published demonstrating regeneration and/or neuroprotection of retinal ganglion cells following manipulation of specific genetic and molecular targets. Interestingly, of the targets that have been identified to promote repair following visual system damage, many are genes known to be mutated in different types of cancer. This review explores recent literature on the potential for modulating cancer genes as a therapeutic strategy for visual system repair and looks at the potential clinical challenges associated with implementing this type of therapy. We also discuss signalling mechanisms that have been implicated in cancer and consider how similar mechanisms may improve axonal regeneration in the optic nerve.
Collapse
Affiliation(s)
- Amanda Barber
- John van Geest Centre for Brain Repair, University of Cambridge, UK
| | - Kyle Farmer
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Keith R Martin
- John van Geest Centre for Brain Repair, University of Cambridge, UK; Medical Research Council - Wellcome Trust Cambridge Stem Cell Institute, Cambridge, UK; Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | - Patrice D Smith
- John van Geest Centre for Brain Repair, University of Cambridge, UK; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
13
|
Wen PH, Wang DY, Zhang JK, Wang ZH, Pan J, Shi XY, Yang H, Zhang SJ, Guo WZ. Kruppel-like factor 6 suppresses growth and invasion of hepatocellular carcinoma cells in vitro and in vivo. Int J Immunopathol Pharmacol 2016; 29:666-675. [PMID: 27510817 DOI: 10.1177/0394632016655171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/24/2016] [Indexed: 12/15/2022] Open
Abstract
Kruppel-like factor 6 (KLF6) as a novel tumor suppressive gene participates in multiple biological behaviors and plays an important role in regulating tumor cell growth and invasion. However, the functions of KLF6 in hepatocellular carcinoma (HCC) remain poorly understood. The expression level of KLF6 was examined by immunohistochemical assay in human HCC tissues, and KLF6-overexpressed HCC cells (SMCC-7721 and HepG2) were used for evaluating cell proliferation and invasion by MTT and Transwell assays. A subcutaneous HCC tumor model was established for assessing tumor growth in vivo. Our results showed that the expression of KLF6 was significantly downregulated in HCC tissues compared with the adjacent non-cancerous tissues (50.0% vs. 72.0%, P = 0.034) and negatively associated with the lymph-vascular space invasion (LVSI) in HCC patients (P = 0.003). Furthermore, overexpression of KLF6 reduced cell proliferation and weakened the cell invasive potential followed with the decreased expression of PCNA and MMP-9 in HCC cells. The in vivo experiment indicated that KLF6 overexpression suppressed the xenograft tumor growth. Therefore, our findings show that KLF6 suppresses growth and invasion of HCC cells in vitro and in vivo, suggesting a tumor suppressive function in HCC and provides the potential therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Pei-Hao Wen
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery & Digestive Organ Transplantation of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Dong-Yu Wang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jia-Kai Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery & Digestive Organ Transplantation of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhi-Hui Wang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery & Digestive Organ Transplantation of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jie Pan
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery & Digestive Organ Transplantation of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiao-Yi Shi
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery & Digestive Organ Transplantation of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Han Yang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery & Digestive Organ Transplantation of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Shui-Jun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery & Digestive Organ Transplantation of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China .,Key Laboratory of Hepatobiliary and Pancreatic Surgery & Digestive Organ Transplantation of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| |
Collapse
|
14
|
Abstract
Krüppel-like factors (KLFs) comprise a highly conserved family of zinc finger transcription factors, that are involved in a plethora of cellular processes, ranging from proliferation and apoptosis to differentiation, migration and pluripotency. During the last few years, evidence on their role and deregulation in different human cancers has been emerging. This review will discuss current knowledge on Krüppel-like transcription in the epithelial-mesenchymal transition (EMT), invasion and metastasis, with a focus on epithelial cancer biology and the extensive interface with pluripotency. Furthermore, as KLFs are able to mediate different outcomes, important influences of the cellular and microenvironmental context will be highlighted. Finally, we attempt to integrate diverse findings on KLF functions in EMT and stem cell biology to ft in the current model of cellular plasticity as a tool for successful metastatic dissemination.
Collapse
|