1
|
Shinomiya Y, Kouchi Y, Harada‐Kagitani S, Ishige T, Takano S, Ohtsuka M, Ikeda J, Kishimoto T. ECM1 and KRT6A are involved in tumor progression and chemoresistance in the effect of dexamethasone on pancreatic cancer. Cancer Sci 2024; 115:1948-1963. [PMID: 38613239 PMCID: PMC11145149 DOI: 10.1111/cas.16175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a very poor prognosis. Neoadjuvant chemotherapy is an effective PDAC treatment option, but chemotherapy causes unfavorable side effects. Glucocorticoids (e.g., dexamethasone [DEX]) are administered to reduce side effects of chemotherapy for solid tumors, including pancreatic cancer. Glucocorticoids have both beneficial and detrimental effects, however. We investigated the functional changes and gene-expression profile alterations induced by DEX in PDAC cells. PDAC cells were treated with DEX, and the cell proliferation, migration, invasion, and chemosensitivity to gemcitabine (GEM) were evaluated. The results demonstrated decreased cell proliferative capacity, increased cell migration and invasion, and decreased sensitivity to GEM. A comprehensive genetic analysis revealed marked increases in ECM1 and KRT6A in DEX-treated PDAC cells. We evaluated the effects of ECM1 and KRT6A expression by using PDAC cells transfected with those genes. Neither ECM1 nor KRT6A changed the cells' proliferation, but each enhanced cell migration and invasion. ECM1 decreased sensitivity to GEM. We also assessed the clinicopathological significance of the expressions of ECM1 and KRT6A in 130 cases of PDAC. An immunohistochemical analysis showed that KRT6A expression dominated the poorly differentiated areas. High expressions of these two proteins in PDAC were associated with a poorer prognosis. Our results thus demonstrated that DEX treatment changed PDAC cells' functions, resulting in decreased cell proliferation, increased cell migration and invasion, and decreased sensitivity to GEM. The molecular mechanisms of these changes involve ECM1 and KRT6A, whose expressions are induced by DEX.
Collapse
Affiliation(s)
- Yoshiki Shinomiya
- Department of Molecular Pathology, Graduate School of MedicineChiba UniversityChibaJapan
- Department of PathologyChiba University HospitalChibaJapan
| | - Yusuke Kouchi
- Department of Molecular Pathology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Sakurako Harada‐Kagitani
- Department of Molecular Pathology, Graduate School of MedicineChiba UniversityChibaJapan
- Department of PathologyChiba University HospitalChibaJapan
| | - Takayuki Ishige
- Division of Laboratory MedicineChiba University HospitalChibaJapan
| | - Shigetsugu Takano
- Department of General Surgery, Graduate School of MedicineChiba UniversityChibaJapan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of MedicineChiba UniversityChibaJapan
| | - Jun‐Ichiro Ikeda
- Department of PathologyChiba University HospitalChibaJapan
- Department of Diagnostic Pathology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Takashi Kishimoto
- Department of Molecular Pathology, Graduate School of MedicineChiba UniversityChibaJapan
| |
Collapse
|
2
|
Wu LX, Zhao MY, Yan N, Zhou YL, Cao LM, Qin YZ, Jiang Q, Xu LP, Zhang XH, Huang XJ, Jiang H, Ruan GR. Extracellular matrix protein 1 (ECM1) is a potential biomarker in B cell acute lymphoblastic leukemia. Clin Exp Med 2024; 24:56. [PMID: 38546916 PMCID: PMC10978711 DOI: 10.1007/s10238-023-01255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/18/2023] [Indexed: 04/01/2024]
Abstract
B cell acute lymphoblastic leukemia (ALL) is characterized by the highly heterogeneity of pathogenic genetic background, and there are still approximately 30-40% of patients without clear molecular markers. To identify the dysregulated genes in B cell ALL, we screened 30 newly diagnosed B cell ALL patients and 10 donors by gene expression profiling chip. We found that ECM1 transcription level was abnormally elevated in newly diagnosed B cell ALL and further verified in another 267 cases compared with donors (median, 124.57% vs. 7.14%, P < 0.001). ROC analysis showed that the area under the curve of ECM1 transcription level at diagnosis was 0.89 (P < 0.001). Patients with BCR::ABL1 and IKZF1 deletion show highest transcription level (210.78%) compared with KMT2A rearrangement (39.48%) and TCF3::PBX1 rearrangement ones (30.02%) (all P < 0.05). Also, the transcription level of ECM1 was highly correlated with the clinical course, as 20 consecutive follow-up cases indicated. The 5-year OS of patients (non-KMT2A and non-TCF3::PBX1 rearrangement) with high ECM1 transcription level was significantly worse than the lower ones (18.7% vs. 72.9%, P < 0.001) and high ECM1 transcription level was an independent risk factor for OS (HR = 5.77 [1.75-19.06], P = 0.004). After considering transplantation, high ECM1 transcription level was not an independent risk factor, although OS was still poor (low vs. high, 71.1% vs. 56.8%, P = 0.038). Our findings suggested that ECM1 may be a potential molecular marker for diagnosis, minimal residual disease (MRD) monitoring, and prognosis prediction of B cell ALL.Trial registration Trial Registration Registered in the Beijing Municipal Health Bureau Registration N 2007-1007 and in the Chinese Clinical Trial Registry [ChiCTR-OCH-10000940 and ChiCTR-OPC-14005546]; http://www.chictr.org.cn .
Collapse
Affiliation(s)
- Li-Xin Wu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong province, China
| | - Ming-Yue Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Nan Yan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Ya-Lan Zhou
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Lei-Ming Cao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.
| | - Guo-Rui Ruan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.
