1
|
Hu X, Jiang C, Gao Y, Xue X. Human dendritic cell subsets in the glioblastoma-associated microenvironment. J Neuroimmunol 2023; 383:578147. [PMID: 37643497 DOI: 10.1016/j.jneuroim.2023.578147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/24/2023] [Accepted: 07/05/2023] [Indexed: 08/31/2023]
Abstract
Glioblastoma (GBM) is the most aggressive type of glioma (Grade IV). The presence of cytotoxic T lymphocyte (CTLs) has been associated with improved outcomes in patients with GBM, and it is believed that the activation of CTLs by dendritic cells may play a critical role in controlling the growth of GBM. DCs are professional antigen-presenting cells (APC) that orchestrate innate and adaptive anti-GBM immunity. DCs can subsequently differentiate into plasmacytoid DCs (pDC), conventional DC1 (cDC1), conventional (cDC2), and monocyte-derived DCs (moDC) depending on environmental exposure. The different subsets of DCs exhibit varying functional capabilities in antigen presentation and T cell activation in producing an antitumor response. In this review, we focus on recent studies describing the phenotypic and functional characteristics of DC subsets in humans and their respective antitumor immunity and immunotolerance roles in the GBM-associated microenvironment. The critical components of crosstalk between DC subsets that contribute significantly to GBM-specific immune responses are also highlighted in this review with reference to the latest literature. Since DCs could be prime targets for therapeutic intervention, it is worth summarizing the relevance of DC subsets with respect to GBM-associated immunologic tolerance and their therapeutic potential.
Collapse
Affiliation(s)
- Xiaopeng Hu
- Medical Research Center, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen 518000, China; Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning 530021, China
| | - Chunmei Jiang
- Medical Research Center, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen 518000, China
| | - Yang Gao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China.
| | - Xingkui Xue
- Medical Research Center, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen 518000, China.
| |
Collapse
|
2
|
Photodynamic Opening of the Blood-Brain Barrier and the Meningeal Lymphatic System: The New Niche in Immunotherapy for Brain Tumors. Pharmaceutics 2022; 14:pharmaceutics14122612. [PMID: 36559105 PMCID: PMC9784636 DOI: 10.3390/pharmaceutics14122612] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/13/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising add-on therapy to the current standard of care for patients with glioblastoma (GBM). The traditional explanation of the anti-cancer PDT effects involves the PDT-induced generation of a singlet oxygen in the GBM cells, which causes tumor cell death and microvasculature collapse. Recently, new vascular mechanisms of PDT associated with opening of the blood-brain barrier (OBBB) and the activation of functions of the meningeal lymphatic vessels have been discovered. In this review, we highlight the emerging trends and future promises of immunotherapy for brain tumors and discuss PDT-OBBB as a new niche and an important informative platform for the development of innovative pharmacological strategies for the modulation of brain tumor immunity and the improvement of immunotherapy for GBM.
Collapse
|
3
|
Cheng X, Wei Y, Jiang X, Wang C, Liu M, Yan J, Zhang L, Zhou Y. Insight into the Prospects for Tumor Therapy Based on Photodynamic Immunotherapy. Pharmaceuticals (Basel) 2022; 15:1359. [PMID: 36355531 PMCID: PMC9693017 DOI: 10.3390/ph15111359] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 10/29/2024] Open
Abstract
Malignancy is one of the common diseases with high mortality worldwide and the most important obstacle to improving the overall life expectancy of the population in the 21st century. Currently, single or combined treatments, including surgery, chemotherapy, and radiotherapy, are still the mainstream regimens for tumor treatment, but they all present significant side effects on normal tissues and organs, such as organ hypofunction, energy metabolism disorders, and various concurrent diseases. Based on this, theranostic measures for the highly selective killing of tumor cells have always been a hot area in cancer-related fields, among which photodynamic therapy (PDT) is expected to be an ideal candidate for practical clinical application due to its precise targeting and excellent safety performance, so-called PDT refers to a therapeutic method mainly composed of photosensitizers (PSs), laser light, and reactive oxygen species (ROS). Photoimmunotherapy (PIT), a combination of PDT and immunotherapy, can induce systemic antitumor immune responses and inhibit continuing growth and distant metastasis of residual tumor cells, demonstrating a promising application prospect. This article reviews the types of immune responses that occur in the host after PDT treatment, including innate and adaptive immunity. To further help PIT-related drugs improve their pharmacokinetic properties and bioavailability, we highlight the potential improvement of photodynamic immunotherapy from three aspects: immunostimulatory agents, tumor-associated antigens (TAAs) as well as different immune cells. Finally, we focus on recent advances in various strategies and shed light on their corresponding mechanisms of immune activation and possible clinical applications such as cancer vaccines. Having discovered the inherent potential of PDT and the mechanisms that PDT triggers host immune responses, a variety of immunotherapeutic strategies have been investigated in parallel with approaches to improve PDT efficiency. However, it remains to be further elucidated under what conditions the immune effect induced by PDT can achieve tumor immunosuppression and to what extent PDT-induced antitumor immunity will lead to complete tumor rejection. Currently, PIT presents several outstanding intractable challenges, such as the aggregation ability of PSs locally in tumors, deep tissue penetration ability of laser light, immune escape, and biological toxicity, and it is hoped that these issues raised will help to point out the direction of preclinical research on PIT and accelerate its transition to clinical practice.
