1
|
Maity G, Chakraborty J, Ghosh A, Haque I, Banerjee S, Banerjee SK. Aspirin suppresses tumor cell-induced angiogenesis and their incongruity. J Cell Commun Signal 2019; 13:491-502. [PMID: 30610526 PMCID: PMC6946772 DOI: 10.1007/s12079-018-00499-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/26/2018] [Indexed: 01/10/2023] Open
Abstract
Tumor neovascularization/tumor angiogenesis is a pathophysiological process in which new blood vessels are formed from existing blood vessels in the primary tumors to supply adequate oxygen and nutrition to cancer cells for their proliferation and metastatic growth to the distant organs. Therefore, controlling tumor angiogenesis is an attractive target for cancer therapy. Structural abnormalities of the vasculature (i.e., leakiness due to the abnormal lining of pericytes on the microvessels) are one of the critical features of tumor angiogenesis that sensitizes vascular cells to cytokines and helps circulating tumor cells to metastasize to distant organs. Our goal is to repurpose the drugs that may prevent tumor angiogenesis or normalize the vessels by repairing leakiness via recruiting pericytes or both. In this study, we tested whether aspirin (ASA), which could block primary tumor growth, regulates tumor angiogenesis. We investigated the effects of low (1 mM) and high (2.5 mM) doses of ASA (direct effect), and ASA-treated or untreated triple negative breast cancer (TNBC) cells' conditioned media (indirect effect) on endothelial cell physiology. These include in vitro migration using modified Boyden chamber assay, in vitro capillary-like structure formation on Matrigel, interactions of pericytes-endothelial cells and cell permeability using in vitro endothelial permeability assay. We also examined the effect of ASA on various molecular factors associated with tumor angiogenesis. Finally, we found the outcome of ASA treatment on in vivo tumor angiogenesis. We found that ASA-treatment (direct or indirect) significantly blocks in vitro migration and capillary-like structure formation by endothelial cells. Besides, we found that ASA recruits pericytes from multipotent stem cells and helps in binding with endothelial cells, which is a hallmark of normalization of blood vessels, and decreases in vitro permeability through endothelial cell layer. The antiangiogenic effect of ASA was also documented in vivo assays. Mechanistically, ASA treatment blocks several angiogenic factors that are associated with tumor angiogenesis, and suggesting ASA blocks paracrine-autocrine signaling network between tumor cells and endothelial cells. Collectively, these studies implicate aspirin with proper dose may provide potential therapeutic for breast cancer via blocking as well as normalizing tumor angiogenesis.
Collapse
Affiliation(s)
- Gargi Maity
- Cancer Research Unit, Research Division (151), VA Medical Center, 4801 E Linwood Boulevard, Kansas City, MO, 64128, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jinia Chakraborty
- Cancer Research Unit, Research Division (151), VA Medical Center, 4801 E Linwood Boulevard, Kansas City, MO, 64128, USA
- Blue Valley High School, 16200 Antioch Rd, Overland Park, KS, 66085, USA
| | - Arnab Ghosh
- Cancer Research Unit, Research Division (151), VA Medical Center, 4801 E Linwood Boulevard, Kansas City, MO, 64128, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Inamul Haque
- Cancer Research Unit, Research Division (151), VA Medical Center, 4801 E Linwood Boulevard, Kansas City, MO, 64128, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Snigdha Banerjee
- Cancer Research Unit, Research Division (151), VA Medical Center, 4801 E Linwood Boulevard, Kansas City, MO, 64128, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sushanta K Banerjee
- Cancer Research Unit, Research Division (151), VA Medical Center, 4801 E Linwood Boulevard, Kansas City, MO, 64128, USA.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
2
|
McIlrath V, Trye A, Aguanno A. Using Mouse Mammary Tumor Cells to Teach Core Biology Concepts: A Simple Lab Module. J Vis Exp 2015:e52528. [PMID: 26132733 DOI: 10.3791/52528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Undergraduate biology students are required to learn, understand and apply a variety of cellular and molecular biology concepts and techniques in preparation for biomedical, graduate and professional programs or careers in science. To address this, a simple laboratory module was devised to teach the concepts of cell division, cellular communication and cancer through the application of animal cell culture techniques. Here the mouse mammary tumor (MMT) cell line is used to model for breast cancer. Students learn to grow and characterize these animal cells in culture and test the effects of traditional and non-traditional chemotherapy agents on cell proliferation. Specifically, students determine the optimal cell concentration for plating and growing cells, learn how to prepare and dilute drug solutions, identify the best dosage and treatment time course of the antiproliferative agents, and ascertain the rate of cell death in response to various treatments. The module employs both a standard cell counting technique using a hemocytometer and a novel cell counting method using microscopy software. The experimental procedure lends to open-ended inquiry as students can modify critical steps of the protocol, including testing homeopathic agents and over-the-counter drugs. In short, this lab module requires students to use the scientific process to apply their knowledge of the cell cycle, cellular signaling pathways, cancer and modes of treatment, all while developing an array of laboratory skills including cell culture and analysis of experimental data not routinely taught in the undergraduate classroom.