| |
Collapse
|
3
|
Wang J, Chen Y, Luo Z, Huang Q, Zhang Y, Ning H, Liu S, Wang J, Han X. Citri Reticulatae Pericarpium-Reynoutria japonica Houtt. herb pair suppresses breast cancer liver metastasis by targeting ECM1-mediated cholesterol biosynthesis pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154896. [PMID: 37247588 DOI: 10.1016/j.phymed.2023.154896] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/03/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Liver metastasis is a frequent event in breast cancer that causes low survival rate and poor prognosis. Citri Reticulatae Pericarpium-Reynoutria japonica Houtt. (CR), a traditional Chinese herb pair, is used for the treatment of breast cancer liver metastasis or cholesterol gallstone disease in clinics. PURPOSE This study attempted to investigate the potential therapeutic target and mechanism of CR herb pair on breast cancer liver metastasis. METHODS The anti-metastatic and cholesterol-lowering activities of CR extract were evaluated in triple-negative breast cancer (TNBC) cell lines and an experimental liver metastasis model. The role of extracellular matrix protein 1 (ECM1) in the cholesterol biosynthesis pathway was determined by the knockdown and overexpression of ECM1 gene of TNBC cells. Changes in the gene and protein expression levels of ECM1 and the cholesterol biosynthesis pathway after CR treatment were detected in vitro and in vivo by real-time PCR and Western blot. RESULTS The invasive and metastatic potentials and hypercholesterol levels of TNBC cells were positively associated with ECM1 expression. ECM1 knockdown reduced tumor cholesterol levels via downregulating cholesterol biosynthesis genes, including ACAT2, HMGCS1, HMGCR, MVK, and MVD, whereas ECM1 overexpression elicited the opposite effects. CR herb pair exerts the potential therapeutic effects on TNBC liver metastasis, which is partially mediated by disrupting ECM1-activated cholesterol biosynthesis process in TNBC cells. CONCLUSION This study reveals that ECM1 is a novel target for the activation of cholesterol biosynthesis to promote TNBC liver metastasis occurrence. CR herb pair, an ECM1 inhibitor, maybe be considered to serve as an adjuvant therapeutic drug for liver metastasis in clinical practice.
Collapse
Affiliation(s)
- Jue Wang
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiang Chen
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhanyang Luo
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qionglian Huang
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhang
- Department of Liver Disease, Shanghai Yueyang Integrated Traditional Chinese Medicine and Western Medicine Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanjuan Ning
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sheng Liu
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jianyi Wang
- Department of Liver Disease, Shanghai Yueyang Integrated Traditional Chinese Medicine and Western Medicine Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xianghui Han
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
4
|
Xiao X, Cheng W, Zhang G, Wang C, Sun B, Zha C, Kong F, Jia Y. Long Noncoding RNA: Shining Stars in the Immune Microenvironment of Gastric Cancer. Front Oncol 2022; 12:862337. [PMID: 35402261 PMCID: PMC8989925 DOI: 10.3389/fonc.2022.862337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is a kind of malignant tumor disease that poses a serious threat to human health. The GC immune microenvironment (TIME) is a very complex tumor microenvironment, mainly composed of infiltrating immune cells, extracellular matrix, tumor-associated fibroblasts, cytokines and chemokines, all of which play a key role in inhibiting or promoting tumor development and affecting tumor prognosis. Long non-coding RNA (lncRNA) is a non-coding RNA with a transcript length is more than 200 nucleotides. LncRNAs are expressed in various infiltrating immune cells in TIME and are involved in innate and adaptive immune regulation, which is closely related to immune escape, migration and invasion of tumor cells. LncRNA-targeted therapeutic effect prediction for GC immunotherapy provides a new approach for clinical research on the disease.
Collapse
Affiliation(s)
- Xian Xiao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wen Cheng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guixing Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaoran Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Binxu Sun
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chunyuan Zha
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
5
|
Dai Z, Cai L, Chen Y, Wang S, Zhang Q, Wang C, Tu M, Zhu Z, Li Q, Lu X. Brusatol Inhibits Proliferation and Invasion of Glioblastoma by Down-Regulating the Expression of ECM1. Front Pharmacol 2022; 12:775680. [PMID: 34970146 PMCID: PMC8713816 DOI: 10.3389/fphar.2021.775680] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Brusatol (Bru), a Chinese herbal extract, has a variety of anti-tumor effects. However, little is known regarding its role and underlying mechanism in glioblastoma cells. Here, we found that Bru could inhibit the proliferation of glioblastoma cells in vivo and in vitro. Besides, it also had an inhibitory effect on human primary glioblastoma cells. RNA-seq analysis indicated that Bru possibly achieved these effects through inhibiting the expression of extracellular matrix protein 1 (ECM1). Down-regulating the expression of ECM1 via transfecting siRNA could weaken the proliferation and invasion of glioblastoma cells and promote the inhibitory effect of Bru treatment. Lentivirus-mediated overexpression of ECM1 could effectively reverse this weakening effect. Our findings indicated that Bru could inhibit the proliferation and invasion of glioblastoma cells by suppressing the expression of ECM1, and Bru might be a novel effective anticancer drug for glioblastoma cells.
Collapse
Affiliation(s)
- Zhang'an Dai
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lin Cai
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yingyu Chen
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Silu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengde Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhangzhang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qun Li
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xianghe Lu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Ding C, Li Y, Wang S, Xing C, Chen L, Zhang H, Wang Y, Dai M. ROBO2 hampers malignant biological behavior and predicts a better prognosis in pancreatic adenocarcinoma. Scand J Gastroenterol 2021; 56:955-964. [PMID: 34148491 DOI: 10.1080/00365521.2021.1930144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a fatalmalignant cancer with extremely poor prognosis and high mortality. Genome wide studies show that Slit/Robo signaling pathway takes a major effect in the oncogenesis and progression of pancreatic cancer. However, the function and mechanism of ROBO2 in the development of PDAC remains unclear. METHODS In present study, we use Western blot and real-time polymerase chain reaction (RT-PCR) to detect the expression of ROBO2 in pancreatic cell lines. Cell proliferation,Transwellmigration and invasion were conducted inAsPC-1, MIA PaCa-2 and PANC-1cell lines. RNA sequencing, bioinformatics analysisand Western blot were used to explore its mechanism and potential target molecules. The expression of ROBO2 in 95 tumor tissues was detected by immunohistochemistry. RESULTS ROBO2 expression was downregulated in PDAC cell lines and tissue samples. A high expression of ROBO2 was associated with better prognosis. Upregulation of ROBO2 inhibited PDAC cell proliferation, migration, and invasion. However, we found theoppositeresults in the ROBO2 downregulation group. In addition, the function of ROBO2 on cell proliferation was further affirmed by the animal model. Finally, the results of RNA sequencing indicated that ROBO2 partly promoted the antitumor activity by inhibiting ECM1 in PDAC. CONCLUSIONS Our work suggests that ROBO2 inhibits tumor progression in PDAC and may serve as a predictive biomarker and therapeutic target in PDAC.