Collapse
Affiliation(s)
- Xiaoxia Cheng
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yiqu Wei
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Xiaomei Jiang
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Chunli Wang
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Mengyu Liu
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Jiaxin Yan
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Lei Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yaqi Zhou
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Pathology Department, Jiaozuo Second People’s Hospital, Jiaozuo 454001, China
| |
Collapse
|
4
|
Tan L, Shen X, He Z, Lu Y. The Role of Photodynamic Therapy in Triggering Cell Death and Facilitating Antitumor Immunology. Front Oncol 2022; 12:863107. [PMID: 35692783 PMCID: PMC9184441 DOI: 10.3389/fonc.2022.863107] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/22/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is a major threat to human health because of its high mortality, easy recurrence, strong invasion, and metastasis. Photodynamic therapy (PDT) is a promising minimally invasive treatment for tumor. Compared with traditional treatment methods, PDT is less invasive and does not easily damage normal tissues. Most of the effects of this treatment are due to the direct effects of singlet oxygen together with reactive oxygen species. PDT can provide the source of active oxygen for the Fenton reaction, which enhances ferroptosis and also improves the efficacy of PDT in antitumor therapy. Additionally, in contrast to chemotherapy and radiotherapy, PDT has the effect of stimulating the immune response, which can effectively induce immunogenic cell death (ICD) and stimulate immunity. PDT is an ideal minimally invasive treatment method for tumors. In this paper, according to the characteristics of anti-tumor immunity of PDT, some tumor treatment strategies of PDT combined with anti-tumor immunotherapy are reviewed.
Collapse
|
5
|
Abstract
Photodynamic therapy of tumors requires the topical, systemic or oral administration of a photosensitizing compound, illumination of the tumor area by light of a specific wavelength and the presence of oxygen. Light activation of the photosensitizer transfers energy to molecular oxygen creating singlet oxygen, a highly reactive and toxic species that rapidly reacts with cellular components causing oxidative damage, ultimately leading to cell death. Tumor destruction caused by photodynamic therapy is not only a result of direct tumor cell toxicity via the generation of reactive oxygen species but there is also an immunological and vascular component involved. The immune response to photodynamic therapy has been demonstrated to significantly enhance its efficacy. Depending on a number of factors, including type of photosensitizer, light dose and dose rate, photodynamic therapy has been shown to induce cell death via apoptosis, necrosis, autophagy and in particular immunogenic cell death. It is the purpose of this review to focus mainly on the role photodynamic therapy could play in the generation of specific anti-tumor immunity and vaccines for the treatment of brain tumors.