Collapse
Affiliation(s)
| | - Alice Trye
- Department of Natural Sciences, Marymount Manhattan College
| | - Ann Aguanno
- Department of Natural Sciences, Marymount Manhattan College;
| |
Collapse
|
3
|
Söderberg-Nauclér C. Treatment of cytomegalovirus infections beyond acute disease to improve human health. Expert Rev Anti Infect Ther 2014; 12:211-22. [PMID: 24404994 DOI: 10.1586/14787210.2014.870472] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human cytomegalovirus is a common virus that establishes latency and persistence after a primary infection in 50-90% of populations worldwide. In otherwise healthy persons, the infection is generally mild or asymptomatic, although it may cause mononucleosis, prolonged episodes of fever, and hepatitis. However, in AIDS patients and transplant recipients who are immunosuppressed, severe, life-threatening infections may develop. CMV is also the most common congenital infection and may cause birth defects and deafness. Emerging evidence shows a high prevalence of this virus in patients with chronic inflammatory diseases or tumours of different origin, such as breast, colon, and prostate cancer, neuroblastoma, medulloblastoma, and glioblastoma. Several drugs are available to treat CMV infections. This review will highlight the possibility of using anti-CMV therapy to improve outcome not only in patients with acute CMV infections but also in patients with inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Cecilia Söderberg-Nauclér
- Department of Medicine, Center for Molecular Medicine, Karolinska Institute, SE-171 76 Stockholm, Sweden
| |
Collapse
|
4
|
Bayraktar S, Hernadez-Aya LF, Lei X, Meric-Bernstam F, Litton JK, Hsu L, Hortobagyi GN, Gonzalez-Angulo AM. Effect of metformin on survival outcomes in diabetic patients with triple receptor-negative breast cancer. Cancer 2011; 118:1202-11. [PMID: 21800293 DOI: 10.1002/cncr.26439] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 05/12/2011] [Accepted: 06/01/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND Recent observational studies have shown that metformin use in diabetic patients decreases both cancer incidence and mortality. Metformin use is also independently predictive of pathologic complete response. In the current study, the authors explored the association between metformin use and survival outcomes in patients with triple receptor-negative breast cancer (TNBC) who were receiving adjuvant chemotherapy. METHODS The Breast Cancer Management System database of The University of Texas MD Anderson Cancer Center identified 1448 women who received adjuvant chemotherapy for TNBC between 1995 and 2007. Patients were categorized by diabetes status and metformin use. The Kaplan-Meier product-limit method was used to calculate distant metastasis-free survival (DMFS), recurrence-free survival (RFS), and overall survival (OS). Cox proportional hazards models were fit to determine the association between metformin use and survival outcomes. RESULTS The study cohort was comprised of 63 diabetic patients receiving treatment with metformin, 67 diabetic patients not receiving metformin, and 1318 nondiabetic patients. Patients in the diabetic groups tended to be older (P = .005); more diabetic patients were postmenopausal (P = .0007), black (P = .0001), and obese (P < .0001). At a median follow-up of 62 months, there were no significant differences with regard to 5-year DMFS (P = .23), RFS (P = .38), and OS (P = .58) between the 3 groups. Compared with the metformin group, patients who did not receive metformin (hazard ratio [HR], 1.63; 95% confidence interval [95% CI], 0.87-3.06 [P = .13]) and nondiabetic patients (HR, 1.62; 95% CI, 0.97-2.71 [P = .06]) tended to have a higher risk of distant metastases. CONCLUSIONS The findings of the current study suggest that metformin use during adjuvant chemotherapy does not significantly impact survival outcomes in diabetic patients with TNBC.
Collapse
Affiliation(s)
- Soley Bayraktar
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030-4009, USA
| | | | | | | | | | | | | | | |
Collapse
|