Collapse
Affiliation(s)
- Cheng Ding
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yatong Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shunda Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Cheng Xing
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Lixin Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hanyu Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yizhi Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Yang Y, Zhou J, He P, Wu H. The Role of Keratin-8 and Keratin-18 Polymorphisms and Protein Levels in the Occurrence and Progression of Vocal Leukoplakia. ORL J Otorhinolaryngol Relat Spec 2021; 83:65-74. [PMID: 33472210 DOI: 10.1159/000511447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/08/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE This study aimed to evaluate the association between the single-nucleotide polymorphism (SNP) and tissue protein level of keratin-8/18 and the occurrence and progression of vocal leukoplakia. METHODS The case-control study enrolled 158 patients with vocal leukoplakia, 326 patients with laryngeal squamous cell carcinoma (LSCC), and 268 healthy controls, which were tested for genotype analysis with keratin-8 and keratin-18 gene polymorphisms using pyrosequencing. The tissue protein expression levels of keratin-8 and keratin-18 were evaluated using immunohistochemistry. RESULTS The keratin-8 SNP RS1907671 showed an obvious increased risk for vocal leukoplakia (OR 1.56, p = 0.002), while the other SNPs (RS2035875, RS2035878, RS4300473) were tested as protective factors for vocal leukoplakia and LSCC (OR <1, p < 0.05). In keratin-18 SNP test, both RS2070876 and RS2638526 polymorphisms demonstrated decreased risks for vocal leukoplakia and LSCC (OR <1, p < 0.05). The protein levels of keratin-8 and keratin-18 in vocal leukoplakia group were significantly higher than those of the LSCC group (p < 0.05). CONCLUSIONS Keratin-8 and keratin-18 polymorphisms and protein levels are associated with the occurrence and progression of vocal leukoplakia.
Collapse
Affiliation(s)
- Yue Yang
- Department of Otolaryngology-Head and Neck Surgery, Eye and ENT Hospital, Fudan University, Shanghai, China.,Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Otolaryngology-Head and Neck Surgery, Eye and ENT Hospital, Fudan University, Shanghai, China.,Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Peijie He
- Department of Otolaryngology-Head and Neck Surgery, Eye and ENT Hospital, Fudan University, Shanghai, China.,Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Haitao Wu
- Department of Otolaryngology-Head and Neck Surgery, Eye and ENT Hospital, Fudan University, Shanghai, China, .,Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China,
| |
Collapse
|
8
|
Exploring the role of post-translational modulators of transcription factors in triple-negative breast cancer gene expression. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
9
|
Zheng Q, Wei X, Rao J, Zhou C. Identification of key miRNAs in the progression of hepatocellular carcinoma using an integrated bioinformatics approach. PeerJ 2020; 8:e9000. [PMID: 32411519 PMCID: PMC7210814 DOI: 10.7717/peerj.9000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/26/2020] [Indexed: 12/28/2022] Open
Abstract
Backgroud It has been shown that aberrant expression of microRNAs (miRNAs) and transcriptional factors (TFs) is tightly associated with the development of HCC. Therefore, in order to further understand the pathogenesis of HCC, it is necessary to systematically study the relationship between the expression of miRNAs, TF and genes. In this study, we aim to identify the potential transcriptomic markers of HCC through analyzing common microarray datasets, and further establish the differential co-expression network of miRNAs-TF-mRNA to screen for key miRNAs as candidate diagnostic markers for HCC. Method We first downloaded the mRNA and miRNA expression profiles of liver cancer from the GEO database. After pretreatment, we used a linear model to screen for differentially expressed genes (DEGs) and miRNAs. Further, we used weighed gene co-expression network analysis (WGCNA) to construct the differential gene co-expression network for these DEGs. Next, we identified mRNA modules significantly related to tumorigenesis in this network, and evaluated the relationship between mRNAs and TFs by TFBtools. Finally, the key miRNA was screened out in the mRNA-TF-miRNA ternary network constructed based on the target TF of differentially expressed miRNAs, and was further verified with external data set. Results A total of 465 DEGs and 215 differentially expressed miRNAs were identified through differential genes expression analysis, and WGCNA was used to establish a co-expression network of DEGs. One module that closely related to tumorigenesis was obtained, including 33 genes. Next, a ternary network was constructed by selecting 256 pairs of mRNA-TF pairs and 100 pairs of miRNA-TF pairs. Network mining revealed that there were significant interactions between 18 mRNAs and 25 miRNAs. Finally, we used another independent data set to verify that miRNA hsa-mir-106b and hsa-mir-195 are good classifiers of HCC and might play key roles in the progression of HCC. Conclusion Our data indicated that two miRNAs-hsa-mir-106b and hsa-mir-195-are identified as good classifiers of HCC.
Collapse
Affiliation(s)
- Qi Zheng
- Department of Oncology, Fuzhou First People's Hospital, Fuzhou, Jiangxi, China
| | - Xiaoyong Wei
- Department of Hepatobiliary Surgery, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Jun Rao
- Department of Hepatobiliary Surgery, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Cuncai Zhou
- Department of Hepatobiliary Surgery, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
10
|
Liu LQ, Hu L, Hu XB, Xu J, Wu AM, Chen H, Gu PY, Hu SL. MiR-92a antagonized the facilitation effect of extracellular matrix protein 1 in GC metastasis through targeting its 3′UTR region. Food Chem Toxicol 2019; 133:110779. [DOI: 10.1016/j.fct.2019.110779] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
|
11
|
Yang Y, Zhou J, Wu H. Significance of Cytokeratin-1 Single-Nucleotide Polymorphism and Protein Level in Susceptibility to Vocal Leukoplakia and Laryngeal Squamous Cell Carcinoma. ORL J Otorhinolaryngol Relat Spec 2019; 81:121-129. [PMID: 31067553 DOI: 10.1159/000497747] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/30/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To investigate the association between the cytokeratin (CK)-1 single-nucleotide polymorphism (SNP), the protein level of CK-1 and the risk of vocal leukoplakia and laryngeal squamous cell carcinoma (LSCC). METHODS In this case-control study, 155 patients with vocal leukoplakia, 323 patients with LSCC, and 266 healthy controls were genotyped for the CK-1 (SNP RS14024) gene using pyrosequencing. The protein expression level of CK-1 was analyzed in vocal leukoplakia, LSCC, and vocal polyp patients by immunohistochemistry (IHC). RESULTS Of the CK-1 RS14024 polymorphism, the heterozygote AG and homozygote GG genotype exhibited a significantly increased risk of LSCC (AG: OR = 2.16, p = 0.014; GG: OR = 2.15, p = 0.018) compared to normal controls. A higher protein expression level of CK-1 was detected in patients with LSCC compared to vocal leukoplakia and polyps (both p < 0.001), and a significant increasing trend of CK-1 protein expression level from mild-moderate dysplasia to moderate-severe dysplasia in vocal leukoplakia patients was also observed (p = 0.006). CONCLUSIONS This study demonstrates that the CK-1 SNP and high protein expression levels are associated with vocal leukoplakia and LSCC and promote the transformation from vocal leukoplakia to LSCC in a Chinese Han population.