Collapse
Affiliation(s)
- Henry Hirschberg
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA 92617, USA
| | - Kristian Berg
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo N-0310, Norway
| | - Qian Peng
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo N-0310, Norway
| |
Collapse
|
6
|
Madsen SJ, Christie C, Huynh K, Peng Q, Uzal FA, Krasieva TB, Hirschberg H. Limiting glioma development by photodynamic therapy-generated macrophage vaccine and allo-stimulation: an in vivo histological study in rats. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-7. [PMID: 29417766 PMCID: PMC5802332 DOI: 10.1117/1.jbo.23.2.028001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/19/2018] [Indexed: 06/08/2023]
Abstract
Immunotherapy of brain tumors involves the stimulation of an antitumor immune response. This type of therapy can be targeted specifically to tumor cells thus sparing surrounding normal brain. Due to the presence of the blood-brain barrier, the brain is relatively isolated from the systemic circulation and, as such, the initiation of significant immune responses is more limited than other types of cancers. The purpose of this study was to show that the efficacy of tumor primed antigen presenting macrophage (MaF98) vaccines can be increased by: (1) photodynamic therapy (PDT) of the priming tumor cells and (2) intracranial injection of allogeneic glioma cells directly into the tumor site. Experiments were conducted in an in vivo brain tumor development model using Fischer rats and F98 (syngeneic) and BT4C (allogeneic) glioma cells. The results showed that immunization with Ma (acting as antigen-presenting cells), primed with PDT-treated tumor cells (MaF98), significantly slowed but did not prevent the growth of F98-induced tumors in the brain. Complete suppression of tumor development was obtained via MaF98 inoculation combined with direct intracranial injection of allogeneic glioma cells. No deleterious effects were noted in any of the animals during the 14-day observation period.
Collapse
Affiliation(s)
- Steen J. Madsen
- University of Nevada, Department of Health Physics and Diagnostic Sciences, Las Vegas, Nevada, United States
| | - Catherine Christie
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Khoi Huynh
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Qian Peng
- University of Oslo, Pathology Clinic, Rikshospitalet-Radiumhospitalet HF Medical Center, Montebello, Oslo, Norway
| | - Francisco A. Uzal
- University of California, School of Veterinary Medicine, Davis, San Bernardino, California, United States
| | - Tatiana B. Krasieva
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Henry Hirschberg
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| |
Collapse
|
7
|
Co-delivery of tumor-derived exosomes with alpha-galactosylceramide on dendritic cell-based immunotherapy for glioblastoma. Cancer Lett 2017; 411:182-190. [PMID: 28947140 DOI: 10.1016/j.canlet.2017.09.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/12/2017] [Accepted: 09/16/2017] [Indexed: 01/21/2023]
Abstract
Dendritic cell (DC) vaccine-based immunotherapy for glioblastoma multiforme (GBM) has shown apparent benefit in animal experiments and early-phase clinical trials, but the survival benefit is variable. In this work, we analyzed the mechanism of the potent antitumor immune response induced in vivo by tumor-associated antigen (TAA)-specific DCs with an invariant natural killer T (iNKT) cell adjuvant in orthotopic glioblastoma-bearing rats vaccinated with tumor-derived exosomes and α-galactosylceramide (α-GalCer) -pulsed DCs. Compared with traditional tumor lysate, exosomes were utilized as a more potent antigen to load DCs. iNKT cells, as an effective cellular adjuvant activated by α-GalCer, strengthened TAA presentation through their interaction with DCs. Co-delivery of tumor-derived exosomes with α-GalCer on a DC-based vaccine showed powerful effects in glioblastoma immunotherapy. This vaccine induced strong activation and proliferation of tumor-specific cytotoxic T lymphocytes, synergistically breaking the immune tolerance and improving the immunosuppressive environment.
Collapse
|
8
|
Wang J, Gao ZP, Qin S, Liu CB, Zou LL. Calreticulin is an effective immunologic adjuvant to tumor-associated antigens. Exp Ther Med 2017; 14:3399-3406. [PMID: 29042925 DOI: 10.3892/etm.2017.4989] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/24/2017] [Indexed: 12/18/2022] Open
Abstract
As a key molecule involved in cell recognition, calreticulin (CRT) may be expressed on the surface of (pre-) apoptotic cells and provide the signal that is recognized by dendritic cells (DCs) or other antigen presenting cells (APCs), which results in phagocytosis. Within the APCs, tumor-associated antigens (TAAs) may be subsequently presented to T lymphocytes, which triggers a specific antitumor immune response. It has been hypothesized that CRT is able to act as the immunologic adjuvant and translocate itself and TAAs to the cell surface and induce a specific antitumor immune response. In the present study, CRT was demonstrated to translocate itself and mucin 1 (MUC1), a breast cancer antigen, to the surface of 4T1 cells and the MUC1-CRT-coated cells were able to induce apoptosis in a time-dependent manner. When DCs were infected with adenovirus containing MUC1-CRT, an increase in T cell proliferation and cytokine production was exhibited. These results suggest that CRT may act as an immunologic adjuvant with MUC1 and induce a strong immune response.