Collapse
Affiliation(s)
- Yue Yang
- Department of Otolaryngology-Head and Neck Surgery, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China.,Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Otolaryngology-Head and Neck Surgery, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China.,Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Haitao Wu
- Department of Otolaryngology-Head and Neck Surgery, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China, .,Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China,
| |
Collapse
|
12
|
Wang Z, Zhou Q, Li A, Huang W, Cai Z, Chen W. Extracellular matrix protein 1 (ECM1) is associated with carcinogenesis potential of human bladder cancer. Onco Targets Ther 2019; 12:1423-1432. [PMID: 30863109 PMCID: PMC6389008 DOI: 10.2147/ott.s191321] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Bladder cancer (BCa) is a common urological malignant tumor worldwide, and recurrence and death still remain high. New therapeutic targets are needed to treat patients who are not sensitive to current therapy. Extracellular matrix protein 1 (ECM1) is a key player in multiple epithelial malignancies. However, the knowledge regarding the expression of ECM1 in BCa and the mechanisms by which ECM1 affects BCa tumor progression is unclear. Materials and methods ECM1 expression levels in BCa tissues and cells were detected by quantitative real-time PCR (qRT-PCR), immunohistochemistry and Western blot. ECM1 expression was suppressed by shRNAs. Cell Counting Kit-8 (CCK-8), luminescent cell viability assay and 5-ethynyl-2′-deoxyuridine (EdU) assay were used to detect cell proliferation. Flow cytometry and transwell assay were used to evaluate cell apoptosis and invasion, respectively. All statistical analyses were performed by using the GraphPad Prism 7 software package. Results In this study, the expression of ECM1 in BCa specimens and cell lines was examined and displayed a significant increase compared with noncancerous counterparts, while ECM1-knockdown affected not only cell proliferation and migration, but also cell invasion ability and apoptosis potential, corresponding to the finding that ECM1 overexpression in BCa patients was associated with a poor prognosis. Additionally, after suppression of ECM1, the expression of glucose transporter 1 (GLUT1), lactate dehydrogenase (LDHA) and hypoxia-inducible factor 1α (HIF-1α), genes involved in Warburg effect regulation, were significantly decreased, and the lactate production was also obviously reduced in ECM1-silenced cells. Conclusion Our investigations revealed that the expression of ECM1 was closely associated with tumor cell growth, migration and apoptosis at least in part through regulation of Warburg effect, defining ECM1 as an effective predictor in the carcinogenesis and postoperative recurrence of human BCa.
Collapse
Affiliation(s)
- Zhicai Wang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China, ;
| | - Qun Zhou
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China, ;
| | - Aolin Li
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China, ;
| | - Weiren Huang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China, ; .,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China, .,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, China,
| | - Zhiming Cai
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China, ; .,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China, .,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, China,
| | - Wei Chen
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China, ;
| |
Collapse
|
13
|
Li Y, Zhang W, Zhao J, Li S, Shan L, Zhu J, Li Y, Zhu H, Mao Q, Xia H. Establishing a dual knock-out cell line by lentivirus based combined CRISPR/Cas9 and Loxp/Cre system. Cytotechnology 2018; 70:1595-1605. [PMID: 30173403 DOI: 10.1007/s10616-018-0252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022] Open
Abstract
The clustered regulatory interspersed short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system has been widely used for gene knock-out. Lentiviral vectors have been commonly used as a delivery method for this system, however, prolonged Cas9/sgRNA expression due to lentiviral integration can lead to accumulating off-target mutations. To solve this issue in engineering a gene knock-out cell line, this study established a novel system, which was composed of two lentiviral vectors. One lentiviral vector carried simultaneously sgRNAs and CRISPR/Cas9 expression cassettes targeting single or multiple gene(s); the other lentiviral vector carried Cre that could remove excess sgRNAs and Cas9 expression cassettes in the genome after gene targeting was achieved. To prove the principle, two candidate genes, extracellular matrix protein 1 (ECM1) and progranulin (PGRN), both highly expressed in MDA-MB-231 cells, were selected for testing the novel system. A dual knock-out of ECM1 and PGRN was successfully achieved in MDA-MB-231 cell line, with the sgRNAs and Cas9 expression cassettes being removed by Cre. This system should have great potential in applications for multiple genes knock-out in vitro.
Collapse
Affiliation(s)
- Ya Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China
| | - Weifeng Zhang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China
| | - Sai Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China
| | - Linlin Shan
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China
| | - Jiuling Zhu
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China
| | - Yan Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China
| | - He Zhu
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China
| | - Qinwen Mao
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Ward 3-140, Chicago, IL, 60611, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, People's Republic of China.
| |
Collapse
|
14
|
Gan L, Meng J, Xu M, Liu M, Qi Y, Tan C, Wang Y, Zhang P, Weng W, Sheng W, Huang M, Wang Z. Extracellular matrix protein 1 promotes cell metastasis and glucose metabolism by inducing integrin β4/FAK/SOX2/HIF-1α signaling pathway in gastric cancer. Oncogene 2017; 37:744-755. [PMID: 29059156 DOI: 10.1038/onc.2017.363] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/03/2017] [Accepted: 08/25/2017] [Indexed: 12/18/2022]
Abstract
Extracellular matrix protein 1 (ECM1) is related to strong invasiveness and poor prognosis in major malignancies, but the underlying mechanism remains unknown. Here we aimed to elucidate the function of ECM1 on cell metastasis and glucose metabolism in gastric cancer (GC). The level of ECM1 in sera and tissues of patient with GC were positively correlated with tumor invasion and recurrence. Genetic manipulation of ECM1 expression affected cell metastasis and glucose metabolism in GC cell lines. Enhanced ECM1 expression facilitated gene expression levels associated with epithelial-mesenchymal transition (EMT) and glucose metabolism. Interestingly, our results indicated that ECM1 directly interacted with integrin β4 (ITGB4) and activated ITGB4/focal adhesion kinase (FAK)/glycogen synthase kinase 3β signaling pathway, which further induced the expression of transcription factor SOX2. Aberrant expression of SOX2 altered gene expression of EMT factors and glucose metabolism enzymes. Furthermore, SOX2 enhanced hypoxia-inducible factor α (HIF-1α) promoter activity to regulate glucose metabolism. The micro-positron emission tomography/computed tomography imaging of xenograft model showed that ECM1 substantially increased 18F-fluorodeoxyglucose uptake in xenograft tumors. Using in vivo mouse tail vein injection experiments, ECM1 was also found to increase in lung surface metastasis. These findings provide evidence that ECM1 regulates GC cell metastasis and glucose metabolism by inducing ITGB4/FAK/SOX2/HIF-1α signal pathway and have important implications for the development of therapeutic target to prevent tumor metastasis and recurrence.
Collapse
Affiliation(s)
- L Gan
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - J Meng
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - M Xu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - M Liu
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Y Qi
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - C Tan
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Y Wang
- Nanchang Medical College, Nanchang University, Nanchang, China
| | - P Zhang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - W Weng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - W Sheng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - M Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Z Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Wang X, Peng Y, Xie M, Gao Z, Yin L, Pu Y, Liu R. Identification of extracellular matrix protein 1 as a potential plasma biomarker of ESCC by proteomic analysis using iTRAQ and 2D-LC-MS/MS. Proteomics Clin Appl 2017; 11. [PMID: 28493612 DOI: 10.1002/prca.201600163] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/30/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE This study was aimed to conduct a proteomics profiling analysis on plasma obtained from ESCC patients with the goal of identifying appropriate plasma protein biomarkers in the progression of ESCC. EXPERIMENTAL DESIGN Plasma from 28 ESCC patients and 28 healthy controls (HC) were analyzed by iTRAQ combined with 2D-LC-MS/MS. ProteinPilot software was used to identify the differentially expressed plasma proteins in ESCC compared to HC. Western blot was performed to verify the expression of selected proteins in 37 independent ESCC patients and 37 HC. Transwell and MTT assays were used to detect the biological function of ECM1 protein in vitro. RESULTS Nineteen (four upregulated and fifteen downregulated) proteins were identified as differentially expressed between ESCC and HC (p <0.05). Biological functions of these proteins are involved in cell adhesion, cell apoptosis and metabolic processes, visual perception and immune response. Of these, extracellular matrix 1 (ECM1) and lumican (LUM) were selected further confirmation by Western blot (p <0.05), which were consistent with the iTRAQ results. Furthermore, the migration ability of EC9706 cell line after overexpressing ECM1 was increased significantly (p <0.05). The proliferation ability of HUVEC cell was enhanced when treated with the culture supernatants of EC9706 overexpressed ECM1(p <0.05). CONCLUSION AND CLINICAL RELEVANCE This proteome analysis indicate that ECM1 is a potential novel plasma protein biomarker for the detection of primary ESCC and evaluation of neoplasms progression.
Collapse
Affiliation(s)
- Xianghu Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yuan Peng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ming Xie
- North China Petroleum Bureau General Hospital, Renqiu, China
| | - Zhikui Gao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
16
|
Wang F, Wang R, Li Q, Qu X, Hao Y, Yang J, Zhao H, Wang Q, Li G, Zhang F, Zhang H, Zhou X, Peng X, Bian Y, Xiao W. A transcriptome profile in hepatocellular carcinomas based on integrated analysis of microarray studies. Diagn Pathol 2017; 12:4. [PMID: 28086821 PMCID: PMC5237304 DOI: 10.1186/s13000-016-0596-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/30/2016] [Indexed: 02/06/2023] Open
Abstract
Background Despite new treatment options for hepatocellular carcinomas (HCC) recently, 5-year survival remains poor, ranging from 50 to 70%, which may attribute to the lack of early diagnostic biomarkers. Thus, developing new biomarkers for early diagnosis of HCC, is extremely urgent, aiming to decrease HCC-related deaths. Methods In the study, we conducted a comprehensive characterization of gene expression data of HCC based on a bioinformatics method. The results were confirmed by real time polymerase chain reaction (RT-PCR) and TCGA database to prove the credibility of this integrated analysis. Results After integrating analysis of seven HCC gene expression datasets, 1167 differential expressed genes (DEGs) were identified. These genes mainly participated in the process of cell cycle, oocyte meiosis, and oocyte maturation mediated by progesterone. The results of experiments and TCGA database validation in 10 genes was in full accordance with findings in integrated analysis, indicating the high credibility of our integrated analysis of different gene expression datasets. ASPM, CCT3, and NEK2 was showed to be significantly associated with overall survival of HCC patients in TCGA database. Conclusion This method of integrated analysis may be a useful tool to minish the heterogeneity of individual microarray, hopefully outputs more accurate HCC transcriptome profiles based on large sample size, and explores some potential biomarkers and therapy targets for HCC. Electronic supplementary material The online version of this article (doi:10.1186/s13000-016-0596-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Feifei Wang
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Fucheng Road 51, Beijing, 100048, China
| | - Ruliang Wang
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Fucheng Road 51, Beijing, 100048, China
| | - Qiuwen Li
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Fucheng Road 51, Beijing, 100048, China
| | - Xueling Qu
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Fucheng Road 51, Beijing, 100048, China
| | - Yixin Hao
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Fucheng Road 51, Beijing, 100048, China
| | - Jingwen Yang
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Fucheng Road 51, Beijing, 100048, China
| | - Huixia Zhao
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Fucheng Road 51, Beijing, 100048, China
| | - Qian Wang
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Fucheng Road 51, Beijing, 100048, China
| | - Guanghui Li
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Fucheng Road 51, Beijing, 100048, China
| | - Fengyun Zhang
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Fucheng Road 51, Beijing, 100048, China
| | - He Zhang
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Fucheng Road 51, Beijing, 100048, China
| | - Xuan Zhou
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Fucheng Road 51, Beijing, 100048, China
| | - Xioumei Peng
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Fucheng Road 51, Beijing, 100048, China
| | - Yang Bian
- Department of Bioinformatics, Beijing Medintell Biomed Co., Ltd, Beijing, China
| | - Wenhua Xiao
- Department of Oncology, The First Affiliated Hospital of PLA General Hospital, Fucheng Road 51, Beijing, 100048, China.
| |
Collapse
|
17
|
Li Y, Li Y, Zhao J, Zheng X, Mao Q, Xia H. Development of a Sensitive Luciferase-Based Sandwich ELISA System for the Detection of Human Extracellular Matrix 1 Protein. Monoclon Antib Immunodiagn Immunother 2016; 35:273-279. [PMID: 27923104 DOI: 10.1089/mab.2016.0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Enzyme-linked immunosorbent assay (ELISA) has been one of the main methods for detecting an antigen in an aqueous sample for more than four decades. Nowadays, one of the biggest concerns for ELISA is still how to improve the sensitivity of the assay, and the luciferase-luciferin reaction system has been noticed as a new detection method with high sensitivity. In this study, a luciferin-luciferase reaction system was used as the detection method for a sandwich ELISA system. It was shown that this new system led to an increase in the detection sensitivity of at least two times when compared with the traditional horseradish peroxidase (HRP) detection method. Lastly, the serum levels of the human extracellular matrix 1 protein of breast cancer patients were determined by the new system, which were overall similar to the HRP chemiluminescent system. Furthermore, this new luciferase reporter can be implemented into other ELISA systems for the purpose of increasing the assay sensitivity.