Collapse
Affiliation(s)
- Jun Wang
- Translational Neuroscience and Neural Regeneration and Repair Institute/Institute of Cell Therapy, The First People's Hospital of Yichang, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Zhi Peng Gao
- Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Song Qin
- Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Chang Bai Liu
- Translational Neuroscience and Neural Regeneration and Repair Institute/Institute of Cell Therapy, The First People's Hospital of Yichang, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Li Li Zou
- Translational Neuroscience and Neural Regeneration and Repair Institute/Institute of Cell Therapy, The First People's Hospital of Yichang, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| |
Collapse
|
9
|
van Straten D, Mashayekhi V, de Bruijn HS, Oliveira S, Robinson DJ. Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions. Cancers (Basel) 2017; 9:cancers9020019. [PMID: 28218708 PMCID: PMC5332942 DOI: 10.3390/cancers9020019] [Citation(s) in RCA: 603] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/10/2017] [Accepted: 02/12/2017] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved cancer therapy, based on a photochemical reaction between a light activatable molecule or photosensitizer, light, and molecular oxygen. When these three harmless components are present together, reactive oxygen species are formed. These can directly damage cells and/or vasculature, and induce inflammatory and immune responses. PDT is a two-stage procedure, which starts with photosensitizer administration followed by a locally directed light exposure, with the aim of confined tumor destruction. Since its regulatory approval, over 30 years ago, PDT has been the subject of numerous studies and has proven to be an effective form of cancer therapy. This review provides an overview of the clinical trials conducted over the last 10 years, illustrating how PDT is applied in the clinic today. Furthermore, examples from ongoing clinical trials and the most recent preclinical studies are presented, to show the directions, in which PDT is headed, in the near and distant future. Despite the clinical success reported, PDT is still currently underutilized in the clinic. We also discuss the factors that hamper the exploration of this effective therapy and what should be changed to render it a more effective and more widely available option for patients.
Collapse
Affiliation(s)
- Demian van Straten
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands.
| | - Vida Mashayekhi
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands.
| | - Henriette S de Bruijn
- Center for Optical Diagnostics and Therapy, Department of Otolaryngology-Head and Neck Surgery, Erasmus Medical Center, Postbox 204, Rotterdam 3000 CA, The Netherlands.
| | - Sabrina Oliveira
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands.
- Pharmaceutics, Department of Pharmaceutical Sciences, Science Faculty, Utrecht University, Utrecht 3584 CG, The Netherlands.
| | - Dominic J Robinson
- Center for Optical Diagnostics and Therapy, Department of Otolaryngology-Head and Neck Surgery, Erasmus Medical Center, Postbox 204, Rotterdam 3000 CA, The Netherlands.
| |
Collapse
|
10
|
Improvement of DC vaccine with ALA-PDT induced immunogenic apoptotic cells for skin squamous cell carcinoma. Oncotarget 2016; 6:17135-46. [PMID: 25915530 PMCID: PMC4627297 DOI: 10.18632/oncotarget.3529] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/08/2015] [Indexed: 02/07/2023] Open
Abstract
Dendritic cell (DC) based vaccines have emerged as a promising immunotherapy for cancers. However, most DC vaccines so far have achieved only limited success in cancer treatment. Photodynamic therapy (PDT), an established cancer treatment strategy, can cause immunogenic apoptosis to induce an effective antitumor immune response. In this study, we developed a DC-based cancer vaccine using immunogenic apoptotic tumor cells induced by 5-aminolevulinic acid (ALA) mediated PDT. The maturation of DCs induced by PDT-treated apoptotic cells was evaluated using electron microscopy, FACS, and ELISA. The anti-tumor immunity of ALA-PDT-DC vaccine was tested with a mouse model. We observed the maturations of DCs potentiated by ALA-PDT treated tumor cells, including morphology maturation (enlargement of dendrites and increase of lysosomes), phenotypic maturation (upregulation of surface expression of MHC-II, DC80, and CD86), and functional maturation (enhanced capability to secrete IFN-γ and IL-12, and to induce T cell proliferation). Most interestingly, PDT-induced apoptotic tumor cells are more capable of potentiating maturation of DCs than PDT-treated or freeze/thaw treated necrotic tumor cells. ALA-PDT-DC vaccine mediated by apoptotic cells provided protection against tumors in mice, far stronger than that of DC vaccine obtained from freeze/thaw treated tumor cells. Our results indicate that immunogenic apoptotic tumor cells can be more effective in enhancing a DC-based cancer vaccine, which could improve the clinical application of PDT-DC vaccines.