Collapse
Affiliation(s)
- Ya Li
- 1 Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University , Xi'an, P.R. China
| | - Yanqing Li
- 1 Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University , Xi'an, P.R. China
| | - Junli Zhao
- 1 Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University , Xi'an, P.R. China
| | - Xiaojing Zheng
- 1 Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University , Xi'an, P.R. China
| | - Qinwen Mao
- 2 Department of Pathology, Northwestern University Feinberg School of Medicine Chicago , Chicago, Illinois
| | - Haibin Xia
- 1 Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University , Xi'an, P.R. China
| |
Collapse
|
18
|
Extracellular matrix 1 (ECM1) regulates the actin cytoskeletal architecture of aggressive breast cancer cells in part via S100A4 and Rho-family GTPases. Clin Exp Metastasis 2016; 34:37-49. [PMID: 27770373 DOI: 10.1007/s10585-016-9827-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
Abstract
ECM1 overexpression is an independent predictor of poor prognosis in primary breast carcinomas, however the mechanisms by which ECM1 affects tumor progression have not been completely elucidated. ECM1 was silenced in the triple-negative breast cancer cell lines Hs578T and MDAMB231 using siRNA and the cells were evaluated for changes in morphology, migration, invasion and adhesion. Actin cytoskeleton alterations were evaluated by fluorescent staining and levels of activated Rho GTPases by pull down assays. ECM1 downregulation led to significantly diminished cell migration (p = 0.0005 for Hs578T and p = 0.02 for MDAMB231) and cell adhesion (p < 0.001 for Hs578T and p = 0.01 for MDAMB231). Cell invasion (matrigel) was reduced only in the Hs578T cells (p < 0.01). Silencing decreased the expression of the prometastatic molecules S100A4 and TGFβR2 in both cell lines and CD44 in Hs578T cells. ECM1-silenced cells also exhibited alterations in cell shape and showed bundles of F-actin across the cell (stress fibers) whereas NT-siRNA treated cells showed peripheral membrane ruffling. Downregulation of ECM1 was also associated with an increased F/G actin ratio, when compared to the cells transfected with NT siRNA (p < 0.001 for Hs578T and p < 0.00035 for MDAMB231) and a concomitant decline of activated Rho A in the Hs578T cells. Re-expression of S100A4 in ECM1-silenced cells rescued the phenotype in the Hs578T cells but not the MDAMB231 cells. We conclude that ECM1 is a key player in the metastatic process and regulates the actin cytoskeletal architecture of aggressive breast cancer cells at least in part via alterations in S100A4 and Rho A.
Collapse
|
19
|
Chen H, Jia W, Li J. ECM1 promotes migration and invasion of hepatocellular carcinoma by inducing epithelial-mesenchymal transition. World J Surg Oncol 2016; 14:195. [PMID: 27460906 PMCID: PMC4962417 DOI: 10.1186/s12957-016-0952-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/20/2016] [Indexed: 11/25/2022] Open
Abstract
Background Extracellular matrix protein 1 (ECM1) is a glycoprotein involved in many biologic processes. To determine the expression of ECM1 in hepatocellular carcinoma (HCC), and to study the role of ECM1 in inducing epithelia-mesenchymal transition (EMT) to analyze the effect of ECM1 on the migration and invasion of HCC cells. Methods The expression of ECM1 in HCC specimens was examined by immunohistochemistry staining, and the correlations were analyzed between the expression of ECM1 and the clinicopathological data. The ECM1 expression plasmid was transfected into Bel-7402 cells to induce exogenous overexpression of ECM1 protein. The changes of the expression of ECM1, EMT-related protein (E-cadherin, Vimentin), in Bel-7402 cells were detected by Western blot after transfection of ECM1; the wound healing and invasion assay in vitro were used to determine the role of ECM1 gene transfection on the ability of migration and invasive potential of Bel-7402 cells. Results Immumohistochemistry staining method displayed the ECM1 expression was positively associated with vascular invasion, TNM stage, and poor prognosis. A significant positive correlation was found between the expressions of ECM1 and Vimentin. After ECM1 overexpression, Western blot exhibited that the expression of E-cadherin was down-regulated and Vimentin expression was up-regulated in Bel-7402 cells; the wound healing and invasion assay showed that the migration and invasion potentials of Bel-7402 cells were significantly enhanced. Conclusions ECM1, which displayed a high expression in HCC specimens, was closely associated with clinicopathologic data and may promote migration and invasion of HCC cells by inducing EMT. Electronic supplementary material The online version of this article (doi:10.1186/s12957-016-0952-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao Chen
- Department of Hepatic Surgery, Affiliated Provincial Hospital, Anhui Medical University, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, 17 Lujiang Road, Hefei, 230001, Anhui Province, People's Republic of China
| | - Weidong Jia
- Department of Hepatic Surgery, Affiliated Provincial Hospital, Anhui Medical University, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, 17 Lujiang Road, Hefei, 230001, Anhui Province, People's Republic of China
| | - Jiansheng Li
- Department of Hepatic Surgery, Affiliated Provincial Hospital, Anhui Medical University, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, 17 Lujiang Road, Hefei, 230001, Anhui Province, People's Republic of China.
| |
Collapse
|
20
|
Production and characterization of domain-specific monoclonal antibodies against human ECM1. Protein Expr Purif 2016; 121:103-11. [PMID: 26826312 DOI: 10.1016/j.pep.2016.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/13/2022]
Abstract
Human extracellular matrix protein-1 (hECM1), a secreted glycoprotein, is widely expressed in different tissues and organs. ECM1 has been implicated in multiple biological functions, which are potentially mediated by the interaction of different ECM1 domains with its ligands. However, the exact biological functions of ECM1 have not been elucidated yet, and the functional study of ECM1 has been partially hampered by the lack of sensitive and specific antibodies, especially those targeting different ECM1 domains. In this study, six strains of monoclonal antibody (MAb) against hECM1 were generated using purified, prokaryotically-expressed hECM1 as an immunogen. The MAbs were shown to be highly sensitive and specific, and suitable for western blot, immunoprecipitation assays and immunohistochemistry. Furthermore, the particular ECM1 domains recognized by different MAbs were identified. Lastly, the MAbs were found to have neutralizing activities, inhibiting the proliferation, migration and metastasis of MDA-MB-231 cells. In conclusion, the domain-specific anti-ECM1 MAbs produced in this study should provide a useful tool for investigating ECM1's biological functions, and cellular pathways in which it is involved.