Collapse
|
11
|
Broekgaarden M, Kos M, Jurg FA, van Beek AA, van Gulik TM, Heger M. Inhibition of NF-κB in Tumor Cells Exacerbates Immune Cell Activation Following Photodynamic Therapy. Int J Mol Sci 2015; 16:19960-77. [PMID: 26307977 PMCID: PMC4581334 DOI: 10.3390/ijms160819960] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 01/01/2023] Open
Abstract
Although photodynamic therapy (PDT) yields very good outcomes in numerous types of superficial solid cancers, some tumors respond suboptimally to PDT. Novel treatment strategies are therefore needed to enhance the efficacy in these therapy-resistant tumors. One of these strategies is to combine PDT with inhibitors of PDT-induced survival pathways. In this respect, the transcription factor nuclear factor κB (NF-κB) has been identified as a potential pharmacological target, albeit inhibition of NF-κB may concurrently dampen the subsequent anti-tumor immune response required for complete tumor eradication and abscopal effects. In contrast to these postulations, this study demonstrated that siRNA knockdown of NF-κB in murine breast carcinoma (EMT-6) cells increased survival signaling in these cells and exacerbated the inflammatory response in murine RAW 264.7 macrophages. These results suggest a pro-death and immunosuppressive role of NF-κB in PDT-treated cells that concurs with a hyperstimulated immune response in innate immune cells.
Collapse
Affiliation(s)
- Mans Broekgaarden
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Milan Kos
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Freek A Jurg
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Adriaan A van Beek
- Department of Cell Biology and Immunology, Wageningen University, 6709 PG Wageningen, The Netherlands.
| | - Thomas M van Gulik
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Zheng L, Li Y, Cui Y, Yin H, Liu T, Yu G, Lv F, Yang J. Generation of an effective anti-lung cancer vaccine by DTPP-mediated photodynamic therapy and mechanistic studies. Lasers Med Sci 2013; 28:1383-92. [PMID: 23455655 DOI: 10.1007/s10103-013-1270-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/10/2013] [Indexed: 12/15/2022]
Abstract
The objective of this study was to generate an effective vaccine against lung cancer using photosensitizing drug-mediated photodynamic therapy (PDT) and to study the mechanism. The efficiency of a photosensitizing drug (DTPP) was investigated by singlet oxygen yield determination, killing effect analysis, and cell apoptosis induction effect assessment. DTPP-based PDT tumor cell lysates and cell surface antigens obtained from acid-eluted adherent cells were then used as vaccines to prevent lung cancer using LA795 murine lung cells. The optimal protocol for PDT vaccine preparation was selected based on the tumor growth retardation effect of the vaccines, DTPP concentration, illumination dose, and numbers of DTPP-based PDT cells. To study the mechanism of the anti-tumor effect of vaccines, host anti-tumor immune responses were studied, including CD4(+)/CD8(+) ratios and percentage of NK cells and serum cytokine levels. A comparison of cytokine (IFN-γ and IL-1) secretion from splenocytes and tumor pathologic features from mice immunized with vaccines were compared with controls and showed that the optimal protocol for PDT vaccine preparation was LA795 cells exposed to 10 μg/ml DTPP photosensitizer for 24 h, illuminated with 7.2 J/cm(2) at 20 mW/cm(2) (630 nm) and 2 × 10(7) PDT cell lysates injected per mouse. DTPP-based PDT cell lysate vaccination had a significant inhibitory effect on tumor growth based on increased CD4(+)/CD8(+) ratios, NK cell percentages, elevated serum IFN-γ and IL-1 levels, and lymphocyte aggregation at the edge of tumors. Thus, DTPP-based PDT can induce LA795 cell apoptosis that can generate anti-tumor effects without use of an adjuvant.