Collapse
|
21
|
Cheng CP, DeBoever C, Frazer KA, Liu YC, Tseng VS. MiningABs: mining associated biomarkers across multi-connected gene expression datasets. BMC Bioinformatics 2014; 15:173. [PMID: 24909518 PMCID: PMC4068973 DOI: 10.1186/1471-2105-15-173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 06/03/2014] [Indexed: 11/12/2022] Open
Abstract
Background Human disease often arises as a consequence of alterations in a set of associated genes rather than alterations to a set of unassociated individual genes. Most previous microarray-based meta-analyses identified disease-associated genes or biomarkers independent of genetic interactions. Therefore, in this study, we present the first meta-analysis method capable of taking gene combination effects into account to efficiently identify associated biomarkers (ABs) across different microarray platforms. Results We propose a new meta-analysis approach called MiningABs to mine ABs across different array-based datasets. The similarity between paired probe sequences is quantified as a bridge to connect these datasets together. The ABs can be subsequently identified from an “improved” common logit model (c-LM) by combining several sibling-like LMs in a heuristic genetic algorithm selection process. Our approach is evaluated with two sets of gene expression datasets: i) 4 esophageal squamous cell carcinoma and ii) 3 hepatocellular carcinoma datasets. Based on an unbiased reciprocal test, we demonstrate that each gene in a group of ABs is required to maintain high cancer sample classification accuracy, and we observe that ABs are not limited to genes common to all platforms. Investigating the ABs using Gene Ontology (GO) enrichment, literature survey, and network analyses indicated that our ABs are not only strongly related to cancer development but also highly connected in a diverse network of biological interactions. Conclusions The proposed meta-analysis method called MiningABs is able to efficiently identify ABs from different independently performed array-based datasets, and we show its validity in cancer biology via GO enrichment, literature survey and network analyses. We postulate that the ABs may facilitate novel target and drug discovery, leading to improved clinical treatment. Java source code, tutorial, example and related materials are available at “http://sourceforge.net/projects/miningabs/”.
Collapse
Affiliation(s)
| | | | - Kelly A Frazer
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan.
| | | | | |
Collapse
|
22
|
Wu Q, Li X, Yang H, Lu C, You J, Zhang Z. Extracellular matrix protein 1 is correlated to carcinogenesis and lymphatic metastasis of human gastric cancer. World J Surg Oncol 2014; 12:132. [PMID: 24779890 PMCID: PMC4016775 DOI: 10.1186/1477-7819-12-132] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 04/20/2014] [Indexed: 01/26/2023] Open
Abstract
Background Tumor-induced lymphangiogenesis is a crucial step in malignant invasion and metastasis. Extracellular matrix protein 1 (ECM1) was recently reported to play a role in lymphangiogenesis. In the present work, we aimed to evaluate the role of ECM1 in gastric cancer and examined whether aberrant expression of ECM1 increased the tumorigenic and metastatic potential of human gastric cancer. Methods The mRNA and protein expression of ECM1 in gastric cancer specimen and the noncancerous counterparts from 77 patients were detected by real-time PCR and immunohistochemistry staining. Lymphatic microvessel density (LMVD) in the corresponding serial sections was assessed by counting the lymphatic microvessels labelled by D2-40. The correlations between ECM1 expression, LMVD, and the clinicopathological parameters were examined. Results ECM1 protein expression was detected in 70.1% (54/77) of gastric cancer specimen, significantly higher than that in the corresponding counterparts (P <0.01). ECM1 mRNA in tumor specimen was also dramatically amplified. Elevated LMVD and ECM1 were positively correlated (P <0.01). In addition, ECM1 protein expression was also closely associated with depth of tumor invasion and TNM stage (P <0.05, respectively). Conclusions ECM1 expression is aberrant elevated in tumor specimen and is closely related to the tumorigenic and metastatic potential of human gastric cancer. Thus, carrying out the protein examination may be beneficial to predict carcinogenesis and metastatic spread of human gastric cancer.
Collapse
Affiliation(s)
| | | | | | | | - Jun You
- Xiamen Cancer Centre, the First Affiliated Hospital of Xiamen University (the Teaching Hospital of Fujian Medical University), Xiamen, China.
| | | |
Collapse
|
23
|
Human Melanoma cells over-express extracellular matrix 1 (ECM1) which is regulated by TFAP2C. PLoS One 2013; 8:e73953. [PMID: 24023917 PMCID: PMC3759440 DOI: 10.1371/journal.pone.0073953] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/25/2013] [Indexed: 11/19/2022] Open
Abstract
Extracellular matrix 1 (ECM1) is over-expressed in multiple epithelial malignancies. However, knowledge regarding the expression of ECM1 in melanomas and the mechanisms of ECM1 regulation is limited. In this study, we found that ECM1 is over-expressed in several melanoma cell lines, when compared to primary melanocytes, and furthermore, that ECM1 expression paralleled that of TFAP2C levels in multiple cell lines. Knockdown of TFAP2C in the A375 cell line with siRNA led to a reduction in ECM1 expression, and upregulation of TFAP2C with adenoviral vectors in the WM793 cell line resulted in ECM1 upregulation. Utilizing 5’ RACE to identify transcription start sites (TSS) and luciferase reporter assays in the ECM1-overexpressing A375 cell line, we identified the minimal promoter region of human ECM1 and demonstrate that an approximately 100bp fragment upstream of the TSS containing a TATA box and binding sites for AP1, SP1 and Ets is sufficient for promoter activity. Chromatin immunoprecipitation and direct sequencing (ChIP-seq) for TFAP2C in the A375 cell line identified an AP2 regulatory region in the promoter of the ECM1 gene. Gelshift assays further confirmed binding of TFAP2C to this site. ECM1 knockdown reduces melanoma cell attachment and is consistent with findings that ECM1 overexpression has been associated with a poor prognosis. Our investigations show an as yet unrecognized role for TFAP2C in melanoma via its regulation of ECM1.
Collapse
|
24
|
Abstract
UNLABELLED Identification of common molecular mechanisms is needed to facilitate the development of new treatment options for patients with ileal carcinoids. PURPOSE OF REVIEW Recent profiling studies on ileal carcinoids were examined to obtain a comprehensive view of risk factors, genetic aberrations, and transcriptional alterations. Special attention was paid to mechanisms that could provide novel targets for therapy. RESULTS Genome-wide association studies have shown that single nucleotide polymorphisms (SNPs) at IL12A and DAD1 are associated with an increased risk of ileal carcinoids. Genomic profiling revealed distinct patterns of copy-number alterations in ileal carcinoids. Two groups of carcinoids could be identified by hierarchical clustering. A major group of tumors was characterized by loss on chromosome 18 followed by additional losses on chromosomes 3p, 11q, and 13. Three minimal common regions of deletions were identified at 18q21.1-q21.31, 18q22.1-q22.2, and 18q22.3-q23. A minor group of tumors was characterized by clustered gains on chromosomes 4, 5, 7, 14, and 20. Expression profiling identified three groups of ileal carcinoids by principal component analysis. Tumor progression was associated with changes in gene expression including downregulation of MIR133A. Candidate genes for targeted therapy included ERBB2/HER2, DAD1, PRKCA, RYBP, CASP1, CASP4, CASP5, VMAT1, RET, APLP1, OR51E1, GPR112, SPOCK1, RUNX1, and MIR133A. CONCLUSION Profiling of ileal carcinoids has revealed recurrent genetic alterations and distinct patterns of gene expression. Frequent alterations in cellular pathways and genes were identified, suggesting novel targets for therapy. Translational studies are needed to validate suggested molecular targets.
Collapse
Affiliation(s)
- Ola Nilsson
- Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden.
| |
Collapse
|
25
|
Wu QW, She HQ, Liang J, Huang YF, Yang QM, Yang QL, Zhang ZM. Expression and clinical significance of extracellular matrix protein 1 and vascular endothelial growth factor-C in lymphatic metastasis of human breast cancer. BMC Cancer 2012; 12:47. [PMID: 22284579 PMCID: PMC3292501 DOI: 10.1186/1471-2407-12-47] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 01/27/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Extracellular matrix protein 1 (ECM1) and vascular endothelial growth factor-C (VEGF-C) are secretory glycoproteins that are associated with lymphangiogenesis; these proteins could, therefore, play important roles in the lymphatic dissemination of tumors. However, very little is known about their potential roles in lymphangiogenesis. The aim of this study was to investigate whether correlations exist between ECM1 and VEGF-C in human breast cancer, lymphangiogenesis, and the clinicopathological characteristics of the disease. METHODS ECM1 and VEGF-C mRNA and protein expression levels in 41 patients were investigated using real-time reverse transcriptase polymerase chain reaction (RT-PCR), or immunohistochemical (IHC) staining of breast cancer tissue, matched noncancerous breast epithelial tissues, and suspicious metastatic axillary lymph nodes. D2-40 labelled lymph vessels and lymphatic microvessel density (LMVD) were counted. Correlations between ECM1 or VEGF-C protein expression levels, LMVD, and clinicopathological parameters were statistically tested. RESULTS The rate of ECM1 positive staining in breast cancer tissues was higher (31/41, 75.6%) than that in the corresponding epithelial tissues (4/41, 9.8%, P < 0.001) and lymph nodes (13/41, 31.7%, P < 0.001). Similarly, the VEGF-C expression rate in cancer specimens was higher (33/41, 80.5%) than in epithelial tissues (19/41, 46.3%, P < 0.01) or lymph nodes (15/41, 36.6%, P < 0.01). Higher ECM1 and VEGF-C mRNA expression levels were also detected in the tumor tissues, compared to the non-cancerous tissue types or lymph nodes (P < 0.05). ECM1 protein expression was positively correlated with the estrogen receptor status (P < 0.05) and LMVD (P < 0.05). LMVD in the ECM1- and VEGF-C-positive tumor specimens was higher than that in the tissue types with negative staining (P < 0.05). CONCLUSIONS Both ECM1 and VEGF-C were overexpressed in breast cancer tissue samples. ECM1 expression was positively correlated with estrogen responsiveness and the metastatic properties of breast cancer. We conclude, therefore, that ECM1 and VEGF-C may have a synergistic effect on lymphangiogenesis to facilitate lymphatic metastasis of breast cancer.
Collapse
Affiliation(s)
- Qiu-Wan Wu
- Fujian Medical University, Fuzhou 350108, China
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Hong-Qiang She
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Jing Liang
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Yu-Fan Huang
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Qing-Mo Yang
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Qiao-Lu Yang
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Zhi-Ming Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| |
Collapse
|
26
|
Rocco M, Malorni L, Cozzolino R, Palmieri G, Rozzo C, Manca A, Parente A, Chambery A. Proteomic Profiling of Human Melanoma Metastatic Cell Line Secretomes. J Proteome Res 2011; 10:4703-14. [DOI: 10.1021/pr200511f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Micaela Rocco
- Department of Life Sciences, Via Vivaldi 43, Second University of Naples, I-81100 Caserta, Italy
| | - Livia Malorni
- Proteomic and Biomolecular Mass Spectrometry Center, Institute of Food Science and Technology, National Research Council (CNR), Via Roma 64, I-83100 Avellino, Italy
| | - Rosaria Cozzolino
- Proteomic and Biomolecular Mass Spectrometry Center, Institute of Food Science and Technology, National Research Council (CNR), Via Roma 64, I-83100 Avellino, Italy
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council (CNR), Traversa La Crucca 3, Baldinca Li Punti, I-07100 Sassari, Italy
| | - Carla Rozzo
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council (CNR), Traversa La Crucca 3, Baldinca Li Punti, I-07100 Sassari, Italy
| | - Antonella Manca
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council (CNR), Traversa La Crucca 3, Baldinca Li Punti, I-07100 Sassari, Italy
| | - Augusto Parente
- Department of Life Sciences, Via Vivaldi 43, Second University of Naples, I-81100 Caserta, Italy
| | - Angela Chambery
- Department of Life Sciences, Via Vivaldi 43, Second University of Naples, I-81100 Caserta, Italy
| |
Collapse
|