Collapse
Affiliation(s)
- Liqing Zheng
- Laboratory of Laser Medicine, Institute of Biomedical Engineering, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Pizova K, Tomankova K, Daskova A, Binder S, Bajgar R, Kolarova H. Photodynamic therapy for enhancing antitumour immunity. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2012; 156:93-102. [PMID: 22837129 DOI: 10.5507/bp.2012.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is a new modality in cancer treatment. It is based on the tumour-selective accumulation of a photosensitizer followed by irradiation with light of a specific wavelength. PDT is becoming widely accepted owing to its relative specificity and selectivity along with absence of the harmful side-effects of chemo and radiotherapy. There are three known distinct mechanisms of tumour destruction following PDT, generation of reactive oxygen species which can directly kill tumour cells, tumour vascular shutdown which can independently lead to tumour destruction via lack of oxygen and nutrients and thirdly enhanced antitumour immunity. METHODS A review based on the literature acquired from the PubMed database from 1983 with a focus on the enhanced antitumour immunity effects of PTD. RESULTS AND CONCLUSION Tumour cell death is accompanied by the release of a large number of inflammatory mediators. These induce a non-specific inflammatory response followed by gradual adaptive antitumour immunity. Further, a combination of PDT with the immunological approach has the potential to improve PDT efficiency and increase the cure rate. This short review covers specific methods for achieving these goals.
Collapse
Affiliation(s)
- Klara Pizova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry and Institute of Molecular and Translational Medicine, Palacky University Olomouc, Czech Republic
| | | | | | | | | | | |
Collapse
|
14
|
Bhargava A, Mishra D, Banerjee S, Mishra PK. Dendritic cell engineering for tumor immunotherapy: from biology to clinical translation. Immunotherapy 2012; 4:703-718. [PMID: 22853757 DOI: 10.2217/imt.12.40] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Dendritic cells (DCs) are the most potent APCs, with the ability to orchestrate a repertoire of immune responses. DCs play a pivotal role in the initiation, programming and regulation of tumor-specific immune responses, as they are poised to take up, process and present tumor antigens to naive or effector T lymphocytes. Although, to an extent, DC-based immunotherapeutic strategies have successfully induced specific anti-tumor responses in animal models, their clinical efficacy has rarely been translated into the clinic. This article attempts to present a complete picture of recent developments of DC-based therapeutic strategies addressing multiple components of tumor immunoenvironment. It also showcases certain practical intricacies in order to explore novel strategies for providing new impetus to DC-based cancer vaccination.
Collapse
Affiliation(s)
- Arpit Bhargava
- Division of Translational Research, Tata Memorial Centre, ACTREC, India
| | | | | | | |
Collapse
|
15
|
Heat-shock protein 70-dependent dendritic cell activation by 5-aminolevulinic acid-mediated photodynamic treatment of human glioblastoma spheroids in vitro. Br J Cancer 2011; 105:961-9. [PMID: 21863026 PMCID: PMC3185943 DOI: 10.1038/bjc.2011.327] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND T-cell responses contribute to the anti-tumoural effect of photodynamic therapy (PDT). For such responses to occur, dendritic cells (DCs) have to migrate to the tumour, take up tumour antigens and respond to danger signals with maturation, before they engage in T-cell activation. Here, we have studied the effect of 5-aminolevulinic acid (ALA)-mediated PDT on DCs in vitro in a human spheroid model of glioblastoma (GB). METHODS Spheroids of the GB cell lines U87 and U251 were treated with ALA/PDT, and effects on attraction, uptake of tumour antigens and maturation of DCs were studied. To block heat-shock protein-70 (HSP-70) on the spheroids, neutralising antibodies were used. RESULTS 5-Aminolevulinic acid /PDT-treated GB spheroids attracted DCs that acquired tumour antigens from the spheroids effectively. Moreover, co-culture with ALA/PDT-treated spheroids induced DC maturation as indicated by the upregulation of CD83 and co-stimulatory molecules as well as increased T-cell stimulatory activity of the DCs. Heat-shock protein-70 was upregulated on the spheroids after ALA/PDT treatment. Uptake of tumour antigens and DC maturation induced by the ALA/PDT-treated spheroids were inhibited when HSP-70 was blocked. CONCLUSION ALA/PDT treatment of glioma spheroids promotes the three initial steps of the afferent phase of adaptive immunity, which is at least partially mediated by HSP-70.
Collapse
|
16
|
Zhang SY, Li JL, Xu XK, Zheng MG, Wen CC, Li FC. HMME-based PDT restores expression and function of transporter associated with antigen processing 1 (TAP1) and surface presentation of MHC class I antigen in human glioma. J Neurooncol 2011; 105:199-210. [DOI: 10.1007/s11060-011-0584-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 04/08/2011] [Indexed: 12/22/2022]
|